llvm-project/llvm/lib/ExecutionEngine/Orc/Core.cpp

2819 lines
98 KiB
C++

//===--- Core.cpp - Core ORC APIs (MaterializationUnit, JITDylib, etc.) ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/Orc/Core.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/ExecutionEngine/Orc/DebugUtils.h"
#include "llvm/ExecutionEngine/Orc/Shared/OrcError.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MSVCErrorWorkarounds.h"
#include <condition_variable>
#include <future>
#define DEBUG_TYPE "orc"
namespace llvm {
namespace orc {
char ResourceTrackerDefunct::ID = 0;
char FailedToMaterialize::ID = 0;
char SymbolsNotFound::ID = 0;
char SymbolsCouldNotBeRemoved::ID = 0;
char MissingSymbolDefinitions::ID = 0;
char UnexpectedSymbolDefinitions::ID = 0;
char Task::ID = 0;
char MaterializationTask::ID = 0;
RegisterDependenciesFunction NoDependenciesToRegister =
RegisterDependenciesFunction();
void MaterializationUnit::anchor() {}
ResourceTracker::ResourceTracker(JITDylibSP JD) {
assert((reinterpret_cast<uintptr_t>(JD.get()) & 0x1) == 0 &&
"JITDylib must be two byte aligned");
JD->Retain();
JDAndFlag.store(reinterpret_cast<uintptr_t>(JD.get()));
}
ResourceTracker::~ResourceTracker() {
getJITDylib().getExecutionSession().destroyResourceTracker(*this);
getJITDylib().Release();
}
Error ResourceTracker::remove() {
return getJITDylib().getExecutionSession().removeResourceTracker(*this);
}
void ResourceTracker::transferTo(ResourceTracker &DstRT) {
getJITDylib().getExecutionSession().transferResourceTracker(DstRT, *this);
}
void ResourceTracker::makeDefunct() {
uintptr_t Val = JDAndFlag.load();
Val |= 0x1U;
JDAndFlag.store(Val);
}
ResourceManager::~ResourceManager() {}
ResourceTrackerDefunct::ResourceTrackerDefunct(ResourceTrackerSP RT)
: RT(std::move(RT)) {}
std::error_code ResourceTrackerDefunct::convertToErrorCode() const {
return orcError(OrcErrorCode::UnknownORCError);
}
void ResourceTrackerDefunct::log(raw_ostream &OS) const {
OS << "Resource tracker " << (void *)RT.get() << " became defunct";
}
FailedToMaterialize::FailedToMaterialize(
std::shared_ptr<SymbolDependenceMap> Symbols)
: Symbols(std::move(Symbols)) {
assert(!this->Symbols->empty() && "Can not fail to resolve an empty set");
}
std::error_code FailedToMaterialize::convertToErrorCode() const {
return orcError(OrcErrorCode::UnknownORCError);
}
void FailedToMaterialize::log(raw_ostream &OS) const {
OS << "Failed to materialize symbols: " << *Symbols;
}
SymbolsNotFound::SymbolsNotFound(SymbolNameSet Symbols) {
for (auto &Sym : Symbols)
this->Symbols.push_back(Sym);
assert(!this->Symbols.empty() && "Can not fail to resolve an empty set");
}
SymbolsNotFound::SymbolsNotFound(SymbolNameVector Symbols)
: Symbols(std::move(Symbols)) {
assert(!this->Symbols.empty() && "Can not fail to resolve an empty set");
}
std::error_code SymbolsNotFound::convertToErrorCode() const {
return orcError(OrcErrorCode::UnknownORCError);
}
void SymbolsNotFound::log(raw_ostream &OS) const {
OS << "Symbols not found: " << Symbols;
}
SymbolsCouldNotBeRemoved::SymbolsCouldNotBeRemoved(SymbolNameSet Symbols)
: Symbols(std::move(Symbols)) {
assert(!this->Symbols.empty() && "Can not fail to resolve an empty set");
}
std::error_code SymbolsCouldNotBeRemoved::convertToErrorCode() const {
return orcError(OrcErrorCode::UnknownORCError);
}
void SymbolsCouldNotBeRemoved::log(raw_ostream &OS) const {
OS << "Symbols could not be removed: " << Symbols;
}
std::error_code MissingSymbolDefinitions::convertToErrorCode() const {
return orcError(OrcErrorCode::MissingSymbolDefinitions);
}
void MissingSymbolDefinitions::log(raw_ostream &OS) const {
OS << "Missing definitions in module " << ModuleName
<< ": " << Symbols;
}
std::error_code UnexpectedSymbolDefinitions::convertToErrorCode() const {
return orcError(OrcErrorCode::UnexpectedSymbolDefinitions);
}
void UnexpectedSymbolDefinitions::log(raw_ostream &OS) const {
OS << "Unexpected definitions in module " << ModuleName
<< ": " << Symbols;
}
AsynchronousSymbolQuery::AsynchronousSymbolQuery(
const SymbolLookupSet &Symbols, SymbolState RequiredState,
SymbolsResolvedCallback NotifyComplete)
: NotifyComplete(std::move(NotifyComplete)), RequiredState(RequiredState) {
assert(RequiredState >= SymbolState::Resolved &&
"Cannot query for a symbols that have not reached the resolve state "
"yet");
OutstandingSymbolsCount = Symbols.size();
for (auto &KV : Symbols)
ResolvedSymbols[KV.first] = nullptr;
}
void AsynchronousSymbolQuery::notifySymbolMetRequiredState(
const SymbolStringPtr &Name, JITEvaluatedSymbol Sym) {
auto I = ResolvedSymbols.find(Name);
assert(I != ResolvedSymbols.end() &&
"Resolving symbol outside the requested set");
assert(I->second.getAddress() == 0 && "Redundantly resolving symbol Name");
// If this is a materialization-side-effects-only symbol then drop it,
// otherwise update its map entry with its resolved address.
if (Sym.getFlags().hasMaterializationSideEffectsOnly())
ResolvedSymbols.erase(I);
else
I->second = std::move(Sym);
--OutstandingSymbolsCount;
}
void AsynchronousSymbolQuery::handleComplete(ExecutionSession &ES) {
assert(OutstandingSymbolsCount == 0 &&
"Symbols remain, handleComplete called prematurely");
class RunQueryCompleteTask : public Task {
public:
RunQueryCompleteTask(SymbolMap ResolvedSymbols,
SymbolsResolvedCallback NotifyComplete)
: ResolvedSymbols(std::move(ResolvedSymbols)),
NotifyComplete(std::move(NotifyComplete)) {}
void printDescription(raw_ostream &OS) override {
OS << "Execute query complete callback for " << ResolvedSymbols;
}
void run() override { NotifyComplete(std::move(ResolvedSymbols)); }
private:
SymbolMap ResolvedSymbols;
SymbolsResolvedCallback NotifyComplete;
};
auto T = std::make_unique<RunQueryCompleteTask>(std::move(ResolvedSymbols),
std::move(NotifyComplete));
NotifyComplete = SymbolsResolvedCallback();
ES.dispatchTask(std::move(T));
}
void AsynchronousSymbolQuery::handleFailed(Error Err) {
assert(QueryRegistrations.empty() && ResolvedSymbols.empty() &&
OutstandingSymbolsCount == 0 &&
"Query should already have been abandoned");
NotifyComplete(std::move(Err));
NotifyComplete = SymbolsResolvedCallback();
}
void AsynchronousSymbolQuery::addQueryDependence(JITDylib &JD,
SymbolStringPtr Name) {
bool Added = QueryRegistrations[&JD].insert(std::move(Name)).second;
(void)Added;
assert(Added && "Duplicate dependence notification?");
}
void AsynchronousSymbolQuery::removeQueryDependence(
JITDylib &JD, const SymbolStringPtr &Name) {
auto QRI = QueryRegistrations.find(&JD);
assert(QRI != QueryRegistrations.end() &&
"No dependencies registered for JD");
assert(QRI->second.count(Name) && "No dependency on Name in JD");
QRI->second.erase(Name);
if (QRI->second.empty())
QueryRegistrations.erase(QRI);
}
void AsynchronousSymbolQuery::dropSymbol(const SymbolStringPtr &Name) {
auto I = ResolvedSymbols.find(Name);
assert(I != ResolvedSymbols.end() &&
"Redundant removal of weakly-referenced symbol");
ResolvedSymbols.erase(I);
--OutstandingSymbolsCount;
}
void AsynchronousSymbolQuery::detach() {
ResolvedSymbols.clear();
OutstandingSymbolsCount = 0;
for (auto &KV : QueryRegistrations)
KV.first->detachQueryHelper(*this, KV.second);
QueryRegistrations.clear();
}
AbsoluteSymbolsMaterializationUnit::AbsoluteSymbolsMaterializationUnit(
SymbolMap Symbols)
: MaterializationUnit(extractFlags(Symbols), nullptr),
Symbols(std::move(Symbols)) {}
StringRef AbsoluteSymbolsMaterializationUnit::getName() const {
return "<Absolute Symbols>";
}
void AbsoluteSymbolsMaterializationUnit::materialize(
std::unique_ptr<MaterializationResponsibility> R) {
// No dependencies, so these calls can't fail.
cantFail(R->notifyResolved(Symbols));
cantFail(R->notifyEmitted());
}
void AbsoluteSymbolsMaterializationUnit::discard(const JITDylib &JD,
const SymbolStringPtr &Name) {
assert(Symbols.count(Name) && "Symbol is not part of this MU");
Symbols.erase(Name);
}
SymbolFlagsMap
AbsoluteSymbolsMaterializationUnit::extractFlags(const SymbolMap &Symbols) {
SymbolFlagsMap Flags;
for (const auto &KV : Symbols)
Flags[KV.first] = KV.second.getFlags();
return Flags;
}
ReExportsMaterializationUnit::ReExportsMaterializationUnit(
JITDylib *SourceJD, JITDylibLookupFlags SourceJDLookupFlags,
SymbolAliasMap Aliases)
: MaterializationUnit(extractFlags(Aliases), nullptr), SourceJD(SourceJD),
SourceJDLookupFlags(SourceJDLookupFlags), Aliases(std::move(Aliases)) {}
StringRef ReExportsMaterializationUnit::getName() const {
return "<Reexports>";
}
void ReExportsMaterializationUnit::materialize(
std::unique_ptr<MaterializationResponsibility> R) {
auto &ES = R->getTargetJITDylib().getExecutionSession();
JITDylib &TgtJD = R->getTargetJITDylib();
JITDylib &SrcJD = SourceJD ? *SourceJD : TgtJD;
// Find the set of requested aliases and aliasees. Return any unrequested
// aliases back to the JITDylib so as to not prematurely materialize any
// aliasees.
auto RequestedSymbols = R->getRequestedSymbols();
SymbolAliasMap RequestedAliases;
for (auto &Name : RequestedSymbols) {
auto I = Aliases.find(Name);
assert(I != Aliases.end() && "Symbol not found in aliases map?");
RequestedAliases[Name] = std::move(I->second);
Aliases.erase(I);
}
LLVM_DEBUG({
ES.runSessionLocked([&]() {
dbgs() << "materializing reexports: target = " << TgtJD.getName()
<< ", source = " << SrcJD.getName() << " " << RequestedAliases
<< "\n";
});
});
if (!Aliases.empty()) {
auto Err = SourceJD ? R->replace(reexports(*SourceJD, std::move(Aliases),
SourceJDLookupFlags))
: R->replace(symbolAliases(std::move(Aliases)));
if (Err) {
// FIXME: Should this be reported / treated as failure to materialize?
// Or should this be treated as a sanctioned bailing-out?
