forked from OSchip/llvm-project
961 lines
36 KiB
C++
961 lines
36 KiB
C++
//===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements semantic analysis for CUDA constructs.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/Sema.h"
|
|
#include "clang/Sema/SemaDiagnostic.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Template.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
using namespace clang;
|
|
|
|
void Sema::PushForceCUDAHostDevice() {
|
|
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
|
|
ForceCUDAHostDeviceDepth++;
|
|
}
|
|
|
|
bool Sema::PopForceCUDAHostDevice() {
|
|
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
|
|
if (ForceCUDAHostDeviceDepth == 0)
|
|
return false;
|
|
ForceCUDAHostDeviceDepth--;
|
|
return true;
|
|
}
|
|
|
|
ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
|
|
MultiExprArg ExecConfig,
|
|
SourceLocation GGGLoc) {
|
|
FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
|
|
if (!ConfigDecl)
|
|
return ExprError(
|
|
Diag(LLLLoc, diag::err_undeclared_var_use)
|
|
<< (getLangOpts().HIP ? "hipConfigureCall" : "cudaConfigureCall"));
|
|
QualType ConfigQTy = ConfigDecl->getType();
|
|
|
|
DeclRefExpr *ConfigDR = new (Context)
|
|
DeclRefExpr(ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
|
|
MarkFunctionReferenced(LLLLoc, ConfigDecl);
|
|
|
|
return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
|
|
/*IsExecConfig=*/true);
|
|
}
|
|
|
|
Sema::CUDAFunctionTarget
|
|
Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) {
|
|
bool HasHostAttr = false;
|
|
bool HasDeviceAttr = false;
|
|
bool HasGlobalAttr = false;
|
|
bool HasInvalidTargetAttr = false;
|
|
for (const ParsedAttr &AL : Attrs) {
|
|
switch (AL.getKind()) {
|
|
case ParsedAttr::AT_CUDAGlobal:
|
|
HasGlobalAttr = true;
|
|
break;
|
|
case ParsedAttr::AT_CUDAHost:
|
|
HasHostAttr = true;
|
|
break;
|
|
case ParsedAttr::AT_CUDADevice:
|
|
HasDeviceAttr = true;
|
|
break;
|
|
case ParsedAttr::AT_CUDAInvalidTarget:
|
|
HasInvalidTargetAttr = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (HasInvalidTargetAttr)
|
|
return CFT_InvalidTarget;
|
|
|
|
if (HasGlobalAttr)
|
|
return CFT_Global;
|
|
|
|
if (HasHostAttr && HasDeviceAttr)
|
|
return CFT_HostDevice;
|
|
|
|
if (HasDeviceAttr)
|
|
return CFT_Device;
|
|
|
|
return CFT_Host;
|
|
}
|
|
|
|
template <typename A>
|
|
static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) {
|
|
return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
|
|
return isa<A>(Attribute) &&
|
|
!(IgnoreImplicitAttr && Attribute->isImplicit());
|
|
});
|
|
}
|
|
|
|
/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
|
|
Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D,
|
|
bool IgnoreImplicitHDAttr) {
|
|
// Code that lives outside a function is run on the host.
|
|
if (D == nullptr)
|
|
return CFT_Host;
|
|
|
|
if (D->hasAttr<CUDAInvalidTargetAttr>())
|
|
return CFT_InvalidTarget;
|
|
|
|
if (D->hasAttr<CUDAGlobalAttr>())
|
|
return CFT_Global;
|
|
|
|
if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) {
|
|
if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr))
|
|
return CFT_HostDevice;
|
|
return CFT_Device;
|
|
} else if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) {
|
|
return CFT_Host;
|
|
} else if (D->isImplicit() && !IgnoreImplicitHDAttr) {
|
|
// Some implicit declarations (like intrinsic functions) are not marked.
|
|
// Set the most lenient target on them for maximal flexibility.
