llvm-project/lldb/source/Core/ArchSpec.cpp

1612 lines
66 KiB
C++

//===-- ArchSpec.cpp --------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/ArchSpec.h"
// C Includes
// C++ Includes
#include <cstdio>
#include <cerrno>
#include <string>
// Other libraries and framework includes
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/Host.h"
// Project includes
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/StringList.h"
#include "lldb/Host/Endian.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Target/Platform.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/NameMatches.h"
#include "lldb/Utility/SafeMachO.h"
#include "Plugins/Process/Utility/ARMDefines.h"
#include "Plugins/Process/Utility/InstructionUtils.h"
using namespace lldb;
using namespace lldb_private;
static bool cores_match (const ArchSpec::Core core1, const ArchSpec::Core core2, bool try_inverse, bool enforce_exact_match);
namespace lldb_private {
struct CoreDefinition
{
ByteOrder default_byte_order;
uint32_t addr_byte_size;
uint32_t min_opcode_byte_size;
uint32_t max_opcode_byte_size;
llvm::Triple::ArchType machine;
ArchSpec::Core core;
const char * const name;
};
} // namespace lldb_private
// This core information can be looked using the ArchSpec::Core as the index
static const CoreDefinition g_core_definitions[] =
{
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_generic , "arm" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv4 , "armv4" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv4t , "armv4t" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv5 , "armv5" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv5e , "armv5e" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv5t , "armv5t" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv6 , "armv6" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv6m , "armv6m" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7 , "armv7" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7f , "armv7f" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7s , "armv7s" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7k , "armv7k" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7m , "armv7m" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7em , "armv7em" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_xscale , "xscale" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumb , "thumb" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv4t , "thumbv4t" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv5 , "thumbv5" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv5e , "thumbv5e" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv6 , "thumbv6" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv6m , "thumbv6m" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7 , "thumbv7" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7f , "thumbv7f" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7s , "thumbv7s" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7k , "thumbv7k" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7m , "thumbv7m" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7em , "thumbv7em" },
{ eByteOrderLittle, 8, 4, 4, llvm::Triple::aarch64, ArchSpec::eCore_arm_arm64 , "arm64" },
{ eByteOrderLittle, 8, 4, 4, llvm::Triple::aarch64, ArchSpec::eCore_arm_armv8 , "armv8" },
{ eByteOrderLittle, 8, 4, 4, llvm::Triple::aarch64, ArchSpec::eCore_arm_aarch64 , "aarch64" },
// mips32, mips32r2, mips32r3, mips32r5, mips32r6
{ eByteOrderBig , 4, 2, 4, llvm::Triple::mips , ArchSpec::eCore_mips32 , "mips" },
{ eByteOrderBig , 4, 2, 4, llvm::Triple::mips , ArchSpec::eCore_mips32r2 , "mipsr2" },
{ eByteOrderBig , 4, 2, 4, llvm::Triple::mips , ArchSpec::eCore_mips32r3 , "mipsr3" },
{ eByteOrderBig , 4, 2, 4, llvm::Triple::mips , ArchSpec::eCore_mips32r5 , "mipsr5" },
{ eByteOrderBig , 4, 2, 4, llvm::Triple::mips , ArchSpec::eCore_mips32r6 , "mipsr6" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::mipsel, ArchSpec::eCore_mips32el , "mipsel" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::mipsel, ArchSpec::eCore_mips32r2el , "mipsr2el" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::mipsel, ArchSpec::eCore_mips32r3el , "mipsr3el" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::mipsel, ArchSpec::eCore_mips32r5el , "mipsr5el" },
{ eByteOrderLittle, 4, 2, 4, llvm::Triple::mipsel, ArchSpec::eCore_mips32r6el , "mipsr6el" },
// mips64, mips64r2, mips64r3, mips64r5, mips64r6
{ eByteOrderBig , 8, 2, 4, llvm::Triple::mips64 , ArchSpec::eCore_mips64 , "mips64" },
{ eByteOrderBig , 8, 2, 4, llvm::Triple::mips64 , ArchSpec::eCore_mips64r2 , "mips64r2" },
{ eByteOrderBig , 8, 2, 4, llvm::Triple::mips64 , ArchSpec::eCore_mips64r3 , "mips64r3" },
{ eByteOrderBig , 8, 2, 4, llvm::Triple::mips64 , ArchSpec::eCore_mips64r5 , "mips64r5" },
{ eByteOrderBig , 8, 2, 4, llvm::Triple::mips64 , ArchSpec::eCore_mips64r6 , "mips64r6" },
{ eByteOrderLittle, 8, 2, 4, llvm::Triple::mips64el, ArchSpec::eCore_mips64el , "mips64el" },
{ eByteOrderLittle, 8, 2, 4, llvm::Triple::mips64el, ArchSpec::eCore_mips64r2el , "mips64r2el" },
{ eByteOrderLittle, 8, 2, 4, llvm::Triple::mips64el, ArchSpec::eCore_mips64r3el , "mips64r3el" },
{ eByteOrderLittle, 8, 2, 4, llvm::Triple::mips64el, ArchSpec::eCore_mips64r5el , "mips64r5el" },
{ eByteOrderLittle, 8, 2, 4, llvm::Triple::mips64el, ArchSpec::eCore_mips64r6el , "mips64r6el" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_generic , "powerpc" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc601 , "ppc601" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc602 , "ppc602" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc603 , "ppc603" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc603e , "ppc603e" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc603ev , "ppc603ev" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc604 , "ppc604" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc604e , "ppc604e" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc620 , "ppc620" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc750 , "ppc750" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc7400 , "ppc7400" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc7450 , "ppc7450" },
{ eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc970 , "ppc970" },
{ eByteOrderBig , 8, 4, 4, llvm::Triple::ppc64 , ArchSpec::eCore_ppc64_generic , "powerpc64" },
{ eByteOrderBig , 8, 4, 4, llvm::Triple::ppc64 , ArchSpec::eCore_ppc64_ppc970_64 , "ppc970-64" },
{ eByteOrderBig , 8, 2, 6, llvm::Triple::systemz, ArchSpec::eCore_s390x_generic , "s390x" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::sparc , ArchSpec::eCore_sparc_generic , "sparc" },
{ eByteOrderLittle, 8, 4, 4, llvm::Triple::sparcv9, ArchSpec::eCore_sparc9_generic , "sparcv9" },
{ eByteOrderLittle, 4, 1, 15, llvm::Triple::x86 , ArchSpec::eCore_x86_32_i386 , "i386" },
{ eByteOrderLittle, 4, 1, 15, llvm::Triple::x86 , ArchSpec::eCore_x86_32_i486 , "i486" },
{ eByteOrderLittle, 4, 1, 15, llvm::Triple::x86 , ArchSpec::eCore_x86_32_i486sx , "i486sx" },
{ eByteOrderLittle, 4, 1, 15, llvm::Triple::x86 , ArchSpec::eCore_x86_32_i686 , "i686" },
{ eByteOrderLittle, 8, 1, 15, llvm::Triple::x86_64 , ArchSpec::eCore_x86_64_x86_64 , "x86_64" },
{ eByteOrderLittle, 8, 1, 15, llvm::Triple::x86_64 , ArchSpec::eCore_x86_64_x86_64h , "x86_64h" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::hexagon , ArchSpec::eCore_hexagon_generic, "hexagon" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::hexagon , ArchSpec::eCore_hexagon_hexagonv4, "hexagonv4" },
{ eByteOrderLittle, 4, 4, 4, llvm::Triple::hexagon , ArchSpec::eCore_hexagon_hexagonv5, "hexagonv5" },
{ eByteOrderLittle, 4, 4, 4 , llvm::Triple::UnknownArch , ArchSpec::eCore_uknownMach32 , "unknown-mach-32" },
{ eByteOrderLittle, 8, 4, 4 , llvm::Triple::UnknownArch , ArchSpec::eCore_uknownMach64 , "unknown-mach-64" },
{ eByteOrderBig , 4, 1, 1 , llvm::Triple::kalimba , ArchSpec::eCore_kalimba3 , "kalimba3" },
{ eByteOrderLittle, 4, 1, 1 , llvm::Triple::kalimba , ArchSpec::eCore_kalimba4 , "kalimba4" },
{ eByteOrderLittle, 4, 1, 1 , llvm::Triple::kalimba , ArchSpec::eCore_kalimba5 , "kalimba5" }
};
// Ensure that we have an entry in the g_core_definitions for each core. If you comment out an entry above,
// you will need to comment out the corresponding ArchSpec::Core enumeration.