ES.reportError(std::move(Err));
R->failMaterialization();
return;
}
}
// The OnResolveInfo struct will hold the aliases and responsibilty for each
// query in the list.
struct OnResolveInfo {
OnResolveInfo(std::unique_ptr<MaterializationResponsibility> R,
SymbolAliasMap Aliases)
: R(std::move(R)), Aliases(std::move(Aliases)) {}
std::unique_ptr<MaterializationResponsibility> R;
SymbolAliasMap Aliases;
};
// Build a list of queries to issue. In each round we build a query for the
// largest set of aliases that we can resolve without encountering a chain of
// aliases (e.g. Foo -> Bar, Bar -> Baz). Such a chain would deadlock as the
// query would be waiting on a symbol that it itself had to resolve. Creating
// a new query for each link in such a chain eliminates the possibility of
// deadlock. In practice chains are likely to be rare, and this algorithm will
// usually result in a single query to issue.
std::vector<std::pair<SymbolLookupSet, std::shared_ptr<OnResolveInfo>>>
QueryInfos;
while (!RequestedAliases.empty()) {
SymbolNameSet ResponsibilitySymbols;
SymbolLookupSet QuerySymbols;
SymbolAliasMap QueryAliases;
// Collect as many aliases as we can without including a chain.
for (auto &KV : RequestedAliases) {
// Chain detected. Skip this symbol for this round.
if (&SrcJD == &TgtJD && (QueryAliases.count(KV.second.Aliasee) ||
RequestedAliases.count(KV.second.Aliasee)))
continue;
ResponsibilitySymbols.insert(KV.first);
QuerySymbols.add(KV.second.Aliasee,
KV.second.AliasFlags.hasMaterializationSideEffectsOnly()
? SymbolLookupFlags::WeaklyReferencedSymbol
: SymbolLookupFlags::RequiredSymbol);
QueryAliases[KV.first] = std::move(KV.second);
}
// Remove the aliases collected this round from the RequestedAliases map.
for (auto &KV : QueryAliases)
RequestedAliases.erase(KV.first);
assert(!QuerySymbols.empty() && "Alias cycle detected!");
auto NewR = R->delegate(ResponsibilitySymbols);
if (!NewR) {
ES.reportError(NewR.takeError());
R->failMaterialization();
return;
}
auto QueryInfo = std::make_shared<OnResolveInfo>(std::move(*NewR),
std::move(QueryAliases));
QueryInfos.push_back(
make_pair(std::move(QuerySymbols), std::move(QueryInfo)));
}
// Issue the queries.
while (!QueryInfos.empty()) {
auto QuerySymbols = std::move(QueryInfos.back().first);
auto QueryInfo = std::move(QueryInfos.back().second);
QueryInfos.pop_back();
auto RegisterDependencies = [QueryInfo,
&SrcJD](const SymbolDependenceMap &Deps) {
// If there were no materializing symbols, just bail out.
if (Deps.empty())
return;
// Otherwise the only deps should be on SrcJD.
assert(Deps.size() == 1 && Deps.count(&SrcJD) &&
"Unexpected dependencies for reexports");
auto &SrcJDDeps = Deps.find(&SrcJD)->second;
SymbolDependenceMap PerAliasDepsMap;
auto &PerAliasDeps = PerAliasDepsMap[&SrcJD];
for (auto &KV : QueryInfo->Aliases)
if (SrcJDDeps.count(KV.second.Aliasee)) {
PerAliasDeps = {KV.second.Aliasee};
QueryInfo->R->addDependencies(KV.first, PerAliasDepsMap);
}
};
auto OnComplete = [QueryInfo](Expected<SymbolMap> Result) {
auto &ES = QueryInfo->R->getTargetJITDylib().getExecutionSession();
if (Result) {
SymbolMap ResolutionMap;
for (auto &KV : QueryInfo->Aliases) {
assert((KV.second.AliasFlags.hasMaterializationSideEffectsOnly() ||
Result->count(KV.second.Aliasee)) &&
"Result map missing entry?");
// Don't try to resolve materialization-side-effects-only symbols.
if (KV.second.AliasFlags.hasMaterializationSideEffectsOnly())
continue;
ResolutionMap[KV.first] = JITEvaluatedSymbol(
(*Result)[KV.second.Aliasee].getAddress(), KV.second.AliasFlags);
}
if (auto Err = QueryInfo->R->notifyResolved(ResolutionMap)) {
ES.reportError(std::move(Err));
QueryInfo->R->failMaterialization();
return;
}
if (auto Err = QueryInfo->R->notifyEmitted()) {
ES.reportError(std::move(Err));
QueryInfo->R->failMaterialization();
return;
}
} else {
ES.reportError(Result.takeError());
QueryInfo->R->failMaterialization();
}
};
ES.lookup(LookupKind::Static,
JITDylibSearchOrder({{&SrcJD, SourceJDLookupFlags}}),
QuerySymbols, SymbolState::Resolved, std::move(OnComplete),
std::move(RegisterDependencies));
}
}
void ReExportsMaterializationUnit::discard(const JITDylib &JD,
const SymbolStringPtr &Name) {
assert(Aliases.count(Name) &&
"Symbol not covered by this MaterializationUnit");
Aliases.erase(Name);
}
SymbolFlagsMap
ReExportsMaterializationUnit::extractFlags(const SymbolAliasMap &Aliases) {
SymbolFlagsMap SymbolFlags;
for (auto &KV : Aliases)
SymbolFlags[KV.first] = KV.second.AliasFlags;
return SymbolFlags;
}
Expected<SymbolAliasMap> buildSimpleReexportsAliasMap(JITDylib &SourceJD,
SymbolNameSet Symbols) {
SymbolLookupSet LookupSet(Symbols);
auto Flags = SourceJD.getExecutionSession().lookupFlags(
LookupKind::Static, {{&SourceJD, JITDylibLookupFlags::MatchAllSymbols}},
SymbolLookupSet(std::move(Symbols)));
if (!Flags)
return Flags.takeError();
SymbolAliasMap Result;
for (auto &Name : Symbols) {
assert(Flags->count(Name) && "Missing entry in flags map");
Result[Name] = SymbolAliasMapEntry(Name, (*Flags)[Name]);
}
return Result;
}
class InProgressLookupState {
public:
InProgressLookupState(LookupKind K, JITDylibSearchOrder SearchOrder,
SymbolLookupSet LookupSet, SymbolState RequiredState)
: K(K), SearchOrder(std::move(SearchOrder)),
LookupSet(std::move(LookupSet)), RequiredState(RequiredState) {
DefGeneratorCandidates = this->LookupSet;
}
virtual ~InProgressLookupState() {}
virtual void complete(std::unique_ptr<InProgressLookupState> IPLS) = 0;
virtual void fail(Error Err) = 0;
LookupKind K;
JITDylibSearchOrder SearchOrder;
SymbolLookupSet LookupSet;
SymbolState RequiredState;
std::unique_lock<std::mutex> GeneratorLock;
size_t CurSearchOrderIndex = 0;
bool NewJITDylib = true;
SymbolLookupSet DefGeneratorCandidates;
SymbolLookupSet DefGeneratorNonCandidates;
std::vector<std::weak_ptr<DefinitionGenerator>> CurDefGeneratorStack;
};
class InProgressLookupFlagsState : public InProgressLookupState {
public:
InProgressLookupFlagsState(
LookupKind K, JITDylibSearchOrder SearchOrder, SymbolLookupSet LookupSet,
unique_function<void(Expected<SymbolFlagsMap>)> OnComplete)
: InProgressLookupState(K, std::move(SearchOrder), std::move(LookupSet),
SymbolState::NeverSearched),
OnComplete(std::move(OnComplete)) {}
void complete(std::unique_ptr<InProgressLookupState> IPLS) override {
GeneratorLock = {}; // Unlock and release.
auto &ES = SearchOrder.front().first->getExecutionSession();
ES.OL_completeLookupFlags(std::move(IPLS), std::move(OnComplete));
}
void fail(Error Err) override {
GeneratorLock = {}; // Unlock and release.
OnComplete(std::move(Err));
}
private:
unique_function<void(Expected<SymbolFlagsMap>)> OnComplete;
};
class InProgressFullLookupState : public InProgressLookupState {
public:
InProgressFullLookupState(LookupKind K, JITDylibSearchOrder SearchOrder,
SymbolLookupSet LookupSet,
SymbolState RequiredState,
std::shared_ptr<AsynchronousSymbolQuery> Q,
RegisterDependenciesFunction RegisterDependencies)
: InProgressLookupState(K, std::move(SearchOrder), std::move(LookupSet),
RequiredState),
Q(std::move(Q)), RegisterDependencies(std::move(RegisterDependencies)) {
}
void complete(std::unique_ptr<InProgressLookupState> IPLS) override {
GeneratorLock = {}; // Unlock and release.
auto &ES = SearchOrder.front().first->getExecutionSession();
ES.OL_completeLookup(std::move(IPLS), std::move(Q),
std::move(RegisterDependencies));
}
void fail(Error Err) override {
GeneratorLock = {};
Q->detach();
Q->handleFailed(std::move(Err));
}
private:
std::shared_ptr<AsynchronousSymbolQuery> Q;
RegisterDependenciesFunction RegisterDependencies;
};
ReexportsGenerator::ReexportsGenerator(JITDylib &SourceJD,
JITDylibLookupFlags SourceJDLookupFlags,
SymbolPredicate Allow)
: SourceJD(SourceJD), SourceJDLookupFlags(SourceJDLookupFlags),
Allow(std::move(Allow)) {}
Error ReexportsGenerator::tryToGenerate(LookupState &LS, LookupKind K,
JITDylib &JD,
JITDylibLookupFlags JDLookupFlags,
const SymbolLookupSet &LookupSet) {
assert(&JD != &SourceJD && "Cannot re-export from the same dylib");
// Use lookupFlags to find the subset of symbols that match our lookup.
auto Flags = JD.getExecutionSession().lookupFlags(
K, {{&SourceJD, JDLookupFlags}}, LookupSet);
if (!Flags)
return Flags.takeError();
// Create an alias map.
orc::SymbolAliasMap AliasMap;
for (auto &KV : *Flags)
if (!Allow || Allow(KV.first))
AliasMap[KV.first] = SymbolAliasMapEntry(KV.first, KV.second);
if (AliasMap.empty())
return Error::success();
// Define the re-exports.
return JD.define(reexports(SourceJD, AliasMap, SourceJDLookupFlags));
}
LookupState::LookupState(std::unique_ptr<InProgressLookupState> IPLS)
: IPLS(std::move(IPLS)) {}
void LookupState::reset(InProgressLookupState *IPLS) { this->IPLS.reset(IPLS); }
LookupState::LookupState() = default;
LookupState::LookupState(LookupState &&) = default;
LookupState &LookupState::operator=(LookupState &&) = default;
LookupState::~LookupState() = default;
void LookupState::continueLookup(Error Err) {
assert(IPLS && "Cannot call continueLookup on empty LookupState");
auto &ES = IPLS->SearchOrder.begin()->first->getExecutionSession();
ES.OL_applyQueryPhase1(std::move(IPLS), std::move(Err));
}
DefinitionGenerator::~DefinitionGenerator() {}
Error JITDylib::clear() {
std::vector<ResourceTrackerSP> TrackersToRemove;
ES.runSessionLocked([&]() {
for (auto &KV : TrackerSymbols)
TrackersToRemove.push_back(KV.first);
TrackersToRemove.push_back(getDefaultResourceTracker());
});
Error Err = Error::success();
for (auto &RT : TrackersToRemove)
Err = joinErrors(std::move(Err), RT->remove());
return Err;
}
ResourceTrackerSP JITDylib::getDefaultResourceTracker() {
return ES.runSessionLocked([this] {
if (!DefaultTracker)
DefaultTracker = new ResourceTracker(this);
return DefaultTracker;
});
}
ResourceTrackerSP JITDylib::createResourceTracker() {
return ES.runSessionLocked([this] {
ResourceTrackerSP RT = new ResourceTracker(this);
return RT;
});
}
void JITDylib::removeGenerator(DefinitionGenerator &G) {
std::lock_guard<std::mutex> Lock(GeneratorsMutex);
auto I = llvm::find_if(DefGenerators,
[&](const std::shared_ptr<DefinitionGenerator> &H) {
return H.get() == &G;
});
assert(I != DefGenerators.end() && "Generator not found");
DefGenerators.erase(I);
}
Expected<SymbolFlagsMap>
JITDylib::defineMaterializing(SymbolFlagsMap SymbolFlags) {
return ES.runSessionLocked([&]() -> Expected<SymbolFlagsMap> {
std::vector<SymbolTable::iterator> AddedSyms;
std::vector<SymbolFlagsMap::iterator> RejectedWeakDefs;
for (auto SFItr = SymbolFlags.begin(), SFEnd = SymbolFlags.end();
SFItr != SFEnd; ++SFItr) {
auto &Name = SFItr->first;
auto &Flags = SFItr->second;
auto EntryItr = Symbols.find(Name);
// If the entry already exists...
if (EntryItr != Symbols.end()) {
// If this is a strong definition then error out.
if (!Flags.isWeak()) {
// Remove any symbols already added.
for (auto &SI : AddedSyms)
Symbols.erase(SI);
// FIXME: Return all duplicates.
return make_error<DuplicateDefinition>(std::string(*Name));
}
// Otherwise just make a note to discard this symbol after the loop.