|
|
return CFT_HostDevice;
|
|
}
|
|
|
|
return CFT_Host;
|
|
}
|
|
|
|
// * CUDA Call preference table
|
|
//
|
|
// F - from,
|
|
// T - to
|
|
// Ph - preference in host mode
|
|
// Pd - preference in device mode
|
|
// H - handled in (x)
|
|
// Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
|
|
//
|
|
// | F | T | Ph | Pd | H |
|
|
// |----+----+-----+-----+-----+
|
|
// | d | d | N | N | (c) |
|
|
// | d | g | -- | -- | (a) |
|
|
// | d | h | -- | -- | (e) |
|
|
// | d | hd | HD | HD | (b) |
|
|
// | g | d | N | N | (c) |
|
|
// | g | g | -- | -- | (a) |
|
|
// | g | h | -- | -- | (e) |
|
|
// | g | hd | HD | HD | (b) |
|
|
// | h | d | -- | -- | (e) |
|
|
// | h | g | N | N | (c) |
|
|
// | h | h | N | N | (c) |
|
|
// | h | hd | HD | HD | (b) |
|
|
// | hd | d | WS | SS | (d) |
|
|
// | hd | g | SS | -- |(d/a)|
|
|
// | hd | h | SS | WS | (d) |
|
|
// | hd | hd | HD | HD | (b) |
|
|
|
|
Sema::CUDAFunctionPreference
|
|
Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
|
|
const FunctionDecl *Callee) {
|
|
assert(Callee && "Callee must be valid.");
|
|
CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
|
|
CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
|
|
|
|
// If one of the targets is invalid, the check always fails, no matter what
|
|
// the other target is.
|
|
if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
|
|
return CFP_Never;
|
|
|
|
// (a) Can't call global from some contexts until we support CUDA's
|
|
// dynamic parallelism.
|
|
if (CalleeTarget == CFT_Global &&
|
|
(CallerTarget == CFT_Global || CallerTarget == CFT_Device))
|
|
return CFP_Never;
|
|
|
|
// (b) Calling HostDevice is OK for everyone.
|
|
if (CalleeTarget == CFT_HostDevice)
|
|
return CFP_HostDevice;
|
|
|
|
// (c) Best case scenarios
|
|
if (CalleeTarget == CallerTarget ||
|
|
(CallerTarget == CFT_Host && CalleeTarget == CFT_Global) ||
|
|
(CallerTarget == CFT_Global && CalleeTarget == CFT_Device))
|
|
return CFP_Native;
|
|
|
|
// (d) HostDevice behavior depends on compilation mode.
|
|
if (CallerTarget == CFT_HostDevice) {
|
|
// It's OK to call a compilation-mode matching function from an HD one.
|
|
if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) ||
|
|
(!getLangOpts().CUDAIsDevice &&
|
|
(CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)))
|
|
return CFP_SameSide;
|
|
|
|
// Calls from HD to non-mode-matching functions (i.e., to host functions
|
|
// when compiling in device mode or to device functions when compiling in
|
|
// host mode) are allowed at the sema level, but eventually rejected if
|
|
// they're ever codegened. TODO: Reject said calls earlier.
|
|
return CFP_WrongSide;
|
|
}
|
|
|
|
// (e) Calling across device/host boundary is not something you should do.
|
|
if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) ||
|
|
(CallerTarget == CFT_Device && CalleeTarget == CFT_Host) ||
|
|
(CallerTarget == CFT_Global && CalleeTarget == CFT_Host))
|
|
return CFP_Never;
|
|
|
|
llvm_unreachable("All cases should've been handled by now.");
|
|
}
|
|
|
|
void Sema::EraseUnwantedCUDAMatches(
|
|
const FunctionDecl *Caller,
|
|
SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
|
|
if (Matches.size() <= 1)
|
|
return;
|
|
|
|
using Pair = std::pair<DeclAccessPair, FunctionDecl*>;
|
|
|
|
// Gets the CUDA function preference for a call from Caller to Match.
|
|
auto GetCFP = [&](const Pair &Match) {
|
|
return IdentifyCUDAPreference(Caller, Match.second);
|
|
};
|
|
|
|
// Find the best call preference among the functions in Matches.