static_assert(sizeof(g_core_definitions) / sizeof(CoreDefinition) == ArchSpec::kNumCores, "make sure we have one core definition for each core");
struct ArchDefinitionEntry
{
ArchSpec::Core core;
uint32_t cpu;
uint32_t sub;
uint32_t cpu_mask;
uint32_t sub_mask;
};
struct ArchDefinition
{
ArchitectureType type;
size_t num_entries;
const ArchDefinitionEntry *entries;
const char *name;
};
size_t
ArchSpec::AutoComplete (const char *name, StringList &matches)
{
if (name && name[0])
{
for (uint32_t i = 0; i < llvm::array_lengthof(g_core_definitions); ++i)
{
if (NameMatches(g_core_definitions[i].name, eNameMatchStartsWith, name))
matches.AppendString (g_core_definitions[i].name);
}
}
else
{
for (uint32_t i = 0; i < llvm::array_lengthof(g_core_definitions); ++i)
matches.AppendString (g_core_definitions[i].name);
}
return matches.GetSize();
}
#define CPU_ANY (UINT32_MAX)
//===----------------------------------------------------------------------===//
// A table that gets searched linearly for matches. This table is used to
// convert cpu type and subtypes to architecture names, and to convert
// architecture names to cpu types and subtypes. The ordering is important and
// allows the precedence to be set when the table is built.
#define SUBTYPE_MASK 0x00FFFFFFu
static const ArchDefinitionEntry g_macho_arch_entries[] =
{
{ ArchSpec::eCore_arm_generic , llvm::MachO::CPU_TYPE_ARM , CPU_ANY, UINT32_MAX , UINT32_MAX },
{ ArchSpec::eCore_arm_generic , llvm::MachO::CPU_TYPE_ARM , 0 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv4 , llvm::MachO::CPU_TYPE_ARM , 5 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv4t , llvm::MachO::CPU_TYPE_ARM , 5 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv6 , llvm::MachO::CPU_TYPE_ARM , 6 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv6m , llvm::MachO::CPU_TYPE_ARM , 14 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv5 , llvm::MachO::CPU_TYPE_ARM , 7 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv5e , llvm::MachO::CPU_TYPE_ARM , 7 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv5t , llvm::MachO::CPU_TYPE_ARM , 7 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_xscale , llvm::MachO::CPU_TYPE_ARM , 8 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv7 , llvm::MachO::CPU_TYPE_ARM , 9 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv7f , llvm::MachO::CPU_TYPE_ARM , 10 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv7s , llvm::MachO::CPU_TYPE_ARM , 11 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv7k , llvm::MachO::CPU_TYPE_ARM , 12 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv7m , llvm::MachO::CPU_TYPE_ARM , 15 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_armv7em , llvm::MachO::CPU_TYPE_ARM , 16 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_arm64 , llvm::MachO::CPU_TYPE_ARM64 , 1 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_arm64 , llvm::MachO::CPU_TYPE_ARM64 , 0 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_arm64 , llvm::MachO::CPU_TYPE_ARM64 , 13 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_arm_arm64 , llvm::MachO::CPU_TYPE_ARM64 , CPU_ANY, UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumb , llvm::MachO::CPU_TYPE_ARM , 0 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv4t , llvm::MachO::CPU_TYPE_ARM , 5 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv5 , llvm::MachO::CPU_TYPE_ARM , 7 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv5e , llvm::MachO::CPU_TYPE_ARM , 7 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv6 , llvm::MachO::CPU_TYPE_ARM , 6 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv6m , llvm::MachO::CPU_TYPE_ARM , 14 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv7 , llvm::MachO::CPU_TYPE_ARM , 9 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv7f , llvm::MachO::CPU_TYPE_ARM , 10 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv7s , llvm::MachO::CPU_TYPE_ARM , 11 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv7k , llvm::MachO::CPU_TYPE_ARM , 12 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv7m , llvm::MachO::CPU_TYPE_ARM , 15 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_thumbv7em , llvm::MachO::CPU_TYPE_ARM , 16 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_generic , llvm::MachO::CPU_TYPE_POWERPC , CPU_ANY, UINT32_MAX , UINT32_MAX },
{ ArchSpec::eCore_ppc_generic , llvm::MachO::CPU_TYPE_POWERPC , 0 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc601 , llvm::MachO::CPU_TYPE_POWERPC , 1 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc602 , llvm::MachO::CPU_TYPE_POWERPC , 2 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc603 , llvm::MachO::CPU_TYPE_POWERPC , 3 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc603e , llvm::MachO::CPU_TYPE_POWERPC , 4 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc603ev , llvm::MachO::CPU_TYPE_POWERPC , 5 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc604 , llvm::MachO::CPU_TYPE_POWERPC , 6 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc604e , llvm::MachO::CPU_TYPE_POWERPC , 7 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc620 , llvm::MachO::CPU_TYPE_POWERPC , 8 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc750 , llvm::MachO::CPU_TYPE_POWERPC , 9 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc7400 , llvm::MachO::CPU_TYPE_POWERPC , 10 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc7450 , llvm::MachO::CPU_TYPE_POWERPC , 11 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc_ppc970 , llvm::MachO::CPU_TYPE_POWERPC , 100 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc64_generic , llvm::MachO::CPU_TYPE_POWERPC64 , 0 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_ppc64_ppc970_64 , llvm::MachO::CPU_TYPE_POWERPC64 , 100 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_x86_32_i386 , llvm::MachO::CPU_TYPE_I386 , 3 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_x86_32_i486 , llvm::MachO::CPU_TYPE_I386 , 4 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_x86_32_i486sx , llvm::MachO::CPU_TYPE_I386 , 0x84 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_x86_32_i386 , llvm::MachO::CPU_TYPE_I386 , CPU_ANY, UINT32_MAX , UINT32_MAX },
{ ArchSpec::eCore_x86_64_x86_64 , llvm::MachO::CPU_TYPE_X86_64 , 3 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_x86_64_x86_64 , llvm::MachO::CPU_TYPE_X86_64 , 4 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_x86_64_x86_64h , llvm::MachO::CPU_TYPE_X86_64 , 8 , UINT32_MAX , SUBTYPE_MASK },
{ ArchSpec::eCore_x86_64_x86_64 , llvm::MachO::CPU_TYPE_X86_64 , CPU_ANY, UINT32_MAX , UINT32_MAX },
// Catch any unknown mach architectures so we can always use the object and symbol mach-o files
{ ArchSpec::eCore_uknownMach32 , 0 , 0 , 0xFF000000u, 0x00000000u },
{ ArchSpec::eCore_uknownMach64 , llvm::MachO::CPU_ARCH_ABI64 , 0 , 0xFF000000u, 0x00000000u }
};
static const ArchDefinition g_macho_arch_def = {
eArchTypeMachO,
llvm::array_lengthof(g_macho_arch_entries),
g_macho_arch_entries,
"mach-o"
};
//===----------------------------------------------------------------------===//
// A table that gets searched linearly for matches. This table is used to
// convert cpu type and subtypes to architecture names, and to convert
// architecture names to cpu types and subtypes. The ordering is important and
// allows the precedence to be set when the table is built.