RejectedWeakDefs.push_back(SFItr);
continue;
} else
EntryItr =
Symbols.insert(std::make_pair(Name, SymbolTableEntry(Flags))).first;
AddedSyms.push_back(EntryItr);
EntryItr->second.setState(SymbolState::Materializing);
}
// Remove any rejected weak definitions from the SymbolFlags map.
while (!RejectedWeakDefs.empty()) {
SymbolFlags.erase(RejectedWeakDefs.back());
RejectedWeakDefs.pop_back();
}
return SymbolFlags;
});
}
Error JITDylib::replace(MaterializationResponsibility &FromMR,
std::unique_ptr<MaterializationUnit> MU) {
assert(MU != nullptr && "Can not replace with a null MaterializationUnit");
std::unique_ptr<MaterializationUnit> MustRunMU;
std::unique_ptr<MaterializationResponsibility> MustRunMR;
auto Err =
ES.runSessionLocked([&, this]() -> Error {
auto RT = getTracker(FromMR);
if (RT->isDefunct())
return make_error<ResourceTrackerDefunct>(std::move(RT));
#ifndef NDEBUG
for (auto &KV : MU->getSymbols()) {
auto SymI = Symbols.find(KV.first);
assert(SymI != Symbols.end() && "Replacing unknown symbol");
assert(SymI->second.getState() == SymbolState::Materializing &&
"Can not replace a symbol that ha is not materializing");
assert(!SymI->second.hasMaterializerAttached() &&
"Symbol should not have materializer attached already");
assert(UnmaterializedInfos.count(KV.first) == 0 &&
"Symbol being replaced should have no UnmaterializedInfo");
}
#endif // NDEBUG
// If the tracker is defunct we need to bail out immediately.
// If any symbol has pending queries against it then we need to
// materialize MU immediately.
for (auto &KV : MU->getSymbols()) {
auto MII = MaterializingInfos.find(KV.first);
if (MII != MaterializingInfos.end()) {
if (MII->second.hasQueriesPending()) {
MustRunMR = ES.createMaterializationResponsibility(
*RT, std::move(MU->SymbolFlags), std::move(MU->InitSymbol));
MustRunMU = std::move(MU);
return Error::success();
}
}
}
// Otherwise, make MU responsible for all the symbols.
auto RTI = MRTrackers.find(&FromMR);
assert(RTI != MRTrackers.end() && "No tracker for FromMR");
auto UMI =
std::make_shared<UnmaterializedInfo>(std::move(MU), RTI->second);
for (auto &KV : UMI->MU->getSymbols()) {
auto SymI = Symbols.find(KV.first);
assert(SymI->second.getState() == SymbolState::Materializing &&
"Can not replace a symbol that is not materializing");
assert(!SymI->second.hasMaterializerAttached() &&
"Can not replace a symbol that has a materializer attached");
assert(UnmaterializedInfos.count(KV.first) == 0 &&
"Unexpected materializer entry in map");
SymI->second.setAddress(SymI->second.getAddress());
SymI->second.setMaterializerAttached(true);
auto &UMIEntry = UnmaterializedInfos[KV.first];
assert((!UMIEntry || !UMIEntry->MU) &&
"Replacing symbol with materializer still attached");
UMIEntry = UMI;
}
return Error::success();
});
if (Err)
return Err;
if (MustRunMU) {
assert(MustRunMR && "MustRunMU set implies MustRunMR set");
ES.dispatchTask(std::make_unique<MaterializationTask>(
std::move(MustRunMU), std::move(MustRunMR)));
} else {
assert(!MustRunMR && "MustRunMU unset implies MustRunMR unset");
}
return Error::success();
}
Expected<std::unique_ptr<MaterializationResponsibility>>
JITDylib::delegate(MaterializationResponsibility &FromMR,
SymbolFlagsMap SymbolFlags, SymbolStringPtr InitSymbol) {
return ES.runSessionLocked(
[&]() -> Expected<std::unique_ptr<MaterializationResponsibility>> {
auto RT = getTracker(FromMR);
if (RT->isDefunct())
return make_error<ResourceTrackerDefunct>(std::move(RT));
return ES.createMaterializationResponsibility(
*RT, std::move(SymbolFlags), std::move(InitSymbol));
});
}
SymbolNameSet
JITDylib::getRequestedSymbols(const SymbolFlagsMap &SymbolFlags) const {
return ES.runSessionLocked([&]() {
SymbolNameSet RequestedSymbols;
for (auto &KV : SymbolFlags) {
assert(Symbols.count(KV.first) && "JITDylib does not cover this symbol?");
assert(Symbols.find(KV.first)->second.getState() !=
SymbolState::NeverSearched &&
Symbols.find(KV.first)->second.getState() != SymbolState::Ready &&
"getRequestedSymbols can only be called for symbols that have "
"started materializing");
auto I = MaterializingInfos.find(KV.first);
if (I == MaterializingInfos.end())
continue;
if (I->second.hasQueriesPending())
RequestedSymbols.insert(KV.first);
}
return RequestedSymbols;
});
}
void JITDylib::addDependencies(const SymbolStringPtr &Name,
const SymbolDependenceMap &Dependencies) {
ES.runSessionLocked([&]() {
assert(Symbols.count(Name) && "Name not in symbol table");
assert(Symbols[Name].getState() < SymbolState::Emitted &&
"Can not add dependencies for a symbol that is not materializing");
LLVM_DEBUG({
dbgs() << "In " << getName() << " adding dependencies for " << *Name
<< ": " << Dependencies << "\n";
});
// If Name is already in an error state then just bail out.
if (Symbols[Name].getFlags().hasError())
return;
auto &MI = MaterializingInfos[Name];
assert(Symbols[Name].getState() != SymbolState::Emitted &&
"Can not add dependencies to an emitted symbol");
bool DependsOnSymbolInErrorState = false;
// Register dependencies, record whether any depenendency is in the error
// state.
for (auto &KV : Dependencies) {
assert(KV.first && "Null JITDylib in dependency?");
auto &OtherJITDylib = *KV.first;
auto &DepsOnOtherJITDylib = MI.UnemittedDependencies[&OtherJITDylib];
for (auto &OtherSymbol : KV.second) {
// Check the sym entry for the dependency.
auto OtherSymI = OtherJITDylib.Symbols.find(OtherSymbol);
// Assert that this symbol exists and has not reached the ready state
// already.
assert(OtherSymI != OtherJITDylib.Symbols.end() &&
"Dependency on unknown symbol");
auto &OtherSymEntry = OtherSymI->second;
// If the other symbol is already in the Ready state then there's no
// dependency to add.
if (OtherSymEntry.getState() == SymbolState::Ready)
continue;
// If the dependency is in an error state then note this and continue,
// we will move this symbol to the error state below.
if (OtherSymEntry.getFlags().hasError()) {
DependsOnSymbolInErrorState = true;
continue;
}
// If the dependency was not in the error state then add it to
// our list of dependencies.
auto &OtherMI = OtherJITDylib.MaterializingInfos[OtherSymbol];
if (OtherSymEntry.getState() == SymbolState::Emitted)
transferEmittedNodeDependencies(MI, Name, OtherMI);
else if (&OtherJITDylib != this || OtherSymbol != Name) {
OtherMI.Dependants[this].insert(Name);
DepsOnOtherJITDylib.insert(OtherSymbol);
}
}
if (DepsOnOtherJITDylib.empty())
MI.UnemittedDependencies.erase(&OtherJITDylib);
}
// If this symbol dependended on any symbols in the error state then move
// this symbol to the error state too.
if (DependsOnSymbolInErrorState)
Symbols[Name].setFlags(Symbols[Name].getFlags() |
JITSymbolFlags::HasError);
});
}
Error JITDylib::resolve(MaterializationResponsibility &MR,
const SymbolMap &Resolved) {
AsynchronousSymbolQuerySet CompletedQueries;
if (auto Err = ES.runSessionLocked([&, this]() -> Error {
auto RTI = MRTrackers.find(&MR);
assert(RTI != MRTrackers.end() && "No resource tracker for MR?");
if (RTI->second->isDefunct())
return make_error<ResourceTrackerDefunct>(RTI->second);
struct WorklistEntry {
SymbolTable::iterator SymI;
JITEvaluatedSymbol ResolvedSym;
};
SymbolNameSet SymbolsInErrorState;
std::vector<WorklistEntry> Worklist;
Worklist.reserve(Resolved.size());
// Build worklist and check for any symbols in the error state.
for (const auto &KV : Resolved) {
assert(!KV.second.getFlags().hasError() &&
"Resolution result can not have error flag set");
auto SymI = Symbols.find(KV.first);
assert(SymI != Symbols.end() && "Symbol not found");
assert(!SymI->second.hasMaterializerAttached() &&
"Resolving symbol with materializer attached?");
assert(SymI->second.getState() == SymbolState::Materializing &&
"Symbol should be materializing");
assert(SymI->second.getAddress() == 0 &&
"Symbol has already been resolved");
if (SymI->second.getFlags().hasError())
SymbolsInErrorState.insert(KV.first);
else {
auto Flags = KV.second.getFlags();
Flags &= ~(JITSymbolFlags::Weak | JITSymbolFlags::Common);
assert(Flags ==
(SymI->second.getFlags() &
~(JITSymbolFlags::Weak | JITSymbolFlags::Common)) &&
"Resolved flags should match the declared flags");
Worklist.push_back(
{SymI, JITEvaluatedSymbol(KV.second.getAddress(), Flags)});
}
}
// If any symbols were in the error state then bail out.
if (!SymbolsInErrorState.empty()) {
auto FailedSymbolsDepMap = std::make_shared<SymbolDependenceMap>();
(*FailedSymbolsDepMap)[this] = std::move(SymbolsInErrorState);
return make_error<FailedToMaterialize>(
std::move(FailedSymbolsDepMap));
}
while (!Worklist.empty()) {
auto SymI = Worklist.back().SymI;
auto ResolvedSym = Worklist.back().ResolvedSym;
Worklist.pop_back();
auto &Name = SymI->first;
// Resolved symbols can not be weak: discard the weak flag.
JITSymbolFlags ResolvedFlags = ResolvedSym.getFlags();
SymI->second.setAddress(ResolvedSym.getAddress());
SymI->second.setFlags(ResolvedFlags);
SymI->second.setState(SymbolState::Resolved);
auto MII = MaterializingInfos.find(Name);
if (MII == MaterializingInfos.end())
continue;
auto &MI = MII->second;
for (auto &Q : MI.takeQueriesMeeting(SymbolState::Resolved)) {
Q->notifySymbolMetRequiredState(Name, ResolvedSym);
Q->removeQueryDependence(*this, Name);
if (Q->isComplete())
CompletedQueries.insert(std::move(Q));
}
}
return Error::success();
}))
return Err;
// Otherwise notify all the completed queries.
for (auto &Q : CompletedQueries) {
assert(Q->isComplete() && "Q not completed");
Q->handleComplete(ES);
}
return Error::success();
}
Error JITDylib::emit(MaterializationResponsibility &MR,
const SymbolFlagsMap &Emitted) {
AsynchronousSymbolQuerySet CompletedQueries;
DenseMap<JITDylib *, SymbolNameVector> ReadySymbols;
if (auto Err = ES.runSessionLocked([&, this]() -> Error {
auto RTI = MRTrackers.find(&MR);
assert(RTI != MRTrackers.end() && "No resource tracker for MR?");
if (RTI->second->isDefunct())
return make_error<ResourceTrackerDefunct>(RTI->second);
SymbolNameSet SymbolsInErrorState;
std::vector<SymbolTable::iterator> Worklist;
// Scan to build worklist, record any symbols in the erorr state.
for (const auto &KV : Emitted) {
auto &Name = KV.first;
auto SymI = Symbols.find(Name);
assert(SymI != Symbols.end() && "No symbol table entry for Name");
if (SymI->second.getFlags().hasError())
SymbolsInErrorState.insert(Name);
else
Worklist.push_back(SymI);
}
// If any symbols were in the error state then bail out.
if (!SymbolsInErrorState.empty()) {
auto FailedSymbolsDepMap = std::make_shared<SymbolDependenceMap>();
(*FailedSymbolsDepMap)[this] = std::move(SymbolsInErrorState);
return make_error<FailedToMaterialize>(
std::move(FailedSymbolsDepMap));
}
// Otherwise update dependencies and move to the emitted state.
while (!Worklist.empty()) {
auto SymI = Worklist.back();
Worklist.pop_back();
auto &Name = SymI->first;
auto &SymEntry = SymI->second;
// Move symbol to the emitted state.
assert(((SymEntry.getFlags().hasMaterializationSideEffectsOnly() &&
SymEntry.getState() == SymbolState::Materializing) ||
SymEntry.getState() == SymbolState::Resolved) &&
"Emitting from state other than Resolved");
SymEntry.setState(SymbolState::Emitted);
auto MII = MaterializingInfos.find(Name);
// If this symbol has no MaterializingInfo then it's trivially ready.