|
|
CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
|
|
Matches.begin(), Matches.end(),
|
|
[&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));
|
|
|
|
// Erase all functions with lower priority.
|
|
llvm::erase_if(Matches,
|
|
[&](const Pair &Match) { return GetCFP(Match) < BestCFP; });
|
|
}
|
|
|
|
/// When an implicitly-declared special member has to invoke more than one
|
|
/// base/field special member, conflicts may occur in the targets of these
|
|
/// members. For example, if one base's member __host__ and another's is
|
|
/// __device__, it's a conflict.
|
|
/// This function figures out if the given targets \param Target1 and
|
|
/// \param Target2 conflict, and if they do not it fills in
|
|
/// \param ResolvedTarget with a target that resolves for both calls.
|
|
/// \return true if there's a conflict, false otherwise.
|
|
static bool
|
|
resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
|
|
Sema::CUDAFunctionTarget Target2,
|
|
Sema::CUDAFunctionTarget *ResolvedTarget) {
|
|
// Only free functions and static member functions may be global.
|
|
assert(Target1 != Sema::CFT_Global);
|
|
assert(Target2 != Sema::CFT_Global);
|
|
|
|
if (Target1 == Sema::CFT_HostDevice) {
|
|
*ResolvedTarget = Target2;
|
|
} else if (Target2 == Sema::CFT_HostDevice) {
|
|
*ResolvedTarget = Target1;
|
|
} else if (Target1 != Target2) {
|
|
return true;
|
|
} else {
|
|
*ResolvedTarget = Target1;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
|
|
CXXSpecialMember CSM,
|
|
CXXMethodDecl *MemberDecl,
|
|
bool ConstRHS,
|
|
bool Diagnose) {
|
|
llvm::Optional<CUDAFunctionTarget> InferredTarget;
|
|
|
|
// We're going to invoke special member lookup; mark that these special
|
|
// members are called from this one, and not from its caller.
|
|
ContextRAII MethodContext(*this, MemberDecl);
|
|
|
|
// Look for special members in base classes that should be invoked from here.
|
|
// Infer the target of this member base on the ones it should call.
|
|
// Skip direct and indirect virtual bases for abstract classes.
|
|
llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
|
|
for (const auto &B : ClassDecl->bases()) {
|
|
if (!B.isVirtual()) {
|
|
Bases.push_back(&B);
|
|
}
|
|
}
|
|
|
|
if (!ClassDecl->isAbstract()) {
|
|
for (const auto &VB : ClassDecl->vbases()) {
|
|
Bases.push_back(&VB);
|
|
}
|
|
}
|
|
|
|
for (const auto *B : Bases) {
|
|
const RecordType *BaseType = B->getType()->getAs<RecordType>();
|
|
if (!BaseType) {
|
|
continue;
|
|
}
|
|
|
|
CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
|
|
Sema::SpecialMemberOverloadResult SMOR =
|
|
LookupSpecialMember(BaseClassDecl, CSM,
|
|
/* ConstArg */ ConstRHS,
|
|
/* VolatileArg */ false,
|
|
/* RValueThis */ false,
|
|
/* ConstThis */ false,
|
|
/* VolatileThis */ false);
|
|
|
|
if (!SMOR.getMethod())
|
|
continue;
|
|
|
|
CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod());
|
|
if (!InferredTarget.hasValue()) {
|
|
InferredTarget = BaseMethodTarget;
|
|
} else {
|
|
bool ResolutionError = resolveCalleeCUDATargetConflict(
|
|
InferredTarget.getValue(), BaseMethodTarget,
|
|
InferredTarget.getPointer());
|
|
if (ResolutionError) {
|
|
if (Diagnose) {
|
|
Diag(ClassDecl->getLocation(),
|
|
diag::note_implicit_member_target_infer_collision)
|
|
<< (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget;
|
|
}
|
|
MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Same as for bases, but now for special members of fields.