static const ArchDefinitionEntry g_elf_arch_entries[] =
{
{ ArchSpec::eCore_sparc_generic , llvm::ELF::EM_SPARC , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // Sparc
{ ArchSpec::eCore_x86_32_i386 , llvm::ELF::EM_386 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // Intel 80386
{ ArchSpec::eCore_x86_32_i486 , llvm::ELF::EM_IAMCU , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // Intel MCU // FIXME: is this correct?
{ ArchSpec::eCore_ppc_generic , llvm::ELF::EM_PPC , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // PowerPC
{ ArchSpec::eCore_ppc64_generic , llvm::ELF::EM_PPC64 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // PowerPC64
{ ArchSpec::eCore_arm_generic , llvm::ELF::EM_ARM , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // ARM
{ ArchSpec::eCore_arm_aarch64 , llvm::ELF::EM_AARCH64, LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // ARM64
{ ArchSpec::eCore_s390x_generic , llvm::ELF::EM_S390 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // SystemZ
{ ArchSpec::eCore_sparc9_generic , llvm::ELF::EM_SPARCV9, LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // SPARC V9
{ ArchSpec::eCore_x86_64_x86_64 , llvm::ELF::EM_X86_64 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // AMD64
{ ArchSpec::eCore_mips32 , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips32, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips32
{ ArchSpec::eCore_mips32r2 , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips32r2, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips32r2
{ ArchSpec::eCore_mips32r6 , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips32r6, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips32r6
{ ArchSpec::eCore_mips32el , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips32el, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips32el
{ ArchSpec::eCore_mips32r2el , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips32r2el, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips32r2el
{ ArchSpec::eCore_mips32r6el , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips32r6el, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips32r6el
{ ArchSpec::eCore_mips64 , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips64, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips64
{ ArchSpec::eCore_mips64r2 , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips64r2, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips64r2
{ ArchSpec::eCore_mips64r6 , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips64r6, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips64r6
{ ArchSpec::eCore_mips64el , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips64el, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips64el
{ ArchSpec::eCore_mips64r2el , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips64r2el, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips64r2el
{ ArchSpec::eCore_mips64r6el , llvm::ELF::EM_MIPS , ArchSpec::eMIPSSubType_mips64r6el, 0xFFFFFFFFu, 0xFFFFFFFFu }, // mips64r6el
{ ArchSpec::eCore_hexagon_generic , llvm::ELF::EM_HEXAGON, LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // HEXAGON
{ ArchSpec::eCore_kalimba3 , llvm::ELF::EM_CSR_KALIMBA, llvm::Triple::KalimbaSubArch_v3, 0xFFFFFFFFu, 0xFFFFFFFFu }, // KALIMBA
{ ArchSpec::eCore_kalimba4 , llvm::ELF::EM_CSR_KALIMBA, llvm::Triple::KalimbaSubArch_v4, 0xFFFFFFFFu, 0xFFFFFFFFu }, // KALIMBA
{ ArchSpec::eCore_kalimba5 , llvm::ELF::EM_CSR_KALIMBA, llvm::Triple::KalimbaSubArch_v5, 0xFFFFFFFFu, 0xFFFFFFFFu } // KALIMBA
};
static const ArchDefinition g_elf_arch_def = {
eArchTypeELF,
llvm::array_lengthof(g_elf_arch_entries),
g_elf_arch_entries,
"elf",
};
static const ArchDefinitionEntry g_coff_arch_entries[] =
{
{ ArchSpec::eCore_x86_32_i386 , llvm::COFF::IMAGE_FILE_MACHINE_I386 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // Intel 80x86
{ ArchSpec::eCore_ppc_generic , llvm::COFF::IMAGE_FILE_MACHINE_POWERPC , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // PowerPC
{ ArchSpec::eCore_ppc_generic , llvm::COFF::IMAGE_FILE_MACHINE_POWERPCFP, LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // PowerPC (with FPU)
{ ArchSpec::eCore_arm_generic , llvm::COFF::IMAGE_FILE_MACHINE_ARM , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // ARM
{ ArchSpec::eCore_arm_armv7 , llvm::COFF::IMAGE_FILE_MACHINE_ARMNT , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // ARMv7
{ ArchSpec::eCore_thumb , llvm::COFF::IMAGE_FILE_MACHINE_THUMB , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // ARMv7
{ ArchSpec::eCore_x86_64_x86_64, llvm::COFF::IMAGE_FILE_MACHINE_AMD64 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu } // AMD64
};
static const ArchDefinition g_coff_arch_def = {
eArchTypeCOFF,
llvm::array_lengthof(g_coff_arch_entries),
g_coff_arch_entries,
"pe-coff",
};
//===----------------------------------------------------------------------===//
// Table of all ArchDefinitions
static const ArchDefinition *g_arch_definitions[] = {
&g_macho_arch_def,
&g_elf_arch_def,
&g_coff_arch_def
};
static const size_t k_num_arch_definitions = llvm::array_lengthof(g_arch_definitions);
//===----------------------------------------------------------------------===//
// Static helper functions.
// Get the architecture definition for a given object type.
static const ArchDefinition *
FindArchDefinition (ArchitectureType arch_type)
{
for (unsigned int i = 0; i < k_num_arch_definitions; ++i)
{
const ArchDefinition *def = g_arch_definitions[i];
if (def->type == arch_type)
return def;
}
return nullptr;
}
// Get an architecture definition by name.
static const CoreDefinition *
FindCoreDefinition (llvm::StringRef name)
{
for (unsigned int i = 0; i < llvm::array_lengthof(g_core_definitions); ++i)
{
if (name.equals_lower(g_core_definitions[i].name))
return &g_core_definitions[i];
}
return nullptr;
}
static inline const CoreDefinition *
FindCoreDefinition (ArchSpec::Core core)
{
if (core >= 0 && core < llvm::array_lengthof(g_core_definitions))
return &g_core_definitions[core];
return nullptr;
}
// Get a definition entry by cpu type and subtype.
static const ArchDefinitionEntry *
FindArchDefinitionEntry (const ArchDefinition *def, uint32_t cpu, uint32_t sub)
{
if (def == nullptr)
return nullptr;
const ArchDefinitionEntry *entries = def->entries;
for (size_t i = 0; i < def->num_entries; ++i)
{
if (entries[i].cpu == (cpu & entries[i].cpu_mask))
if (entries[i].sub == (sub & entries[i].sub_mask))
return &entries[i];
}
return nullptr;
}
static const ArchDefinitionEntry *
FindArchDefinitionEntry (const ArchDefinition *def, ArchSpec::Core core)
{
if (def == nullptr)
return nullptr;
const ArchDefinitionEntry *entries = def->entries;
for (size_t i = 0; i < def->num_entries; ++i)
{
if (entries[i].core == core)
return &entries[i];
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Constructors and destructors.