// Update its state and continue.
if (MII == MaterializingInfos.end()) {
SymEntry.setState(SymbolState::Ready);
continue;
}
auto &MI = MII->second;
// For each dependant, transfer this node's emitted dependencies to
// it. If the dependant node is ready (i.e. has no unemitted
// dependencies) then notify any pending queries.
for (auto &KV : MI.Dependants) {
auto &DependantJD = *KV.first;
auto &DependantJDReadySymbols = ReadySymbols[&DependantJD];
for (auto &DependantName : KV.second) {
auto DependantMII =
DependantJD.MaterializingInfos.find(DependantName);
assert(DependantMII != DependantJD.MaterializingInfos.end() &&
"Dependant should have MaterializingInfo");
auto &DependantMI = DependantMII->second;
// Remove the dependant's dependency on this node.
assert(DependantMI.UnemittedDependencies.count(this) &&
"Dependant does not have an unemitted dependencies record "
"for "
"this JITDylib");
assert(DependantMI.UnemittedDependencies[this].count(Name) &&
"Dependant does not count this symbol as a dependency?");
DependantMI.UnemittedDependencies[this].erase(Name);
if (DependantMI.UnemittedDependencies[this].empty())
DependantMI.UnemittedDependencies.erase(this);
// Transfer unemitted dependencies from this node to the
// dependant.
DependantJD.transferEmittedNodeDependencies(DependantMI,
DependantName, MI);
auto DependantSymI = DependantJD.Symbols.find(DependantName);
assert(DependantSymI != DependantJD.Symbols.end() &&
"Dependant has no entry in the Symbols table");
auto &DependantSymEntry = DependantSymI->second;
// If the dependant is emitted and this node was the last of its
// unemitted dependencies then the dependant node is now ready, so
// notify any pending queries on the dependant node.
if (DependantSymEntry.getState() == SymbolState::Emitted &&
DependantMI.UnemittedDependencies.empty()) {
assert(DependantMI.Dependants.empty() &&
"Dependants should be empty by now");
// Since this dependant is now ready, we erase its
// MaterializingInfo and update its materializing state.
DependantSymEntry.setState(SymbolState::Ready);
DependantJDReadySymbols.push_back(DependantName);
for (auto &Q :
DependantMI.takeQueriesMeeting(SymbolState::Ready)) {
Q->notifySymbolMetRequiredState(
DependantName, DependantSymI->second.getSymbol());
if (Q->isComplete())
CompletedQueries.insert(Q);
Q->removeQueryDependence(DependantJD, DependantName);
}
DependantJD.MaterializingInfos.erase(DependantMII);
}
}
}
auto &ThisJDReadySymbols = ReadySymbols[this];
MI.Dependants.clear();
if (MI.UnemittedDependencies.empty()) {
SymI->second.setState(SymbolState::Ready);
ThisJDReadySymbols.push_back(Name);
for (auto &Q : MI.takeQueriesMeeting(SymbolState::Ready)) {
Q->notifySymbolMetRequiredState(Name, SymI->second.getSymbol());
if (Q->isComplete())
CompletedQueries.insert(Q);
Q->removeQueryDependence(*this, Name);
}
MaterializingInfos.erase(MII);
}
}
return Error::success();
}))
return Err;
// Otherwise notify all the completed queries.
for (auto &Q : CompletedQueries) {
assert(Q->isComplete() && "Q is not complete");
Q->handleComplete(ES);
}
return Error::success();
}
void JITDylib::unlinkMaterializationResponsibility(
MaterializationResponsibility &MR) {
ES.runSessionLocked([&]() {
auto I = MRTrackers.find(&MR);
assert(I != MRTrackers.end() && "MaterializationResponsibility not linked");
MRTrackers.erase(I);
});
}
std::pair<JITDylib::AsynchronousSymbolQuerySet,
std::shared_ptr<SymbolDependenceMap>>
JITDylib::failSymbols(FailedSymbolsWorklist Worklist) {
AsynchronousSymbolQuerySet FailedQueries;
auto FailedSymbolsMap = std::make_shared<SymbolDependenceMap>();
while (!Worklist.empty()) {
assert(Worklist.back().first && "Failed JITDylib can not be null");
auto &JD = *Worklist.back().first;
auto Name = std::move(Worklist.back().second);
Worklist.pop_back();
(*FailedSymbolsMap)[&JD].insert(Name);
assert(JD.Symbols.count(Name) && "No symbol table entry for Name");
auto &Sym = JD.Symbols[Name];
// Move the symbol into the error state.
// Note that this may be redundant: The symbol might already have been
// moved to this state in response to the failure of a dependence.
Sym.setFlags(Sym.getFlags() | JITSymbolFlags::HasError);
// FIXME: Come up with a sane mapping of state to
// presence-of-MaterializingInfo so that we can assert presence / absence
// here, rather than testing it.
auto MII = JD.MaterializingInfos.find(Name);
if (MII == JD.MaterializingInfos.end())
continue;
auto &MI = MII->second;
// Move all dependants to the error state and disconnect from them.
for (auto &KV : MI.Dependants) {
auto &DependantJD = *KV.first;
for (auto &DependantName : KV.second) {
assert(DependantJD.Symbols.count(DependantName) &&
"No symbol table entry for DependantName");
auto &DependantSym = DependantJD.Symbols[DependantName];
DependantSym.setFlags(DependantSym.getFlags() |
JITSymbolFlags::HasError);
assert(DependantJD.MaterializingInfos.count(DependantName) &&
"No MaterializingInfo for dependant");
auto &DependantMI = DependantJD.MaterializingInfos[DependantName];
auto UnemittedDepI = DependantMI.UnemittedDependencies.find(&JD);
assert(UnemittedDepI != DependantMI.UnemittedDependencies.end() &&
"No UnemittedDependencies entry for this JITDylib");
assert(UnemittedDepI->second.count(Name) &&
"No UnemittedDependencies entry for this symbol");
UnemittedDepI->second.erase(Name);
if (UnemittedDepI->second.empty())
DependantMI.UnemittedDependencies.erase(UnemittedDepI);
// If this symbol is already in the emitted state then we need to
// take responsibility for failing its queries, so add it to the
// worklist.
if (DependantSym.getState() == SymbolState::Emitted) {
assert(DependantMI.Dependants.empty() &&
"Emitted symbol should not have dependants");
Worklist.push_back(std::make_pair(&DependantJD, DependantName));
}
}
}
MI.Dependants.clear();
// Disconnect from all unemitted depenencies.
for (auto &KV : MI.UnemittedDependencies) {
auto &UnemittedDepJD = *KV.first;
for (auto &UnemittedDepName : KV.second) {
auto UnemittedDepMII =
UnemittedDepJD.MaterializingInfos.find(UnemittedDepName);
assert(UnemittedDepMII != UnemittedDepJD.MaterializingInfos.end() &&
"Missing MII for unemitted dependency");
assert(UnemittedDepMII->second.Dependants.count(&JD) &&
"JD not listed as a dependant of unemitted dependency");
assert(UnemittedDepMII->second.Dependants[&JD].count(Name) &&
"Name is not listed as a dependant of unemitted dependency");
UnemittedDepMII->second.Dependants[&JD].erase(Name);
if (UnemittedDepMII->second.Dependants[&JD].empty())
UnemittedDepMII->second.Dependants.erase(&JD);
}
}
MI.UnemittedDependencies.clear();
// Collect queries to be failed for this MII.
AsynchronousSymbolQueryList ToDetach;
for (auto &Q : MII->second.pendingQueries()) {
// Add the query to the list to be failed and detach it.
FailedQueries.insert(Q);
ToDetach.push_back(Q);
}
for (auto &Q : ToDetach)
Q->detach();
assert(MI.Dependants.empty() &&
"Can not delete MaterializingInfo with dependants still attached");
assert(MI.UnemittedDependencies.empty() &&
"Can not delete MaterializingInfo with unemitted dependencies "
"still attached");
assert(!MI.hasQueriesPending() &&
"Can not delete MaterializingInfo with queries pending");
JD.MaterializingInfos.erase(MII);
}
return std::make_pair(std::move(FailedQueries), std::move(FailedSymbolsMap));
}
void JITDylib::setLinkOrder(JITDylibSearchOrder NewLinkOrder,
bool LinkAgainstThisJITDylibFirst) {
ES.runSessionLocked([&]() {
if (LinkAgainstThisJITDylibFirst) {
LinkOrder.clear();
if (NewLinkOrder.empty() || NewLinkOrder.front().first != this)
LinkOrder.push_back(
std::make_pair(this, JITDylibLookupFlags::MatchAllSymbols));
llvm::append_range(LinkOrder, NewLinkOrder);
} else
LinkOrder = std::move(NewLinkOrder);
});
}
void JITDylib::addToLinkOrder(JITDylib &JD, JITDylibLookupFlags JDLookupFlags) {
ES.runSessionLocked([&]() { LinkOrder.push_back({&JD, JDLookupFlags}); });
}
void JITDylib::replaceInLinkOrder(JITDylib &OldJD, JITDylib &NewJD,
JITDylibLookupFlags JDLookupFlags) {
ES.runSessionLocked([&]() {
for (auto &KV : LinkOrder)
if (KV.first == &OldJD) {
KV = {&NewJD, JDLookupFlags};
break;
}
});
}
void JITDylib::removeFromLinkOrder(JITDylib &JD) {
ES.runSessionLocked([&]() {
auto I = llvm::find_if(LinkOrder,
[&](const JITDylibSearchOrder::value_type &KV) {
return KV.first == &JD;
});
if (I != LinkOrder.end())
LinkOrder.erase(I);
});
}
Error JITDylib::remove(const SymbolNameSet &Names) {
return ES.runSessionLocked([&]() -> Error {
using SymbolMaterializerItrPair =
std::pair<SymbolTable::iterator, UnmaterializedInfosMap::iterator>;
std::vector<SymbolMaterializerItrPair> SymbolsToRemove;
SymbolNameSet Missing;
SymbolNameSet Materializing;
for (auto &Name : Names) {
auto I = Symbols.find(Name);
// Note symbol missing.
if (I == Symbols.end()) {
Missing.insert(Name);
continue;
}
// Note symbol materializing.
if (I->second.getState() != SymbolState::NeverSearched &&
I->second.getState() != SymbolState::Ready) {
Materializing.insert(Name);
continue;
}
auto UMII = I->second.hasMaterializerAttached()
? UnmaterializedInfos.find(Name)
: UnmaterializedInfos.end();
SymbolsToRemove.push_back(std::make_pair(I, UMII));
}
// If any of the symbols are not defined, return an error.
if (!Missing.empty())
return make_error<SymbolsNotFound>(std::move(Missing));
// If any of the symbols are currently materializing, return an error.
if (!Materializing.empty())
return make_error<SymbolsCouldNotBeRemoved>(std::move(Materializing));
// Remove the symbols.
for (auto &SymbolMaterializerItrPair : SymbolsToRemove) {
auto UMII = SymbolMaterializerItrPair.second;
// If there is a materializer attached, call discard.
if (UMII != UnmaterializedInfos.end()) {
UMII->second->MU->doDiscard(*this, UMII->first);
UnmaterializedInfos.erase(UMII);
}
auto SymI = SymbolMaterializerItrPair.first;
Symbols.erase(SymI);
}
return Error::success();
});
}
void JITDylib::dump(raw_ostream &OS) {
ES.runSessionLocked([&, this]() {
OS << "JITDylib \"" << JITDylibName << "\" (ES: "
<< format("0x%016" PRIx64, reinterpret_cast<uintptr_t>(&ES)) << "):\n"
<< "Link order: " << LinkOrder << "\n"
<< "Symbol table:\n";
for (auto &KV : Symbols) {
OS << " \"" << *KV.first << "\": ";
if (auto Addr = KV.second.getAddress())
OS << format("0x%016" PRIx64, Addr) << ", " << KV.second.getFlags()
<< " ";
else
OS << "<not resolved> ";
OS << KV.second.getFlags() << " " << KV.second.getState();
if (KV.second.hasMaterializerAttached()) {
OS << " (Materializer ";
auto I = UnmaterializedInfos.find(KV.first);
assert(I != UnmaterializedInfos.end() &&
"Lazy symbol should have UnmaterializedInfo");
OS << I->second->MU.get() << ", " << I->second->MU->getName() << ")\n";
} else
OS << "\n";
}
if (!MaterializingInfos.empty())
OS << " MaterializingInfos entries:\n";
for (auto &KV : MaterializingInfos) {
OS << " \"" << *KV.first << "\":\n"
<< " " << KV.second.pendingQueries().size()
<< " pending queries: { ";
for (const auto &Q : KV.second.pendingQueries())
OS << Q.get() << " (" << Q->getRequiredState() << ") ";
OS << "}\n Dependants:\n";
for (auto &KV2 : KV.second.Dependants)
OS << " " << KV2.first->getName() << ": " << KV2.second << "\n";
OS << " Unemitted Dependencies:\n";
for (auto &KV2 : KV.second.UnemittedDependencies)
OS << " " << KV2.first->getName() << ": " << KV2.second << "\n";
assert((Symbols[KV.first].getState() != SymbolState::Ready ||
!KV.second.pendingQueries().empty() ||
!KV.second.Dependants.empty() ||
!KV.second.UnemittedDependencies.empty()) &&
"Stale materializing info entry");
}
});
}
void JITDylib::MaterializingInfo::addQuery(
std::shared_ptr<AsynchronousSymbolQuery> Q) {
auto I = std::lower_bound(
PendingQueries.rbegin(), PendingQueries.rend(), Q->getRequiredState(),
[](const std::shared_ptr<AsynchronousSymbolQuery> &V, SymbolState S) {
return V->getRequiredState() <= S;
});
PendingQueries.insert(I.base(), std::move(Q));
}
void JITDylib::MaterializingInfo::removeQuery(
const AsynchronousSymbolQuery &Q) {
// FIXME: Implement 'find_as' for shared_ptr<T>/T*.