|
|
for (const auto *F : ClassDecl->fields()) {
|
|
if (F->isInvalidDecl()) {
|
|
continue;
|
|
}
|
|
|
|
const RecordType *FieldType =
|
|
Context.getBaseElementType(F->getType())->getAs<RecordType>();
|
|
if (!FieldType) {
|
|
continue;
|
|
}
|
|
|
|
CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
|
|
Sema::SpecialMemberOverloadResult SMOR =
|
|
LookupSpecialMember(FieldRecDecl, CSM,
|
|
/* ConstArg */ ConstRHS && !F->isMutable(),
|
|
/* VolatileArg */ false,
|
|
/* RValueThis */ false,
|
|
/* ConstThis */ false,
|
|
/* VolatileThis */ false);
|
|
|
|
if (!SMOR.getMethod())
|
|
continue;
|
|
|
|
CUDAFunctionTarget FieldMethodTarget =
|
|
IdentifyCUDATarget(SMOR.getMethod());
|
|
if (!InferredTarget.hasValue()) {
|
|
InferredTarget = FieldMethodTarget;
|
|
} else {
|
|
bool ResolutionError = resolveCalleeCUDATargetConflict(
|
|
InferredTarget.getValue(), FieldMethodTarget,
|
|
InferredTarget.getPointer());
|
|
if (ResolutionError) {
|
|
if (Diagnose) {
|
|
Diag(ClassDecl->getLocation(),
|
|
diag::note_implicit_member_target_infer_collision)
|
|
<< (unsigned)CSM << InferredTarget.getValue()
|
|
<< FieldMethodTarget;
|
|
}
|
|
MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (InferredTarget.hasValue()) {
|
|
if (InferredTarget.getValue() == CFT_Device) {
|
|
MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
|
|
} else if (InferredTarget.getValue() == CFT_Host) {
|
|
MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
|
|
} else {
|
|
MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
|
|
MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
|
|
}
|
|
} else {
|
|
// If no target was inferred, mark this member as __host__ __device__;
|
|
// it's the least restrictive option that can be invoked from any target.
|
|
MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
|
|
MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
|
|
if (!CD->isDefined() && CD->isTemplateInstantiation())
|
|
InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
|
|
|
|
// (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
|
|
// empty at a point in the translation unit, if it is either a
|
|
// trivial constructor
|
|
if (CD->isTrivial())
|
|
return true;
|
|
|
|
// ... or it satisfies all of the following conditions:
|
|
// The constructor function has been defined.
|
|
// The constructor function has no parameters,
|
|
// and the function body is an empty compound statement.
|
|
if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
|
|
return false;
|
|
|
|
// Its class has no virtual functions and no virtual base classes.
|
|
if (CD->getParent()->isDynamicClass())
|
|
return false;
|
|
|
|
// The only form of initializer allowed is an empty constructor.
|
|
// This will recursively check all base classes and member initializers
|
|
if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
|
|
if (const CXXConstructExpr *CE =
|
|
dyn_cast<CXXConstructExpr>(CI->getInit()))
|
|
return isEmptyCudaConstructor(Loc, CE->getConstructor());
|
|
return false;
|
|
}))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
|
|
// No destructor -> no problem.
|
|
if (!DD)
|
|
return true;
|
|
|
|
if (!DD->isDefined() && DD->isTemplateInstantiation())
|
|
InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
|
|
|
|
// (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
|
|
// empty at a point in the translation unit, if it is either a
|
|
// trivial constructor
|
|
if (DD->isTrivial())
|
|
return true;
|
|
|
|
// ... or it satisfies all of the following conditions:
|
|
// The destructor function has been defined.
|
|
// and the function body is an empty compound statement.
|
|
if (!DD->hasTrivialBody())
|
|
return false;
|
|
|
|
const CXXRecordDecl *ClassDecl = DD->getParent();
|
|
|
|
// Its class has no virtual functions and no virtual base classes.
|
|
if (ClassDecl->isDynamicClass())
|
|
return false;
|
|
|
|
// Only empty destructors are allowed. This will recursively check
|
|
// destructors for all base classes...