ArchSpec::ArchSpec() :
m_triple (),
m_core (kCore_invalid),
m_byte_order (eByteOrderInvalid),
m_flags (0),
m_distribution_id ()
{
}
ArchSpec::ArchSpec (const char *triple_cstr, Platform *platform) :
m_triple (),
m_core (kCore_invalid),
m_byte_order (eByteOrderInvalid),
m_flags (0),
m_distribution_id ()
{
if (triple_cstr)
SetTriple(triple_cstr, platform);
}
ArchSpec::ArchSpec (const char *triple_cstr) :
m_triple (),
m_core (kCore_invalid),
m_byte_order (eByteOrderInvalid),
m_flags (0),
m_distribution_id ()
{
if (triple_cstr)
SetTriple(triple_cstr);
}
ArchSpec::ArchSpec(const llvm::Triple &triple) :
m_triple (),
m_core (kCore_invalid),
m_byte_order (eByteOrderInvalid),
m_flags (0),
m_distribution_id ()
{
SetTriple(triple);
}
ArchSpec::ArchSpec (ArchitectureType arch_type, uint32_t cpu, uint32_t subtype) :
m_triple (),
m_core (kCore_invalid),
m_byte_order (eByteOrderInvalid),
m_flags (0),
m_distribution_id ()
{
SetArchitecture (arch_type, cpu, subtype);
}
ArchSpec::~ArchSpec() = default;
//===----------------------------------------------------------------------===//
// Assignment and initialization.
const ArchSpec&
ArchSpec::operator= (const ArchSpec& rhs)
{
if (this != &rhs)
{
m_triple = rhs.m_triple;
m_core = rhs.m_core;
m_byte_order = rhs.m_byte_order;
m_distribution_id = rhs.m_distribution_id;
m_flags = rhs.m_flags;
}
return *this;
}
void
ArchSpec::Clear()
{
m_triple = llvm::Triple();
m_core = kCore_invalid;
m_byte_order = eByteOrderInvalid;
m_distribution_id.Clear ();
m_flags = 0;
}
//===----------------------------------------------------------------------===//
// Predicates.
const char *
ArchSpec::GetArchitectureName () const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
return core_def->name;
return "unknown";
}
bool
ArchSpec::IsMIPS() const
{
const llvm::Triple::ArchType machine = GetMachine();
if(machine == llvm::Triple::mips ||
machine == llvm::Triple::mipsel ||
machine == llvm::Triple::mips64 ||
machine == llvm::Triple::mips64el)
return true;
return false;
}
std::string
ArchSpec::GetClangTargetCPU ()
{
std::string cpu;
const llvm::Triple::ArchType machine = GetMachine();
if (machine == llvm::Triple::mips ||
machine == llvm::Triple::mipsel ||
machine == llvm::Triple::mips64 ||
machine == llvm::Triple::mips64el)
{
switch (m_core)
{
case ArchSpec::eCore_mips32:
case ArchSpec::eCore_mips32el:
cpu = "mips32"; break;
case ArchSpec::eCore_mips32r2:
case ArchSpec::eCore_mips32r2el:
cpu = "mips32r2"; break;
case ArchSpec::eCore_mips32r3:
case ArchSpec::eCore_mips32r3el:
cpu = "mips32r3"; break;
case ArchSpec::eCore_mips32r5:
case ArchSpec::eCore_mips32r5el:
cpu = "mips32r5"; break;
case ArchSpec::eCore_mips32r6:
case ArchSpec::eCore_mips32r6el:
cpu = "mips32r6"; break;
case ArchSpec::eCore_mips64:
case ArchSpec::eCore_mips64el:
cpu = "mips64"; break;
case ArchSpec::eCore_mips64r2:
case ArchSpec::eCore_mips64r2el:
cpu = "mips64r2"; break;
case ArchSpec::eCore_mips64r3:
case ArchSpec::eCore_mips64r3el:
cpu = "mips64r3"; break;
case ArchSpec::eCore_mips64r5:
case ArchSpec::eCore_mips64r5el:
cpu = "mips64r5"; break;
case ArchSpec::eCore_mips64r6:
case ArchSpec::eCore_mips64r6el:
cpu = "mips64r6"; break;
default:
break;
}
}
return cpu;
}
uint32_t
ArchSpec::GetMachOCPUType () const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
{
const ArchDefinitionEntry *arch_def = FindArchDefinitionEntry (&g_macho_arch_def, core_def->core);
if (arch_def)
{
return arch_def->cpu;
}
}
return LLDB_INVALID_CPUTYPE;
}
uint32_t
ArchSpec::GetMachOCPUSubType () const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
{
const ArchDefinitionEntry *arch_def = FindArchDefinitionEntry (&g_macho_arch_def, core_def->core);
if (arch_def)
{
return arch_def->sub;
}
}
return LLDB_INVALID_CPUTYPE;
}
uint32_t
ArchSpec::GetDataByteSize () const
{
switch (m_core)
{
case eCore_kalimba3:
return 4;
case eCore_kalimba4:
return 1;
case eCore_kalimba5:
return 4;
default:
return 1;
}
return 1;
}
uint32_t
ArchSpec::GetCodeByteSize () const
{
switch (m_core)
{
case eCore_kalimba3:
return 4;
case eCore_kalimba4:
return 1;
case eCore_kalimba5:
return 1;
default:
return 1;
}
return 1;
}
llvm::Triple::ArchType
ArchSpec::GetMachine () const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
return core_def->machine;
return llvm::Triple::UnknownArch;
}
const ConstString&
ArchSpec::GetDistributionId () const
{
return m_distribution_id;
}
void
ArchSpec::SetDistributionId (const char* distribution_id)
{
m_distribution_id.SetCString (distribution_id);
}
uint32_t
ArchSpec::GetAddressByteSize() const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
{
if (core_def->machine == llvm::Triple::mips64 || core_def->machine == llvm::Triple::mips64el)
{
// For N32/O32 applications Address size is 4 bytes.
if (m_flags & (eMIPSABI_N32 | eMIPSABI_O32))
return 4;
}
return core_def->addr_byte_size;
}
return 0;
}
ByteOrder
ArchSpec::GetDefaultEndian () const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
return core_def->default_byte_order;
return eByteOrderInvalid;
}
bool
ArchSpec::CharIsSignedByDefault () const
{
switch (m_triple.getArch()) {
default:
return true;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_be:
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
return m_triple.isOSDarwin() || m_triple.isOSWindows();
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
return m_triple.isOSDarwin();
case llvm::Triple::ppc64le:
case llvm::Triple::systemz:
case llvm::Triple::xcore:
return false;
}
}
lldb::ByteOrder
ArchSpec::GetByteOrder () const
{
if (m_byte_order == eByteOrderInvalid)
return GetDefaultEndian();
return m_byte_order;
}
//===----------------------------------------------------------------------===//
// Mutators.
bool
ArchSpec::SetTriple (const llvm::Triple &triple)
{
m_triple = triple;
llvm::StringRef arch_name (m_triple.getArchName());
const CoreDefinition *core_def = FindCoreDefinition (arch_name);
if (core_def)
{
m_core = core_def->core;
// Set the byte order to the default byte order for an architecture.