auto I = llvm::find_if(
PendingQueries, [&Q](const std::shared_ptr<AsynchronousSymbolQuery> &V) {
return V.get() == &Q;
});
assert(I != PendingQueries.end() &&
"Query is not attached to this MaterializingInfo");
PendingQueries.erase(I);
}
JITDylib::AsynchronousSymbolQueryList
JITDylib::MaterializingInfo::takeQueriesMeeting(SymbolState RequiredState) {
AsynchronousSymbolQueryList Result;
while (!PendingQueries.empty()) {
if (PendingQueries.back()->getRequiredState() > RequiredState)
break;
Result.push_back(std::move(PendingQueries.back()));
PendingQueries.pop_back();
}
return Result;
}
JITDylib::JITDylib(ExecutionSession &ES, std::string Name)
: ES(ES), JITDylibName(std::move(Name)) {
LinkOrder.push_back({this, JITDylibLookupFlags::MatchAllSymbols});
}
ResourceTrackerSP JITDylib::getTracker(MaterializationResponsibility &MR) {
auto I = MRTrackers.find(&MR);
assert(I != MRTrackers.end() && "MR is not linked");
assert(I->second && "Linked tracker is null");
return I->second;
}
std::pair<JITDylib::AsynchronousSymbolQuerySet,
std::shared_ptr<SymbolDependenceMap>>
JITDylib::removeTracker(ResourceTracker &RT) {
// Note: Should be called under the session lock.
SymbolNameVector SymbolsToRemove;
std::vector<std::pair<JITDylib *, SymbolStringPtr>> SymbolsToFail;
if (&RT == DefaultTracker.get()) {
SymbolNameSet TrackedSymbols;
for (auto &KV : TrackerSymbols)
for (auto &Sym : KV.second)
TrackedSymbols.insert(Sym);
for (auto &KV : Symbols) {
auto &Sym = KV.first;
if (!TrackedSymbols.count(Sym))
SymbolsToRemove.push_back(Sym);
}
DefaultTracker.reset();
} else {
/// Check for a non-default tracker.
auto I = TrackerSymbols.find(&RT);
if (I != TrackerSymbols.end()) {
SymbolsToRemove = std::move(I->second);
TrackerSymbols.erase(I);
}
// ... if not found this tracker was already defunct. Nothing to do.
}
for (auto &Sym : SymbolsToRemove) {
assert(Symbols.count(Sym) && "Symbol not in symbol table");
// If there is a MaterializingInfo then collect any queries to fail.
auto MII = MaterializingInfos.find(Sym);
if (MII != MaterializingInfos.end())
SymbolsToFail.push_back({this, Sym});
}
AsynchronousSymbolQuerySet QueriesToFail;
auto Result = failSymbols(std::move(SymbolsToFail));
// Removed symbols should be taken out of the table altogether.
for (auto &Sym : SymbolsToRemove) {
auto I = Symbols.find(Sym);
assert(I != Symbols.end() && "Symbol not present in table");
// Remove Materializer if present.
if (I->second.hasMaterializerAttached()) {
// FIXME: Should this discard the symbols?
UnmaterializedInfos.erase(Sym);
} else {
assert(!UnmaterializedInfos.count(Sym) &&
"Symbol has materializer attached");
}
Symbols.erase(I);
}
return Result;
}
void JITDylib::transferTracker(ResourceTracker &DstRT, ResourceTracker &SrcRT) {
assert(&DstRT != &SrcRT && "No-op transfers shouldn't call transferTracker");
assert(&DstRT.getJITDylib() == this && "DstRT is not for this JITDylib");
assert(&SrcRT.getJITDylib() == this && "SrcRT is not for this JITDylib");
// Update trackers for any not-yet materialized units.
for (auto &KV : UnmaterializedInfos) {
if (KV.second->RT == &SrcRT)
KV.second->RT = &DstRT;
}
// Update trackers for any active materialization responsibilities.
for (auto &KV : MRTrackers) {
if (KV.second == &SrcRT)
KV.second = &DstRT;
}
// If we're transfering to the default tracker we just need to delete the
// tracked symbols for the source tracker.
if (&DstRT == DefaultTracker.get()) {
TrackerSymbols.erase(&SrcRT);
return;
}
// If we're transferring from the default tracker we need to find all
// currently untracked symbols.
if (&SrcRT == DefaultTracker.get()) {
assert(!TrackerSymbols.count(&SrcRT) &&
"Default tracker should not appear in TrackerSymbols");
SymbolNameVector SymbolsToTrack;
SymbolNameSet CurrentlyTrackedSymbols;
for (auto &KV : TrackerSymbols)
for (auto &Sym : KV.second)
CurrentlyTrackedSymbols.insert(Sym);
for (auto &KV : Symbols) {
auto &Sym = KV.first;
if (!CurrentlyTrackedSymbols.count(Sym))
SymbolsToTrack.push_back(Sym);
}
TrackerSymbols[&DstRT] = std::move(SymbolsToTrack);
return;
}
auto &DstTrackedSymbols = TrackerSymbols[&DstRT];
// Finally if neither SrtRT or DstRT are the default tracker then
// just append DstRT's tracked symbols to SrtRT's.
auto SI = TrackerSymbols.find(&SrcRT);
if (SI == TrackerSymbols.end())
return;
DstTrackedSymbols.reserve(DstTrackedSymbols.size() + SI->second.size());
for (auto &Sym : SI->second)
DstTrackedSymbols.push_back(std::move(Sym));
TrackerSymbols.erase(SI);
}
Error JITDylib::defineImpl(MaterializationUnit &MU) {
LLVM_DEBUG({ dbgs() << " " << MU.getSymbols() << "\n"; });
SymbolNameSet Duplicates;
std::vector<SymbolStringPtr> ExistingDefsOverridden;
std::vector<SymbolStringPtr> MUDefsOverridden;
for (const auto &KV : MU.getSymbols()) {
auto I = Symbols.find(KV.first);
if (I != Symbols.end()) {
if (KV.second.isStrong()) {
if (I->second.getFlags().isStrong() ||
I->second.getState() > SymbolState::NeverSearched)
Duplicates.insert(KV.first);
else {
assert(I->second.getState() == SymbolState::NeverSearched &&
"Overridden existing def should be in the never-searched "
"state");
ExistingDefsOverridden.push_back(KV.first);
}
} else
MUDefsOverridden.push_back(KV.first);
}
}
// If there were any duplicate definitions then bail out.
if (!Duplicates.empty()) {
LLVM_DEBUG(
{ dbgs() << " Error: Duplicate symbols " << Duplicates << "\n"; });
return make_error<DuplicateDefinition>(std::string(**Duplicates.begin()));
}
// Discard any overridden defs in this MU.
LLVM_DEBUG({
if (!MUDefsOverridden.empty())
dbgs() << " Defs in this MU overridden: " << MUDefsOverridden << "\n";
});
for (auto &S : MUDefsOverridden)
MU.doDiscard(*this, S);
// Discard existing overridden defs.
LLVM_DEBUG({
if (!ExistingDefsOverridden.empty())
dbgs() << " Existing defs overridden by this MU: " << MUDefsOverridden
<< "\n";
});
for (auto &S : ExistingDefsOverridden) {
auto UMII = UnmaterializedInfos.find(S);
assert(UMII != UnmaterializedInfos.end() &&
"Overridden existing def should have an UnmaterializedInfo");
UMII->second->MU->doDiscard(*this, S);
}
// Finally, add the defs from this MU.
for (auto &KV : MU.getSymbols()) {
auto &SymEntry = Symbols[KV.first];
SymEntry.setFlags(KV.second);
SymEntry.setState(SymbolState::NeverSearched);
SymEntry.setMaterializerAttached(true);
}
return Error::success();
}
void JITDylib::installMaterializationUnit(
std::unique_ptr<MaterializationUnit> MU, ResourceTracker &RT) {
/// defineImpl succeeded.
if (&RT != DefaultTracker.get()) {
auto &TS = TrackerSymbols[&RT];
TS.reserve(TS.size() + MU->getSymbols().size());
for (auto &KV : MU->getSymbols())
TS.push_back(KV.first);
}
auto UMI = std::make_shared<UnmaterializedInfo>(std::move(MU), &RT);
for (auto &KV : UMI->MU->getSymbols())
UnmaterializedInfos[KV.first] = UMI;
}
void JITDylib::detachQueryHelper(AsynchronousSymbolQuery &Q,
const SymbolNameSet &QuerySymbols) {
for (auto &QuerySymbol : QuerySymbols) {
assert(MaterializingInfos.count(QuerySymbol) &&
"QuerySymbol does not have MaterializingInfo");
auto &MI = MaterializingInfos[QuerySymbol];
MI.removeQuery(Q);
}
}
void JITDylib::transferEmittedNodeDependencies(
MaterializingInfo &DependantMI, const SymbolStringPtr &DependantName,
MaterializingInfo &EmittedMI) {
for (auto &KV : EmittedMI.UnemittedDependencies) {
auto &DependencyJD = *KV.first;
SymbolNameSet *UnemittedDependenciesOnDependencyJD = nullptr;
for (auto &DependencyName : KV.second) {
auto &DependencyMI = DependencyJD.MaterializingInfos[DependencyName];
// Do not add self dependencies.
if (&DependencyMI == &DependantMI)
continue;
// If we haven't looked up the dependencies for DependencyJD yet, do it
// now and cache the result.
if (!UnemittedDependenciesOnDependencyJD)
UnemittedDependenciesOnDependencyJD =
&DependantMI.UnemittedDependencies[&DependencyJD];
DependencyMI.Dependants[this].insert(DependantName);
UnemittedDependenciesOnDependencyJD->insert(DependencyName);
}
}
}
Platform::~Platform() {}
Expected<DenseMap<JITDylib *, SymbolMap>> Platform::lookupInitSymbols(
ExecutionSession &ES,
const DenseMap<JITDylib *, SymbolLookupSet> &InitSyms) {
DenseMap<JITDylib *, SymbolMap> CompoundResult;
Error CompoundErr = Error::success();
std::mutex LookupMutex;
std::condition_variable CV;
uint64_t Count = InitSyms.size();
LLVM_DEBUG({
dbgs() << "Issuing init-symbol lookup:\n";
for (auto &KV : InitSyms)
dbgs() << " " << KV.first->getName() << ": " << KV.second << "\n";
});
for (auto &KV : InitSyms) {
auto *JD = KV.first;
auto Names = std::move(KV.second);
ES.lookup(
LookupKind::Static,
JITDylibSearchOrder({{JD, JITDylibLookupFlags::MatchAllSymbols}}),
std::move(Names), SymbolState::Ready,
[&, JD](Expected<SymbolMap> Result) {
{
std::lock_guard<std::mutex> Lock(LookupMutex);
--Count;
if (Result) {
assert(!CompoundResult.count(JD) &&
"Duplicate JITDylib in lookup?");
CompoundResult[JD] = std::move(*Result);
} else
CompoundErr =
joinErrors(std::move(CompoundErr), Result.takeError());
}
CV.notify_one();
},
NoDependenciesToRegister);
}
std::unique_lock<std::mutex> Lock(LookupMutex);
CV.wait(Lock, [&] { return Count == 0 || CompoundErr; });
if (CompoundErr)
return std::move(CompoundErr);
return std::move(CompoundResult);
}
void Task::anchor() {}
void MaterializationTask::printDescription(raw_ostream &OS) {
OS << "Materialization task: " << MU->getName() << " in "
<< MR->getTargetJITDylib().getName() << "\n";
}
void MaterializationTask::run() { MU->materialize(std::move(MR)); }
ExecutionSession::ExecutionSession(std::shared_ptr<SymbolStringPool> SSP)
: SSP(SSP ? std::move(SSP) : std::make_shared<SymbolStringPool>()) {}
Error ExecutionSession::endSession() {
LLVM_DEBUG(dbgs() << "Ending ExecutionSession " << this << "\n");
std::vector<JITDylibSP> JITDylibsToClose = runSessionLocked([&] {
SessionOpen = false;
return std::move(JDs);
});
// TODO: notifiy platform? run static deinits?
Error Err = Error::success();
for (auto &JD : JITDylibsToClose)
Err = joinErrors(std::move(Err), JD->clear());
return Err;
}
void ExecutionSession::registerResourceManager(ResourceManager &RM) {
runSessionLocked([&] { ResourceManagers.push_back(&RM); });
}
void ExecutionSession::deregisterResourceManager(ResourceManager &RM) {
runSessionLocked([&] {
assert(!ResourceManagers.empty() && "No managers registered");
if (ResourceManagers.back() == &RM)
ResourceManagers.pop_back();
else {
auto I = llvm::find(ResourceManagers, &RM);
assert(I != ResourceManagers.end() && "RM not registered");
ResourceManagers.erase(I);
}
});
}
JITDylib *ExecutionSession::getJITDylibByName(StringRef Name) {
return runSessionLocked([&, this]() -> JITDylib * {
for (auto &JD : JDs)
if (JD->getName() == Name)
return JD.get();
return nullptr;
});
}
JITDylib &ExecutionSession::createBareJITDylib(std::string Name) {
assert(!getJITDylibByName(Name) && "JITDylib with that name already exists");
return runSessionLocked([&, this]() -> JITDylib & {
JDs.push_back(new JITDylib(*this, std::move(Name)));
return *JDs.back();
});
}
Expected<JITDylib &> ExecutionSession::createJITDylib(std::string Name) {
auto &JD = createBareJITDylib(Name);
if (P)
if (auto Err = P->setupJITDylib(JD))
return std::move(Err);
return JD;
}
std::vector<JITDylibSP> JITDylib::getDFSLinkOrder(ArrayRef<JITDylibSP> JDs) {
if (JDs.empty())
return {};
auto &ES = JDs.front()->getExecutionSession();
return ES.runSessionLocked([&]() {
DenseSet<JITDylib *> Visited;
std::vector<JITDylibSP> Result;
for (auto &JD : JDs) {
if (Visited.count(JD.get()))
continue;
SmallVector<JITDylibSP, 64> WorkStack;
WorkStack.push_back(JD);
Visited.insert(JD.get());
while (!WorkStack.empty()) {
Result.push_back(std::move(WorkStack.back()));
WorkStack.pop_back();
for (auto &KV : llvm::reverse(Result.back()->LinkOrder)) {
auto &JD = *KV.first;
if (Visited.count(&JD))
continue;
Visited.insert(&JD);
WorkStack.push_back(&JD);
}
}
}
return Result;
});
}
std::vector<JITDylibSP>
JITDylib::getReverseDFSLinkOrder(ArrayRef<JITDylibSP> JDs) {
auto Tmp = getDFSLinkOrder(JDs);
std::reverse(Tmp.begin(), Tmp.end());
return Tmp;
}
std::vector<JITDylibSP> JITDylib::getDFSLinkOrder() {
return getDFSLinkOrder({this});
}
std::vector<JITDylibSP> JITDylib::getReverseDFSLinkOrder() {
return getReverseDFSLinkOrder({this});
}
void ExecutionSession::lookupFlags(
LookupKind K, JITDylibSearchOrder SearchOrder, SymbolLookupSet LookupSet,
unique_function<void(Expected<SymbolFlagsMap>)> OnComplete) {
OL_applyQueryPhase1(std::make_unique<InProgressLookupFlagsState>(
K, std::move(SearchOrder), std::move(LookupSet),
std::move(OnComplete)),
Error::success());
}
Expected<SymbolFlagsMap>
ExecutionSession::lookupFlags(LookupKind K, JITDylibSearchOrder SearchOrder,
SymbolLookupSet LookupSet) {
std::promise<MSVCPExpected<SymbolFlagsMap>> ResultP;
OL_applyQueryPhase1(std::make_unique<InProgressLookupFlagsState>(
K, std::move(SearchOrder), std::move(LookupSet),
[&ResultP](Expected<SymbolFlagsMap> Result) {
ResultP.set_value(std::move(Result));
}),
Error::success());
auto ResultF = ResultP.get_future();
return ResultF.get();
}
void ExecutionSession::lookup(
LookupKind K, const JITDylibSearchOrder &SearchOrder,
SymbolLookupSet Symbols, SymbolState RequiredState,
SymbolsResolvedCallback NotifyComplete,
RegisterDependenciesFunction RegisterDependencies) {
LLVM_DEBUG({
runSessionLocked([&]() {
dbgs() << "Looking up " << Symbols << " in " << SearchOrder
<< " (required state: " << RequiredState << ")\n";
});
});
// lookup can be re-entered recursively if running on a single thread. Run any
// outstanding MUs in case this query depends on them, otherwise this lookup
// will starve waiting for a result from an MU that is stuck in the queue.
dispatchOutstandingMUs();
auto Unresolved = std::move(Symbols);
auto Q = std::make_shared<AsynchronousSymbolQuery>(Unresolved, RequiredState,
std::move(NotifyComplete));
auto IPLS = std::make_unique<InProgressFullLookupState>(
K, SearchOrder, std::move(Unresolved), RequiredState, std::move(Q),
std::move(RegisterDependencies));
OL_applyQueryPhase1(std::move(IPLS), Error::success());
}
Expected<SymbolMap>
ExecutionSession::lookup(const JITDylibSearchOrder &SearchOrder,
const SymbolLookupSet &Symbols, LookupKind K,
SymbolState RequiredState,
RegisterDependenciesFunction RegisterDependencies) {
#if LLVM_ENABLE_THREADS
// In the threaded case we use promises to return the results.
std::promise<SymbolMap> PromisedResult;
Error ResolutionError = Error::success();
auto NotifyComplete = [&](Expected<SymbolMap> R) {
if (R)
PromisedResult.set_value(std::move(*R));
else {
ErrorAsOutParameter _(&ResolutionError);
ResolutionError = R.takeError();
PromisedResult.set_value(SymbolMap());
}
};
#else
SymbolMap Result;
Error ResolutionError = Error::success();
auto NotifyComplete = [&](Expected<SymbolMap> R) {
ErrorAsOutParameter _(&ResolutionError);
if (R)
Result = std::move(*R);
else
ResolutionError = R.takeError();
};
#endif
// Perform the asynchronous lookup.
lookup(K, SearchOrder, Symbols, RequiredState, NotifyComplete,
RegisterDependencies);
#if LLVM_ENABLE_THREADS
auto ResultFuture = PromisedResult.get_future();
auto Result = ResultFuture.get();
if (ResolutionError)
return std::move(ResolutionError);
return std::move(Result);
#else
if (ResolutionError)
return std::move(ResolutionError);
return Result;
#endif
}
Expected<JITEvaluatedSymbol>
ExecutionSession::lookup(const JITDylibSearchOrder &SearchOrder,
SymbolStringPtr Name, SymbolState RequiredState) {
SymbolLookupSet Names({Name});
if (auto ResultMap = lookup(SearchOrder, std::move(Names), LookupKind::Static,
RequiredState, NoDependenciesToRegister)) {
assert(ResultMap->size() == 1 && "Unexpected number of results");
assert(ResultMap->count(Name) && "Missing result for symbol");
return std::move(ResultMap->begin()->second);
} else
return ResultMap.takeError();
}
Expected<JITEvaluatedSymbol>
ExecutionSession::lookup(ArrayRef<JITDylib *> SearchOrder, SymbolStringPtr Name,
SymbolState RequiredState) {
return lookup(makeJITDylibSearchOrder(SearchOrder), Name, RequiredState);
}
Expected<JITEvaluatedSymbol>
ExecutionSession::lookup(ArrayRef<JITDylib *> SearchOrder, StringRef Name,
SymbolState RequiredState) {
return lookup(SearchOrder, intern(Name), RequiredState);
}
void ExecutionSession::dump(raw_ostream &OS) {
runSessionLocked([this, &OS]() {
for (auto &JD : JDs)
JD->dump(OS);
});
}
void ExecutionSession::dispatchOutstandingMUs() {
LLVM_DEBUG(dbgs() << "Dispatching MaterializationUnits...\n");
while (1) {
Optional<std::pair<std::unique_ptr<MaterializationUnit>,
std::unique_ptr<MaterializationResponsibility>>>
JMU;
{
std::lock_guard<std::recursive_mutex> Lock(OutstandingMUsMutex);
if (!OutstandingMUs.empty()) {
JMU.emplace(std::move(OutstandingMUs.back()));
OutstandingMUs.pop_back();
}
}
if (!JMU)
break;
assert(JMU->first && "No MU?");
LLVM_DEBUG(dbgs() << " Dispatching \"" << JMU->first->getName() << "\"\n");
dispatchTask(std::make_unique<MaterializationTask>(std::move(JMU->first),
std::move(JMU->second)));
}
LLVM_DEBUG(dbgs() << "Done dispatching MaterializationUnits.\n");
}
Error ExecutionSession::removeResourceTracker(ResourceTracker &RT) {
LLVM_DEBUG({
dbgs() << "In " << RT.getJITDylib().getName() << " removing tracker "
<< formatv("{0:x}", RT.getKeyUnsafe()) << "\n";
});
std::vector<ResourceManager *> CurrentResourceManagers;
JITDylib::AsynchronousSymbolQuerySet QueriesToFail;
std::shared_ptr<SymbolDependenceMap> FailedSymbols;
runSessionLocked([&] {
CurrentResourceManagers = ResourceManagers;
RT.makeDefunct();
std::tie(QueriesToFail, FailedSymbols) = RT.getJITDylib().removeTracker(RT);
});
Error Err = Error::success();
for (auto *L : reverse(CurrentResourceManagers))
Err =
joinErrors(std::move(Err), L->handleRemoveResources(RT.getKeyUnsafe()));
for (auto &Q : QueriesToFail)
Q->handleFailed(make_error<FailedToMaterialize>(FailedSymbols));
return Err;
}
void ExecutionSession::transferResourceTracker(ResourceTracker &DstRT,
ResourceTracker &SrcRT) {
LLVM_DEBUG({
dbgs() << "In " << SrcRT.getJITDylib().getName()
<< " transfering resources from tracker "
<< formatv("{0:x}", SrcRT.getKeyUnsafe()) << " to tracker "
<< formatv("{0:x}", DstRT.getKeyUnsafe()) << "\n";
});
// No-op transfers are allowed and do not invalidate the source.
if (&DstRT == &SrcRT)
return;
assert(&DstRT.getJITDylib() == &SrcRT.getJITDylib() &&
"Can't transfer resources between JITDylibs");
runSessionLocked([&]() {
SrcRT.makeDefunct();
auto &JD = DstRT.getJITDylib();
JD.transferTracker(DstRT, SrcRT);
for (auto *L : reverse(ResourceManagers))
L->handleTransferResources(DstRT.getKeyUnsafe(), SrcRT.getKeyUnsafe());
});
}
void ExecutionSession::destroyResourceTracker(ResourceTracker &RT) {
runSessionLocked([&]() {
LLVM_DEBUG({
dbgs() << "In " << RT.getJITDylib().getName() << " destroying tracker "
<< formatv("{0:x}", RT.getKeyUnsafe()) << "\n";
});
if (!RT.isDefunct())
transferResourceTracker(*RT.getJITDylib().getDefaultResourceTracker(),
RT);
});
}
Error ExecutionSession::IL_updateCandidatesFor(
JITDylib &JD, JITDylibLookupFlags JDLookupFlags,
SymbolLookupSet &Candidates, SymbolLookupSet *NonCandidates) {
return Candidates.forEachWithRemoval(
[&](const SymbolStringPtr &Name,
SymbolLookupFlags SymLookupFlags) -> Expected<bool> {
/// Search for the symbol. If not found then continue without
/// removal.
auto SymI = JD.Symbols.find(Name);
if (SymI == JD.Symbols.end())
return false;
// If this is a non-exported symbol and we're matching exported
// symbols only then remove this symbol from the candidates list.
//
// If we're tracking non-candidates then add this to the non-candidate
// list.
if (!SymI->second.getFlags().isExported() &&
JDLookupFlags == JITDylibLookupFlags::MatchExportedSymbolsOnly) {
if (NonCandidates)
NonCandidates->add(Name, SymLookupFlags);
return true;
}
// If we match against a materialization-side-effects only symbol
// then make sure it is weakly-referenced. Otherwise bail out with
// an error.