// This can be modified if needed for cases when cores handle both
// big and little endian
m_byte_order = core_def->default_byte_order;
}
else
{
Clear();
}
return IsValid();
}
static bool
ParseMachCPUDashSubtypeTriple (const char *triple_cstr, ArchSpec &arch)
{
// Accept "12-10" or "12.10" as cpu type/subtype
if (isdigit(triple_cstr[0]))
{
char *end = nullptr;
errno = 0;
uint32_t cpu = (uint32_t)::strtoul (triple_cstr, &end, 0);
if (errno == 0 && cpu != 0 && end && ((*end == '-') || (*end == '.')))
{
errno = 0;
uint32_t sub = (uint32_t)::strtoul (end + 1, &end, 0);
if (errno == 0 && end && ((*end == '-') || (*end == '.') || (*end == '\0')))
{
if (arch.SetArchitecture (eArchTypeMachO, cpu, sub))
{
if (*end == '-')
{
llvm::StringRef vendor_os (end + 1);
size_t dash_pos = vendor_os.find('-');
if (dash_pos != llvm::StringRef::npos)
{
llvm::StringRef vendor_str(vendor_os.substr(0, dash_pos));
arch.GetTriple().setVendorName(vendor_str);
const size_t vendor_start_pos = dash_pos+1;
dash_pos = vendor_os.find('-', vendor_start_pos);
if (dash_pos == llvm::StringRef::npos)
{
if (vendor_start_pos < vendor_os.size())
arch.GetTriple().setOSName(vendor_os.substr(vendor_start_pos));
}
else
{
arch.GetTriple().setOSName(vendor_os.substr(vendor_start_pos, dash_pos - vendor_start_pos));
}
}
}
return true;
}
}
}
}
return false;
}
bool
ArchSpec::SetTriple (const char *triple_cstr)
{
if (triple_cstr && triple_cstr[0])
{
if (ParseMachCPUDashSubtypeTriple (triple_cstr, *this))
return true;
llvm::StringRef triple_stref (triple_cstr);
if (triple_stref.startswith (LLDB_ARCH_DEFAULT))
{
// Special case for the current host default architectures...
if (triple_stref.equals (LLDB_ARCH_DEFAULT_32BIT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKind32);
else if (triple_stref.equals (LLDB_ARCH_DEFAULT_64BIT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKind64);
else if (triple_stref.equals (LLDB_ARCH_DEFAULT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKindDefault);
}
else
{
std::string normalized_triple_sstr (llvm::Triple::normalize(triple_stref));
triple_stref = normalized_triple_sstr;
SetTriple (llvm::Triple (triple_stref));
}
}
else
Clear();
return IsValid();
}
bool
ArchSpec::SetTriple (const char *triple_cstr, Platform *platform)
{
if (triple_cstr && triple_cstr[0])
{
if (ParseMachCPUDashSubtypeTriple (triple_cstr, *this))
return true;
llvm::StringRef triple_stref (triple_cstr);
if (triple_stref.startswith (LLDB_ARCH_DEFAULT))
{
// Special case for the current host default architectures...
if (triple_stref.equals (LLDB_ARCH_DEFAULT_32BIT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKind32);
else if (triple_stref.equals (LLDB_ARCH_DEFAULT_64BIT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKind64);
else if (triple_stref.equals (LLDB_ARCH_DEFAULT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKindDefault);
}
else
{
ArchSpec raw_arch (triple_cstr);
std::string normalized_triple_sstr (llvm::Triple::normalize(triple_stref));
triple_stref = normalized_triple_sstr;
llvm::Triple normalized_triple (triple_stref);
const bool os_specified = normalized_triple.getOSName().size() > 0;
const bool vendor_specified = normalized_triple.getVendorName().size() > 0;
const bool env_specified = normalized_triple.getEnvironmentName().size() > 0;
// If we got an arch only, then default the vendor, os, environment
// to match the platform if one is supplied
if (!(os_specified || vendor_specified || env_specified))
{
if (platform)
{
// If we were given a platform, use the platform's system
// architecture. If this is not available (might not be
// connected) use the first supported architecture.
ArchSpec compatible_arch;
if (platform->IsCompatibleArchitecture (raw_arch, false, &compatible_arch))
{
if (compatible_arch.IsValid())
{
const llvm::Triple &compatible_triple = compatible_arch.GetTriple();
if (!vendor_specified)
normalized_triple.setVendor(compatible_triple.getVendor());
if (!os_specified)
normalized_triple.setOS(compatible_triple.getOS());
if (!env_specified && compatible_triple.getEnvironmentName().size())
normalized_triple.setEnvironment(compatible_triple.getEnvironment());
}
}
else
{
*this = raw_arch;
return IsValid();
}
}
else
{
// No platform specified, fall back to the host system for
// the default vendor, os, and environment.
llvm::Triple host_triple(llvm::sys::getDefaultTargetTriple());
if (!vendor_specified)
normalized_triple.setVendor(host_triple.getVendor());
if (!vendor_specified)
normalized_triple.setOS(host_triple.getOS());
if (!env_specified && host_triple.getEnvironmentName().size())
normalized_triple.setEnvironment(host_triple.getEnvironment());
}
}
SetTriple (normalized_triple);
}
}
else
Clear();
return IsValid();
}
void
ArchSpec::MergeFrom(const ArchSpec &other)
{
if (TripleVendorIsUnspecifiedUnknown() && !other.TripleVendorIsUnspecifiedUnknown())
GetTriple().setVendor(other.GetTriple().getVendor());
if (TripleOSIsUnspecifiedUnknown() && !other.TripleOSIsUnspecifiedUnknown())
GetTriple().setOS(other.GetTriple().getOS());
if (GetTriple().getArch() == llvm::Triple::UnknownArch)
GetTriple().setArch(other.GetTriple().getArch());
if (GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment && !TripleVendorWasSpecified())
{
if (other.TripleVendorWasSpecified())
GetTriple().setEnvironment(other.GetTriple().getEnvironment());
}
// If this and other are both arm ArchSpecs and this ArchSpec is a generic "some kind of arm"
// spec but the other ArchSpec is a specific arm core, adopt the specific arm core.