// FIXME: Use a "materialization-side-effects-only symbols must be
// weakly referenced" specific error here to reduce confusion.
if (SymI->second.getFlags().hasMaterializationSideEffectsOnly() &&
SymLookupFlags != SymbolLookupFlags::WeaklyReferencedSymbol)
return make_error<SymbolsNotFound>(SymbolNameVector({Name}));
// If we matched against this symbol but it is in the error state
// then bail out and treat it as a failure to materialize.
if (SymI->second.getFlags().hasError()) {
auto FailedSymbolsMap = std::make_shared<SymbolDependenceMap>();
(*FailedSymbolsMap)[&JD] = {Name};
return make_error<FailedToMaterialize>(std::move(FailedSymbolsMap));
}
// Otherwise this is a match. Remove it from the candidate set.
return true;
});
}
void ExecutionSession::OL_applyQueryPhase1(
std::unique_ptr<InProgressLookupState> IPLS, Error Err) {
LLVM_DEBUG({
dbgs() << "Entering OL_applyQueryPhase1:\n"
<< " Lookup kind: " << IPLS->K << "\n"
<< " Search order: " << IPLS->SearchOrder
<< ", Current index = " << IPLS->CurSearchOrderIndex
<< (IPLS->NewJITDylib ? " (entering new JITDylib)" : "") << "\n"
<< " Lookup set: " << IPLS->LookupSet << "\n"
<< " Definition generator candidates: "
<< IPLS->DefGeneratorCandidates << "\n"
<< " Definition generator non-candidates: "
<< IPLS->DefGeneratorNonCandidates << "\n";
});
// FIXME: We should attach the query as we go: This provides a result in a
// single pass in the common case where all symbols have already reached the
// required state. The query could be detached again in the 'fail' method on
// IPLS. Phase 2 would be reduced to collecting and dispatching the MUs.
while (IPLS->CurSearchOrderIndex != IPLS->SearchOrder.size()) {
// If we've been handed an error or received one back from a generator then
// fail the query. We don't need to unlink: At this stage the query hasn't
// actually been lodged.
if (Err)
return IPLS->fail(std::move(Err));
// Get the next JITDylib and lookup flags.
auto &KV = IPLS->SearchOrder[IPLS->CurSearchOrderIndex];
auto &JD = *KV.first;
auto JDLookupFlags = KV.second;
LLVM_DEBUG({
dbgs() << "Visiting \"" << JD.getName() << "\" (" << JDLookupFlags
<< ") with lookup set " << IPLS->LookupSet << ":\n";
});
// If we've just reached a new JITDylib then perform some setup.
if (IPLS->NewJITDylib) {
// Acquire the generator lock for this JITDylib.
IPLS->GeneratorLock = std::unique_lock<std::mutex>(JD.GeneratorsMutex);
// Add any non-candidates from the last JITDylib (if any) back on to the
// list of definition candidates for this JITDylib, reset definition
// non-candiates to the empty set.
SymbolLookupSet Tmp;
std::swap(IPLS->DefGeneratorNonCandidates, Tmp);
IPLS->DefGeneratorCandidates.append(std::move(Tmp));
LLVM_DEBUG({
dbgs() << " First time visiting " << JD.getName()
<< ", resetting candidate sets and building generator stack\n";
});
// Build the definition generator stack for this JITDylib.
for (auto &DG : reverse(JD.DefGenerators))
IPLS->CurDefGeneratorStack.push_back(DG);
// Flag that we've done our initialization.
IPLS->NewJITDylib = false;
}
// Remove any generation candidates that are already defined (and match) in
// this JITDylib.
runSessionLocked([&] {
// Update the list of candidates (and non-candidates) for definition
// generation.
LLVM_DEBUG(dbgs() << " Updating candidate set...\n");
Err = IL_updateCandidatesFor(
JD, JDLookupFlags, IPLS->DefGeneratorCandidates,
JD.DefGenerators.empty() ? nullptr
: &IPLS->DefGeneratorNonCandidates);
LLVM_DEBUG({
dbgs() << " Remaining candidates = " << IPLS->DefGeneratorCandidates
<< "\n";
});
});
// If we encountered an error while filtering generation candidates then
// bail out.
if (Err)
return IPLS->fail(std::move(Err));
/// Apply any definition generators on the stack.
LLVM_DEBUG({
if (IPLS->CurDefGeneratorStack.empty())
LLVM_DEBUG(dbgs() << " No generators to run for this JITDylib.\n");
else if (IPLS->DefGeneratorCandidates.empty())
LLVM_DEBUG(dbgs() << " No candidates to generate.\n");
else
dbgs() << " Running " << IPLS->CurDefGeneratorStack.size()
<< " remaining generators for "
<< IPLS->DefGeneratorCandidates.size() << " candidates\n";
});
while (!IPLS->CurDefGeneratorStack.empty() &&
!IPLS->DefGeneratorCandidates.empty()) {
auto DG = IPLS->CurDefGeneratorStack.back().lock();
IPLS->CurDefGeneratorStack.pop_back();
if (!DG)
return IPLS->fail(make_error<StringError>(
"DefinitionGenerator removed while lookup in progress",
inconvertibleErrorCode()));
auto K = IPLS->K;
auto &LookupSet = IPLS->DefGeneratorCandidates;
// Run the generator. If the generator takes ownership of QA then this
// will break the loop.
{
LLVM_DEBUG(dbgs() << " Attempting to generate " << LookupSet << "\n");
LookupState LS(std::move(IPLS));
Err = DG->tryToGenerate(LS, K, JD, JDLookupFlags, LookupSet);
IPLS = std::move(LS.IPLS);
}
// If there was an error then fail the query.
if (Err) {
LLVM_DEBUG({
dbgs() << " Error attempting to generate " << LookupSet << "\n";
});
assert(IPLS && "LS cannot be retained if error is returned");
return IPLS->fail(std::move(Err));
}
// Otherwise if QA was captured then break the loop.
if (!IPLS) {
LLVM_DEBUG(
{ dbgs() << " LookupState captured. Exiting phase1 for now.\n"; });
return;
}
// Otherwise if we're continuing around the loop then update candidates
// for the next round.
runSessionLocked([&] {
LLVM_DEBUG(dbgs() << " Updating candidate set post-generation\n");
Err = IL_updateCandidatesFor(
JD, JDLookupFlags, IPLS->DefGeneratorCandidates,
JD.DefGenerators.empty() ? nullptr
: &IPLS->DefGeneratorNonCandidates);
});
// If updating candidates failed then fail the query.
if (Err) {
LLVM_DEBUG(dbgs() << " Error encountered while updating candidates\n");
return IPLS->fail(std::move(Err));
}
}
// If we get here then we've moved on to the next JITDylib.
LLVM_DEBUG(dbgs() << "Phase 1 moving to next JITDylib.\n");
++IPLS->CurSearchOrderIndex;
IPLS->NewJITDylib = true;
}
// Remove any weakly referenced candidates that could not be found/generated.
IPLS->DefGeneratorCandidates.remove_if(
[](const SymbolStringPtr &Name, SymbolLookupFlags SymLookupFlags) {
return SymLookupFlags == SymbolLookupFlags::WeaklyReferencedSymbol;
});
// If we get here then we've finished searching all JITDylibs.
// If we matched all symbols then move to phase 2, otherwise fail the query
// with a SymbolsNotFound error.
if (IPLS->DefGeneratorCandidates.empty()) {
LLVM_DEBUG(dbgs() << "Phase 1 succeeded.\n");
IPLS->complete(std::move(IPLS));
} else {
LLVM_DEBUG(dbgs() << "Phase 1 failed with unresolved symbols.\n");
IPLS->fail(make_error<SymbolsNotFound>(
IPLS->DefGeneratorCandidates.getSymbolNames()));
}
}
void ExecutionSession::OL_completeLookup(
std::unique_ptr<InProgressLookupState> IPLS,
std::shared_ptr<AsynchronousSymbolQuery> Q,
RegisterDependenciesFunction RegisterDependencies) {
LLVM_DEBUG({
dbgs() << "Entering OL_completeLookup:\n"
<< " Lookup kind: " << IPLS->K << "\n"
<< " Search order: " << IPLS->SearchOrder
<< ", Current index = " << IPLS->CurSearchOrderIndex
<< (IPLS->NewJITDylib ? " (entering new JITDylib)" : "") << "\n"
<< " Lookup set: " << IPLS->LookupSet << "\n"
<< " Definition generator candidates: "
<< IPLS->DefGeneratorCandidates << "\n"
<< " Definition generator non-candidates: "
<< IPLS->DefGeneratorNonCandidates << "\n";
});
bool QueryComplete = false;
DenseMap<JITDylib *, JITDylib::UnmaterializedInfosList> CollectedUMIs;
auto LodgingErr = runSessionLocked([&]() -> Error {
for (auto &KV : IPLS->SearchOrder) {
auto &JD = *KV.first;
auto JDLookupFlags = KV.second;
LLVM_DEBUG({
dbgs() << "Visiting \"" << JD.getName() << "\" (" << JDLookupFlags
<< ") with lookup set " << IPLS->LookupSet << ":\n";
});
auto Err = IPLS->LookupSet.forEachWithRemoval(
[&](const SymbolStringPtr &Name,
SymbolLookupFlags SymLookupFlags) -> Expected<bool> {
LLVM_DEBUG({
dbgs() << " Attempting to match \"" << Name << "\" ("
<< SymLookupFlags << ")... ";
});
/// Search for the symbol. If not found then continue without
/// removal.
auto SymI = JD.Symbols.find(Name);
if (SymI == JD.Symbols.end()) {
LLVM_DEBUG(dbgs() << "skipping: not present\n");
return false;
}
// If this is a non-exported symbol and we're matching exported
// symbols only then skip this symbol without removal.
if (!SymI->second.getFlags().isExported() &&
JDLookupFlags ==
JITDylibLookupFlags::MatchExportedSymbolsOnly) {
LLVM_DEBUG(dbgs() << "skipping: not exported\n");
return false;
}
// If we match against a materialization-side-effects only symbol
// then make sure it is weakly-referenced. Otherwise bail out with
// an error.
// FIXME: Use a "materialization-side-effects-only symbols must be
// weakly referenced" specific error here to reduce confusion.
if (SymI->second.getFlags().hasMaterializationSideEffectsOnly() &&
SymLookupFlags != SymbolLookupFlags::WeaklyReferencedSymbol) {
LLVM_DEBUG({
dbgs() << "error: "
"required, but symbol is has-side-effects-only\n";
});
return make_error<SymbolsNotFound>(SymbolNameVector({Name}));
}
// If we matched against this symbol but it is in the error state
// then bail out and treat it as a failure to materialize.
if (SymI->second.getFlags().hasError()) {
LLVM_DEBUG(dbgs() << "error: symbol is in error state\n");
auto FailedSymbolsMap = std::make_shared<SymbolDependenceMap>();
(*FailedSymbolsMap)[&JD] = {Name};
return make_error<FailedToMaterialize>(
std::move(FailedSymbolsMap));
}
// Otherwise this is a match.
// If this symbol is already in the requried state then notify the
// query, remove the symbol and continue.
if (SymI->second.getState() >= Q->getRequiredState()) {
LLVM_DEBUG(dbgs()
<< "matched, symbol already in required state\n");
Q->notifySymbolMetRequiredState(Name, SymI->second.getSymbol());
return true;
}
// Otherwise this symbol does not yet meet the required state. Check
// whether it has a materializer attached, and if so prepare to run
// it.
if (SymI->second.hasMaterializerAttached()) {
assert(SymI->second.getAddress() == 0 &&
"Symbol not resolved but already has address?");
auto UMII = JD.UnmaterializedInfos.find(Name);
assert(UMII != JD.UnmaterializedInfos.end() &&
"Lazy symbol should have UnmaterializedInfo");
auto UMI = UMII->second;
assert(UMI->MU && "Materializer should not be null");
assert(UMI->RT && "Tracker should not be null");
LLVM_DEBUG({
dbgs() << "matched, preparing to dispatch MU@" << UMI->MU.get()
<< " (" << UMI->MU->getName() << ")\n";
});
// Move all symbols associated with this MaterializationUnit into
// materializing state.
for (auto &KV : UMI->MU->getSymbols()) {
auto SymK = JD.Symbols.find(KV.first);
assert(SymK != JD.Symbols.end() &&
"No entry for symbol covered by MaterializationUnit");
SymK->second.setMaterializerAttached(false);
SymK->second.setState(SymbolState::Materializing);
JD.UnmaterializedInfos.erase(KV.first);
}
// Add MU to the list of MaterializationUnits to be materialized.
CollectedUMIs[&JD].push_back(std::move(UMI));
} else
LLVM_DEBUG(dbgs() << "matched, registering query");
// Add the query to the PendingQueries list and continue, deleting
// the element from the lookup set.
assert(SymI->second.getState() != SymbolState::NeverSearched &&
SymI->second.getState() != SymbolState::Ready &&
"By this line the symbol should be materializing");
auto &MI = JD.MaterializingInfos[Name];
MI.addQuery(Q);
Q->addQueryDependence(JD, Name);
return true;
});
// Handle failure.
if (Err) {
LLVM_DEBUG({
dbgs() << "Lookup failed. Detaching query and replacing MUs.\n";
});
// Detach the query.