if (GetTriple().getArch() == llvm::Triple::arm
&& other.GetTriple().getArch() == llvm::Triple::arm
&& IsCompatibleMatch (other)
&& GetCore() == ArchSpec::eCore_arm_generic
&& other.GetCore() != ArchSpec::eCore_arm_generic)
{
m_core = other.GetCore();
CoreUpdated (true);
}
}
bool
ArchSpec::SetArchitecture (ArchitectureType arch_type, uint32_t cpu, uint32_t sub, uint32_t os)
{
m_core = kCore_invalid;
bool update_triple = true;
const ArchDefinition *arch_def = FindArchDefinition(arch_type);
if (arch_def)
{
const ArchDefinitionEntry *arch_def_entry = FindArchDefinitionEntry (arch_def, cpu, sub);
if (arch_def_entry)
{
const CoreDefinition *core_def = FindCoreDefinition (arch_def_entry->core);
if (core_def)
{
m_core = core_def->core;
update_triple = false;
// Always use the architecture name because it might be more descriptive
// than the architecture enum ("armv7" -> llvm::Triple::arm).
m_triple.setArchName(llvm::StringRef(core_def->name));
if (arch_type == eArchTypeMachO)
{
m_triple.setVendor (llvm::Triple::Apple);
// Don't set the OS. It could be simulator, macosx, ios, watchos, tvos. We could
// get close with the cpu type - but we can't get it right all of the time. Better
// to leave this unset so other sections of code will set it when they have more
// information.
// NB: don't call m_triple.setOS (llvm::Triple::UnknownOS). That sets the OSName to
// "unknown" and the ArchSpec::TripleVendorWasSpecified() method says that any
// OSName setting means it was specified.
}
else if (arch_type == eArchTypeELF)
{
switch (os)
{
case llvm::ELF::ELFOSABI_AIX: m_triple.setOS (llvm::Triple::OSType::AIX); break;
case llvm::ELF::ELFOSABI_FREEBSD: m_triple.setOS (llvm::Triple::OSType::FreeBSD); break;
case llvm::ELF::ELFOSABI_GNU: m_triple.setOS (llvm::Triple::OSType::Linux); break;
case llvm::ELF::ELFOSABI_NETBSD: m_triple.setOS (llvm::Triple::OSType::NetBSD); break;
case llvm::ELF::ELFOSABI_OPENBSD: m_triple.setOS (llvm::Triple::OSType::OpenBSD); break;
case llvm::ELF::ELFOSABI_SOLARIS: m_triple.setOS (llvm::Triple::OSType::Solaris); break;
}
}
else
{
m_triple.setVendor (llvm::Triple::UnknownVendor);
m_triple.setOS (llvm::Triple::UnknownOS);
}
// Fall back onto setting the machine type if the arch by name failed...
if (m_triple.getArch () == llvm::Triple::UnknownArch)
m_triple.setArch (core_def->machine);
}
}
}
CoreUpdated(update_triple);
return IsValid();
}
uint32_t
ArchSpec::GetMinimumOpcodeByteSize() const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
return core_def->min_opcode_byte_size;
return 0;
}
uint32_t
ArchSpec::GetMaximumOpcodeByteSize() const
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
return core_def->max_opcode_byte_size;
return 0;
}
bool
ArchSpec::IsExactMatch (const ArchSpec& rhs) const
{
return IsEqualTo (rhs, true);
}
bool
ArchSpec::IsCompatibleMatch (const ArchSpec& rhs) const
{
return IsEqualTo (rhs, false);
}
static bool
isCompatibleEnvironment(llvm::Triple::EnvironmentType lhs, llvm::Triple::EnvironmentType rhs)
{
if (lhs == rhs)
return true;
// If any of the environment is unknown then they are compatible
if (lhs == llvm::Triple::UnknownEnvironment || rhs == llvm::Triple::UnknownEnvironment)
return true;
// If one of the environment is Android and the other one is EABI then they are considered to
// be compatible. This is required as a workaround for shared libraries compiled for Android
// without the NOTE section indicating that they are using the Android ABI.
if ((lhs == llvm::Triple::Android && rhs == llvm::Triple::EABI) ||
(rhs == llvm::Triple::Android && lhs == llvm::Triple::EABI) ||
(lhs == llvm::Triple::GNUEABI && rhs == llvm::Triple::EABI) ||
(rhs == llvm::Triple::GNUEABI && lhs == llvm::Triple::EABI) ||
(lhs == llvm::Triple::GNUEABIHF && rhs == llvm::Triple::EABIHF) ||
(rhs == llvm::Triple::GNUEABIHF && lhs == llvm::Triple::EABIHF))
return true;
return false;
}
bool
ArchSpec::IsEqualTo (const ArchSpec& rhs, bool exact_match) const
{
// explicitly ignoring m_distribution_id in this method.
if (GetByteOrder() != rhs.GetByteOrder())
return false;
const ArchSpec::Core lhs_core = GetCore ();
const ArchSpec::Core rhs_core = rhs.GetCore ();
const bool core_match = cores_match (lhs_core, rhs_core, true, exact_match);
if (core_match)
{
const llvm::Triple &lhs_triple = GetTriple();
const llvm::Triple &rhs_triple = rhs.GetTriple();
const llvm::Triple::VendorType lhs_triple_vendor = lhs_triple.getVendor();
const llvm::Triple::VendorType rhs_triple_vendor = rhs_triple.getVendor();
if (lhs_triple_vendor != rhs_triple_vendor)
{
const bool rhs_vendor_specified = rhs.TripleVendorWasSpecified();
const bool lhs_vendor_specified = TripleVendorWasSpecified();
// Both architectures had the vendor specified, so if they aren't
// equal then we return false
if (rhs_vendor_specified && lhs_vendor_specified)
return false;
// Only fail if both vendor types are not unknown
if (lhs_triple_vendor != llvm::Triple::UnknownVendor &&
rhs_triple_vendor != llvm::Triple::UnknownVendor)
return false;
}
const llvm::Triple::OSType lhs_triple_os = lhs_triple.getOS();
const llvm::Triple::OSType rhs_triple_os = rhs_triple.getOS();
if (lhs_triple_os != rhs_triple_os)
{
const bool rhs_os_specified = rhs.TripleOSWasSpecified();
const bool lhs_os_specified = TripleOSWasSpecified();
// Both architectures had the OS specified, so if they aren't
// equal then we return false
if (rhs_os_specified && lhs_os_specified)
return false;
// Only fail if both os types are not unknown
if (lhs_triple_os != llvm::Triple::UnknownOS &&
rhs_triple_os != llvm::Triple::UnknownOS)
return false;
}
const llvm::Triple::EnvironmentType lhs_triple_env = lhs_triple.getEnvironment();
const llvm::Triple::EnvironmentType rhs_triple_env = rhs_triple.getEnvironment();
if (!isCompatibleEnvironment(lhs_triple_env, rhs_triple_env))
return false;
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// Helper methods.
void
ArchSpec::CoreUpdated (bool update_triple)
{
const CoreDefinition *core_def = FindCoreDefinition (m_core);
if (core_def)
{
if (update_triple)
m_triple = llvm::Triple(core_def->name, "unknown", "unknown");
m_byte_order = core_def->default_byte_order;
}
else
{
if (update_triple)
m_triple = llvm::Triple();
m_byte_order = eByteOrderInvalid;
}
}
//===----------------------------------------------------------------------===//
// Operators.
static bool
cores_match (const ArchSpec::Core core1, const ArchSpec::Core core2, bool try_inverse, bool enforce_exact_match)
{
if (core1 == core2)
return true;
switch (core1)
{
case ArchSpec::kCore_any:
return true;
case ArchSpec::eCore_arm_generic:
if (enforce_exact_match)
break;
LLVM_FALLTHROUGH;
case ArchSpec::kCore_arm_any:
if (core2 >= ArchSpec::kCore_arm_first && core2 <= ArchSpec::kCore_arm_last)
return true;
if (core2 >= ArchSpec::kCore_thumb_first && core2 <= ArchSpec::kCore_thumb_last)
return true;
if (core2 == ArchSpec::kCore_arm_any)
return true;
break;
case ArchSpec::kCore_x86_32_any:
if ((core2 >= ArchSpec::kCore_x86_32_first && core2 <= ArchSpec::kCore_x86_32_last) || (core2 == ArchSpec::kCore_x86_32_any))
return true;
break;
case ArchSpec::kCore_x86_64_any:
if ((core2 >= ArchSpec::kCore_x86_64_first && core2 <= ArchSpec::kCore_x86_64_last) || (core2 == ArchSpec::kCore_x86_64_any))
return true;
break;
case ArchSpec::kCore_ppc_any:
if ((core2 >= ArchSpec::kCore_ppc_first && core2 <= ArchSpec::kCore_ppc_last) || (core2 == ArchSpec::kCore_ppc_any))
return true;
break;
case ArchSpec::kCore_ppc64_any:
if ((core2 >= ArchSpec::kCore_ppc64_first && core2 <= ArchSpec::kCore_ppc64_last) || (core2 == ArchSpec::kCore_ppc64_any))
return true;
break;
case ArchSpec::eCore_arm_armv6m:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_arm_generic)
return true;
try_inverse = false;
if (core2 == ArchSpec::eCore_arm_armv7)
return true;
if (core2 == ArchSpec::eCore_arm_armv6m)
return true;
}
break;
case ArchSpec::kCore_hexagon_any:
if ((core2 >= ArchSpec::kCore_hexagon_first && core2 <= ArchSpec::kCore_hexagon_last) || (core2 == ArchSpec::kCore_hexagon_any))
return true;
break;
// v. https://en.wikipedia.org/wiki/ARM_Cortex-M#Silicon_customization
// Cortex-M0 - ARMv6-M - armv6m
// Cortex-M3 - ARMv7-M - armv7m
// Cortex-M4 - ARMv7E-M - armv7em
case ArchSpec::eCore_arm_armv7em:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_arm_generic)
return true;
if (core2 == ArchSpec::eCore_arm_armv7m)
return true;
if (core2 == ArchSpec::eCore_arm_armv6m)
return true;
if (core2 == ArchSpec::eCore_arm_armv7)
return true;
try_inverse = true;
}
break;
// v. https://en.wikipedia.org/wiki/ARM_Cortex-M#Silicon_customization
// Cortex-M0 - ARMv6-M - armv6m
// Cortex-M3 - ARMv7-M - armv7m
// Cortex-M4 - ARMv7E-M - armv7em
case ArchSpec::eCore_arm_armv7m:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_arm_generic)
return true;
if (core2 == ArchSpec::eCore_arm_armv6m)
return true;
if (core2 == ArchSpec::eCore_arm_armv7)
return true;
if (core2 == ArchSpec::eCore_arm_armv7em)
return true;
try_inverse = true;
}
break;
case ArchSpec::eCore_arm_armv7f:
case ArchSpec::eCore_arm_armv7k:
case ArchSpec::eCore_arm_armv7s:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_arm_generic)
return true;
if (core2 == ArchSpec::eCore_arm_armv7)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_x86_64_x86_64h:
if (!enforce_exact_match)
{
try_inverse = false;
if (core2 == ArchSpec::eCore_x86_64_x86_64)
return true;
}
break;
case ArchSpec::eCore_arm_armv8:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_arm_arm64)
return true;
if (core2 == ArchSpec::eCore_arm_aarch64)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_arm_aarch64:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_arm_arm64)
return true;
if (core2 == ArchSpec::eCore_arm_armv8)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_arm_arm64:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_arm_aarch64)
return true;
if (core2 == ArchSpec::eCore_arm_armv8)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips32:
if (!enforce_exact_match)
{
if (core2 >= ArchSpec::kCore_mips32_first && core2 <= ArchSpec::kCore_mips32_last)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips32el:
if (!enforce_exact_match)
{
if (core2 >= ArchSpec::kCore_mips32el_first && core2 <= ArchSpec::kCore_mips32el_last)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips64:
if (!enforce_exact_match)
{
if (core2 >= ArchSpec::kCore_mips32_first && core2 <= ArchSpec::kCore_mips32_last)
return true;
if (core2 >= ArchSpec::kCore_mips64_first && core2 <= ArchSpec::kCore_mips64_last)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips64el:
if (!enforce_exact_match)
{
if (core2 >= ArchSpec::kCore_mips32el_first && core2 <= ArchSpec::kCore_mips32el_last)
return true;
if (core2 >= ArchSpec::kCore_mips64el_first && core2 <= ArchSpec::kCore_mips64el_last)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips64r2:
case ArchSpec::eCore_mips64r3:
case ArchSpec::eCore_mips64r5:
if (!enforce_exact_match)
{
if (core2 >= ArchSpec::kCore_mips32_first && core2 <= (core1 - 10))
return true;
if (core2 >= ArchSpec::kCore_mips64_first && core2 <= (core1 - 1))
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips64r2el:
case ArchSpec::eCore_mips64r3el:
case ArchSpec::eCore_mips64r5el:
if (!enforce_exact_match)
{
if (core2 >= ArchSpec::kCore_mips32el_first && core2 <= (core1 - 10))
return true;
if (core2 >= ArchSpec::kCore_mips64el_first && core2 <= (core1 - 1))
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips32r2:
case ArchSpec::eCore_mips32r3:
case ArchSpec::eCore_mips32r5:
if (!enforce_exact_match)
{
if (core2 >= ArchSpec::kCore_mips32_first && core2 <= core1)
return true;
}
break;
case ArchSpec::eCore_mips32r2el:
case ArchSpec::eCore_mips32r3el:
case ArchSpec::eCore_mips32r5el:
if (!enforce_exact_match)
{
if (core2 >= ArchSpec::kCore_mips32el_first && core2 <= core1)
return true;
}
break;
case ArchSpec::eCore_mips32r6:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_mips32 || core2 == ArchSpec::eCore_mips32r6)
return true;
}
break;
case ArchSpec::eCore_mips32r6el:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_mips32el || core2 == ArchSpec::eCore_mips32r6el)
return true;
}
break;
case ArchSpec::eCore_mips64r6:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_mips32 || core2 == ArchSpec::eCore_mips32r6)
return true;
if (core2 == ArchSpec::eCore_mips64 || core2 == ArchSpec::eCore_mips64r6)
return true;
}
break;
case ArchSpec::eCore_mips64r6el:
if (!enforce_exact_match)
{
if (core2 == ArchSpec::eCore_mips32el || core2 == ArchSpec::eCore_mips32r6el)
return true;
if (core2 == ArchSpec::eCore_mips64el || core2 == ArchSpec::eCore_mips64r6el)
return true;
}
break;
default:
break;
}
if (try_inverse)
return cores_match (core2, core1, false, enforce_exact_match);
return false;
}
bool
lldb_private::operator<(const ArchSpec& lhs, const ArchSpec& rhs)
{
const ArchSpec::Core lhs_core = lhs.GetCore ();
const ArchSpec::Core rhs_core = rhs.GetCore ();
return lhs_core < rhs_core;
}
static void
StopInfoOverrideCallbackTypeARM(lldb_private::Thread &thread)
{
// We need to check if we are stopped in Thumb mode in a IT instruction
// and detect if the condition doesn't pass. If this is the case it means
// we won't actually execute this instruction. If this happens we need to
// clear the stop reason to no thread plans think we are stopped for a
// reason and the plans should keep going.