Q->detach();
// Replace the MUs.
for (auto &KV : CollectedUMIs) {
auto &JD = *KV.first;
for (auto &UMI : KV.second)
for (auto &KV2 : UMI->MU->getSymbols()) {
assert(!JD.UnmaterializedInfos.count(KV2.first) &&
"Unexpected materializer in map");
auto SymI = JD.Symbols.find(KV2.first);
assert(SymI != JD.Symbols.end() && "Missing symbol entry");
assert(SymI->second.getState() == SymbolState::Materializing &&
"Can not replace symbol that is not materializing");
assert(!SymI->second.hasMaterializerAttached() &&
"MaterializerAttached flag should not be set");
SymI->second.setMaterializerAttached(true);
JD.UnmaterializedInfos[KV2.first] = UMI;
}
}
return Err;
}
}
LLVM_DEBUG(dbgs() << "Stripping unmatched weakly-refererced symbols\n");
IPLS->LookupSet.forEachWithRemoval(
[&](const SymbolStringPtr &Name, SymbolLookupFlags SymLookupFlags) {
if (SymLookupFlags == SymbolLookupFlags::WeaklyReferencedSymbol) {
Q->dropSymbol(Name);
return true;
} else
return false;
});
if (!IPLS->LookupSet.empty()) {
LLVM_DEBUG(dbgs() << "Failing due to unresolved symbols\n");
return make_error<SymbolsNotFound>(IPLS->LookupSet.getSymbolNames());
}
// Record whether the query completed.
QueryComplete = Q->isComplete();
LLVM_DEBUG({
dbgs() << "Query successfully "
<< (QueryComplete ? "completed" : "lodged") << "\n";
});
// Move the collected MUs to the OutstandingMUs list.
if (!CollectedUMIs.empty()) {
std::lock_guard<std::recursive_mutex> Lock(OutstandingMUsMutex);
LLVM_DEBUG(dbgs() << "Adding MUs to dispatch:\n");
for (auto &KV : CollectedUMIs) {
auto &JD = *KV.first;
LLVM_DEBUG({
dbgs() << " For " << JD.getName() << ": Adding " << KV.second.size()
<< " MUs.\n";
});
for (auto &UMI : KV.second) {
std::unique_ptr<MaterializationResponsibility> MR(
new MaterializationResponsibility(
&JD, std::move(UMI->MU->SymbolFlags),
std::move(UMI->MU->InitSymbol)));
JD.MRTrackers[MR.get()] = UMI->RT;
OutstandingMUs.push_back(
std::make_pair(std::move(UMI->MU), std::move(MR)));
}
}
} else
LLVM_DEBUG(dbgs() << "No MUs to dispatch.\n");
if (RegisterDependencies && !Q->QueryRegistrations.empty()) {
LLVM_DEBUG(dbgs() << "Registering dependencies\n");
RegisterDependencies(Q->QueryRegistrations);
} else
LLVM_DEBUG(dbgs() << "No dependencies to register\n");
return Error::success();
});
if (LodgingErr) {
LLVM_DEBUG(dbgs() << "Failing query\n");
Q->detach();
Q->handleFailed(std::move(LodgingErr));
return;
}
if (QueryComplete) {
LLVM_DEBUG(dbgs() << "Completing query\n");
Q->handleComplete(*this);
}
dispatchOutstandingMUs();
}
void ExecutionSession::OL_completeLookupFlags(
std::unique_ptr<InProgressLookupState> IPLS,
unique_function<void(Expected<SymbolFlagsMap>)> OnComplete) {
auto Result = runSessionLocked([&]() -> Expected<SymbolFlagsMap> {
LLVM_DEBUG({
dbgs() << "Entering OL_completeLookupFlags:\n"
<< " Lookup kind: " << IPLS->K << "\n"
<< " Search order: " << IPLS->SearchOrder
<< ", Current index = " << IPLS->CurSearchOrderIndex
<< (IPLS->NewJITDylib ? " (entering new JITDylib)" : "") << "\n"
<< " Lookup set: " << IPLS->LookupSet << "\n"
<< " Definition generator candidates: "
<< IPLS->DefGeneratorCandidates << "\n"
<< " Definition generator non-candidates: "
<< IPLS->DefGeneratorNonCandidates << "\n";
});
SymbolFlagsMap Result;
// Attempt to find flags for each symbol.
for (auto &KV : IPLS->SearchOrder) {
auto &JD = *KV.first;
auto JDLookupFlags = KV.second;
LLVM_DEBUG({
dbgs() << "Visiting \"" << JD.getName() << "\" (" << JDLookupFlags
<< ") with lookup set " << IPLS->LookupSet << ":\n";
});
IPLS->LookupSet.forEachWithRemoval([&](const SymbolStringPtr &Name,
SymbolLookupFlags SymLookupFlags) {
LLVM_DEBUG({
dbgs() << " Attempting to match \"" << Name << "\" ("
<< SymLookupFlags << ")... ";
});
// Search for the symbol. If not found then continue without removing
// from the lookup set.
auto SymI = JD.Symbols.find(Name);
if (SymI == JD.Symbols.end()) {
LLVM_DEBUG(dbgs() << "skipping: not present\n");
return false;
}
// If this is a non-exported symbol then it doesn't match. Skip it.
if (!SymI->second.getFlags().isExported() &&
JDLookupFlags == JITDylibLookupFlags::MatchExportedSymbolsOnly) {
LLVM_DEBUG(dbgs() << "skipping: not exported\n");
return false;
}
LLVM_DEBUG({
dbgs() << "matched, \"" << Name << "\" -> " << SymI->second.getFlags()
<< "\n";
});
Result[Name] = SymI->second.getFlags();
return true;
});
}
// Remove any weakly referenced symbols that haven't been resolved.
IPLS->LookupSet.remove_if(
[](const SymbolStringPtr &Name, SymbolLookupFlags SymLookupFlags) {
return SymLookupFlags == SymbolLookupFlags::WeaklyReferencedSymbol;
});
if (!IPLS->LookupSet.empty()) {
LLVM_DEBUG(dbgs() << "Failing due to unresolved symbols\n");
return make_error<SymbolsNotFound>(IPLS->LookupSet.getSymbolNames());
}
LLVM_DEBUG(dbgs() << "Succeded, result = " << Result << "\n");
return Result;
});
// Run the callback on the result.
LLVM_DEBUG(dbgs() << "Sending result to handler.\n");
OnComplete(std::move(Result));
}
void ExecutionSession::OL_destroyMaterializationResponsibility(
MaterializationResponsibility &MR) {
assert(MR.SymbolFlags.empty() &&
"All symbols should have been explicitly materialized or failed");
MR.JD->unlinkMaterializationResponsibility(MR);
}
SymbolNameSet ExecutionSession::OL_getRequestedSymbols(
const MaterializationResponsibility &MR) {
return MR.JD->getRequestedSymbols(MR.SymbolFlags);
}
Error ExecutionSession::OL_notifyResolved(MaterializationResponsibility &MR,
const SymbolMap &Symbols) {
LLVM_DEBUG({
dbgs() << "In " << MR.JD->getName() << " resolving " << Symbols << "\n";
});
#ifndef NDEBUG
for (auto &KV : Symbols) {
auto WeakFlags = JITSymbolFlags::Weak | JITSymbolFlags::Common;
auto I = MR.SymbolFlags.find(KV.first);
assert(I != MR.SymbolFlags.end() &&
"Resolving symbol outside this responsibility set");
assert(!I->second.hasMaterializationSideEffectsOnly() &&
"Can't resolve materialization-side-effects-only symbol");
assert((KV.second.getFlags() & ~WeakFlags) == (I->second & ~WeakFlags) &&
"Resolving symbol with incorrect flags");
}
#endif
return MR.JD->resolve(MR, Symbols);
}
Error ExecutionSession::OL_notifyEmitted(MaterializationResponsibility &MR) {
LLVM_DEBUG({
dbgs() << "In " << MR.JD->getName() << " emitting " << MR.SymbolFlags << "\n";
});
if (auto Err = MR.JD->emit(MR, MR.SymbolFlags))
return Err;
MR.SymbolFlags.clear();
return Error::success();
}
Error ExecutionSession::OL_defineMaterializing(
MaterializationResponsibility &MR, SymbolFlagsMap NewSymbolFlags) {
LLVM_DEBUG({
dbgs() << "In " << MR.JD->getName() << " defining materializing symbols "
<< NewSymbolFlags << "\n";
});
if (auto AcceptedDefs = MR.JD->defineMaterializing(std::move(NewSymbolFlags))) {
// Add all newly accepted symbols to this responsibility object.
for (auto &KV : *AcceptedDefs)
MR.SymbolFlags.insert(KV);
return Error::success();
} else
return AcceptedDefs.takeError();
}
void ExecutionSession::OL_notifyFailed(MaterializationResponsibility &MR) {
LLVM_DEBUG({
dbgs() << "In " << MR.JD->getName() << " failing materialization for "
<< MR.SymbolFlags << "\n";
});
JITDylib::FailedSymbolsWorklist Worklist;
for (auto &KV : MR.SymbolFlags)
Worklist.push_back(std::make_pair(MR.JD.get(), KV.first));
MR.SymbolFlags.clear();
if (Worklist.empty())
return;
JITDylib::AsynchronousSymbolQuerySet FailedQueries;
std::shared_ptr<SymbolDependenceMap> FailedSymbols;
runSessionLocked([&]() {
auto RTI = MR.JD->MRTrackers.find(&MR);
assert(RTI != MR.JD->MRTrackers.end() && "No tracker for this");
if (RTI->second->isDefunct())
return;
std::tie(FailedQueries, FailedSymbols) =
JITDylib::failSymbols(std::move(Worklist));
});
for (auto &Q : FailedQueries)
Q->handleFailed(make_error<FailedToMaterialize>(FailedSymbols));
}
Error ExecutionSession::OL_replace(MaterializationResponsibility &MR,
std::unique_ptr<MaterializationUnit> MU) {
for (auto &KV : MU->getSymbols()) {
assert(MR.SymbolFlags.count(KV.first) &&
"Replacing definition outside this responsibility set");
MR.SymbolFlags.erase(KV.first);
}
if (MU->getInitializerSymbol() == MR.InitSymbol)
MR.InitSymbol = nullptr;
LLVM_DEBUG(MR.JD->getExecutionSession().runSessionLocked([&]() {
dbgs() << "In " << MR.JD->getName() << " replacing symbols with " << *MU
<< "\n";
}););
return MR.JD->replace(MR, std::move(MU));
}
Expected<std::unique_ptr<MaterializationResponsibility>>
ExecutionSession::OL_delegate(MaterializationResponsibility &MR,
const SymbolNameSet &Symbols) {
SymbolStringPtr DelegatedInitSymbol;
SymbolFlagsMap DelegatedFlags;
for (auto &Name : Symbols) {
auto I = MR.SymbolFlags.find(Name);
assert(I != MR.SymbolFlags.end() &&
"Symbol is not tracked by this MaterializationResponsibility "
"instance");
DelegatedFlags[Name] = std::move(I->second);
if (Name == MR.InitSymbol)
std::swap(MR.InitSymbol, DelegatedInitSymbol);
MR.SymbolFlags.erase(I);
}
return MR.JD->delegate(MR, std::move(DelegatedFlags),
std::move(DelegatedInitSymbol));
}
void ExecutionSession::OL_addDependencies(
MaterializationResponsibility &MR, const SymbolStringPtr &Name,
const SymbolDependenceMap &Dependencies) {
LLVM_DEBUG({
dbgs() << "Adding dependencies for " << Name << ": " << Dependencies
<< "\n";
});
assert(MR.SymbolFlags.count(Name) &&
"Symbol not covered by this MaterializationResponsibility instance");
MR.JD->addDependencies(Name, Dependencies);
}
void ExecutionSession::OL_addDependenciesForAll(
MaterializationResponsibility &MR,
const SymbolDependenceMap &Dependencies) {
LLVM_DEBUG({
dbgs() << "Adding dependencies for all symbols in " << MR.SymbolFlags << ": "
<< Dependencies << "\n";
});
for (auto &KV : MR.SymbolFlags)
MR.JD->addDependencies(KV.first, Dependencies);
}
#ifndef NDEBUG
void ExecutionSession::dumpDispatchInfo(Task &T) {
runSessionLocked([&]() {
dbgs() << "Dispatching: ";
T.printDescription(dbgs());
});
}
#endif // NDEBUG
} // End namespace orc.
} // End namespace llvm.