//
// We do this because when single stepping many ARM processes, debuggers
// often use the BVR/BCR registers that says "stop when the PC is not
// equal to its current value". This method of stepping means we can end
// up stopping on instructions inside an if/then block that wouldn't get
// executed. By fixing this we can stop the debugger from seeming like
// you stepped through both the "if" _and_ the "else" clause when source
// level stepping because the debugger stops regardless due to the BVR/BCR
// triggering a stop.
//
// It also means we can set breakpoints on instructions inside an an
// if/then block and correctly skip them if we use the BKPT instruction.
// The ARM and Thumb BKPT instructions are unconditional even when executed
// in a Thumb IT block.
//
// If your debugger inserts software traps in ARM/Thumb code, it will
// need to use 16 and 32 bit instruction for 16 and 32 bit thumb
// instructions respectively. If your debugger inserts a 16 bit thumb
// trap on top of a 32 bit thumb instruction for an opcode that is inside
// an if/then, it will change the it/then to conditionally execute your
// 16 bit trap and then cause your program to crash if it executes the
// trailing 16 bits (the second half of the 32 bit thumb instruction you
// partially overwrote).
RegisterContextSP reg_ctx_sp (thread.GetRegisterContext());
if (reg_ctx_sp)
{
const uint32_t cpsr = reg_ctx_sp->GetFlags(0);
if (cpsr != 0)
{
// Read the J and T bits to get the ISETSTATE
const uint32_t J = Bit32(cpsr, 24);
const uint32_t T = Bit32(cpsr, 5);
const uint32_t ISETSTATE = J << 1 | T;
if (ISETSTATE == 0)
{
// NOTE: I am pretty sure we want to enable the code below
// that detects when we stop on an instruction in ARM mode
// that is conditional and the condition doesn't pass. This
// can happen if you set a breakpoint on an instruction that
// is conditional. We currently will _always_ stop on the
// instruction which is bad. You can also run into this while
// single stepping and you could appear to run code in the "if"
// and in the "else" clause because it would stop at all of the
// conditional instructions in both.
// In such cases, we really don't want to stop at this location.
// I will check with the lldb-dev list first before I enable this.
#if 0
// ARM mode: check for condition on intsruction
const addr_t pc = reg_ctx_sp->GetPC();
Error error;
// If we fail to read the opcode we will get UINT64_MAX as the
// result in "opcode" which we can use to detect if we read a
// valid opcode.
const uint64_t opcode = thread.GetProcess()->ReadUnsignedIntegerFromMemory(pc, 4, UINT64_MAX, error);
if (opcode <= UINT32_MAX)
{
const uint32_t condition = Bits32((uint32_t)opcode, 31, 28);
if (!ARMConditionPassed(condition, cpsr))
{
// We ARE stopped on an ARM instruction whose condition doesn't
// pass so this instruction won't get executed.
// Regardless of why it stopped, we need to clear the stop info
thread.SetStopInfo (StopInfoSP());
}
}
#endif
}
else if (ISETSTATE == 1)
{
// Thumb mode
const uint32_t ITSTATE = Bits32 (cpsr, 15, 10) << 2 | Bits32 (cpsr, 26, 25);
if (ITSTATE != 0)
{
const uint32_t condition = Bits32(ITSTATE, 7, 4);
if (!ARMConditionPassed(condition, cpsr))
{
// We ARE stopped in a Thumb IT instruction on an instruction whose
// condition doesn't pass so this instruction won't get executed.
// Regardless of why it stopped, we need to clear the stop info
thread.SetStopInfo (StopInfoSP());
}
}
}
}
}
}
ArchSpec::StopInfoOverrideCallbackType
ArchSpec::GetStopInfoOverrideCallback () const
{
const llvm::Triple::ArchType machine = GetMachine();
if (machine == llvm::Triple::arm)
return StopInfoOverrideCallbackTypeARM;
return nullptr;
}
bool
ArchSpec::IsFullySpecifiedTriple () const
{
const auto& user_specified_triple = GetTriple();
bool user_triple_fully_specified = false;
if ((user_specified_triple.getOS() != llvm::Triple::UnknownOS) || TripleOSWasSpecified())
{
if ((user_specified_triple.getVendor() != llvm::Triple::UnknownVendor) || TripleVendorWasSpecified())
{
const unsigned unspecified = 0;
if (user_specified_triple.getOSMajorVersion() != unspecified)
{
user_triple_fully_specified = true;
}
}
}
return user_triple_fully_specified;
}
void
ArchSpec::PiecewiseTripleCompare (const ArchSpec &other,
bool &arch_different,
bool &vendor_different,
bool &os_different,
bool &os_version_different,
bool &env_different)
{
const llvm::Triple &me(GetTriple());
const llvm::Triple &them(other.GetTriple());
arch_different = (me.getArch() != them.getArch());
vendor_different = (me.getVendor() != them.getVendor());
os_different = (me.getOS() != them.getOS());
os_version_different = (me.getOSMajorVersion() != them.getOSMajorVersion());
env_different = (me.getEnvironment() != them.getEnvironment());
}
bool
ArchSpec::IsAlwaysThumbInstructions () const
{
std::string Error;
if (GetTriple().getArch() == llvm::Triple::arm || GetTriple().getArch() == llvm::Triple::thumb)
{
// v. https://en.wikipedia.org/wiki/ARM_Cortex-M
//
// Cortex-M0 through Cortex-M7 are ARM processor cores which can only
// execute thumb instructions. We map the cores to arch names like this:
//
// Cortex-M0, Cortex-M0+, Cortex-M1: armv6m
// Cortex-M3: armv7m
// Cortex-M4, Cortex-M7: armv7em
if (GetCore() == ArchSpec::Core::eCore_arm_armv7m
|| GetCore() == ArchSpec::Core::eCore_arm_armv7em
|| GetCore() == ArchSpec::Core::eCore_arm_armv6m)
{
return true;
}
}
return false;
}
void
ArchSpec::DumpTriple(Stream &s) const
{
const llvm::Triple &triple = GetTriple();
llvm::StringRef arch_str = triple.getArchName();
llvm::StringRef vendor_str = triple.getVendorName();
llvm::StringRef os_str = triple.getOSName();
llvm::StringRef environ_str = triple.getEnvironmentName();
s.Printf("%s-%s-%s",
arch_str.empty() ? "*" : arch_str.str().c_str(),
vendor_str.empty() ? "*" : vendor_str.str().c_str(),
os_str.empty() ? "*" : os_str.str().c_str()
);
if (!environ_str.empty())
s.Printf("-%s", environ_str.str().c_str());
}