|
|
if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
|
|
if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
|
|
return isEmptyCudaDestructor(Loc, RD->getDestructor());
|
|
return true;
|
|
}))
|
|
return false;
|
|
|
|
// ... and member fields.
|
|
if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
|
|
if (CXXRecordDecl *RD = Field->getType()
|
|
->getBaseElementTypeUnsafe()
|
|
->getAsCXXRecordDecl())
|
|
return isEmptyCudaDestructor(Loc, RD->getDestructor());
|
|
return true;
|
|
}))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void Sema::checkAllowedCUDAInitializer(VarDecl *VD) {
|
|
if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage())
|
|
return;
|
|
const Expr *Init = VD->getInit();
|
|
if (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>() ||
|
|
VD->hasAttr<CUDASharedAttr>()) {
|
|
assert(!VD->isStaticLocal() || VD->hasAttr<CUDASharedAttr>());
|
|
bool AllowedInit = false;
|
|
if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init))
|
|
AllowedInit =
|
|
isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
|
|
// We'll allow constant initializers even if it's a non-empty
|
|
// constructor according to CUDA rules. This deviates from NVCC,
|
|
// but allows us to handle things like constexpr constructors.
|
|
if (!AllowedInit &&
|
|
(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
|
|
AllowedInit = VD->getInit()->isConstantInitializer(
|
|
Context, VD->getType()->isReferenceType());
|
|
|
|
// Also make sure that destructor, if there is one, is empty.
|
|
if (AllowedInit)
|
|
if (CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl())
|
|
AllowedInit =
|
|
isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());
|
|
|
|
if (!AllowedInit) {
|
|
Diag(VD->getLocation(), VD->hasAttr<CUDASharedAttr>()
|
|
? diag::err_shared_var_init
|
|
: diag::err_dynamic_var_init)
|
|
<< Init->getSourceRange();
|
|
VD->setInvalidDecl();
|
|
}
|
|
} else {
|
|
// This is a host-side global variable. Check that the initializer is
|
|
// callable from the host side.
|
|
const FunctionDecl *InitFn = nullptr;
|
|
if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
|
|
InitFn = CE->getConstructor();
|
|
} else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
|
|
InitFn = CE->getDirectCallee();
|
|
}
|
|
if (InitFn) {
|
|
CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn);
|
|
if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) {
|
|
Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
|
|
<< InitFnTarget << InitFn;
|
|
Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
|
|
VD->setInvalidDecl();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// With -fcuda-host-device-constexpr, an unattributed constexpr function is
|
|
// treated as implicitly __host__ __device__, unless:
|
|
// * it is a variadic function (device-side variadic functions are not
|
|
// allowed), or
|
|
// * a __device__ function with this signature was already declared, in which
|
|
// case in which case we output an error, unless the __device__ decl is in a
|
|
// system header, in which case we leave the constexpr function unattributed.
|
|
//
|
|
// In addition, all function decls are treated as __host__ __device__ when
|
|
// ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
|
|
// #pragma clang force_cuda_host_device_begin/end
|
|
// pair).
|
|
void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD,
|
|
const LookupResult &Previous) {
|
|
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
|
|
|
|
if (ForceCUDAHostDeviceDepth > 0) {
|
|
if (!NewD->hasAttr<CUDAHostAttr>())
|
|
NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
|
|
if (!NewD->hasAttr<CUDADeviceAttr>())
|
|
NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
|
|
return;
|
|
}
|
|
|
|
if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
|
|
NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
|
|
NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
|
|
return;
|
|
|
|
// Is D a __device__ function with the same signature as NewD, ignoring CUDA
|
|
// attributes?
|
|
auto IsMatchingDeviceFn = [&](NamedDecl *D) {
|
|
if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
|
|
D = Using->getTargetDecl();
|
|
FunctionDecl *OldD = D->getAsFunction();
|
|
return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
|
|
!OldD->hasAttr<CUDAHostAttr>() &&
|
|
!IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
|
|
/* ConsiderCudaAttrs = */ false);
|
|
};
|
|
auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
|
|
if (It != Previous.end()) {
|
|
// We found a __device__ function with the same name and signature as NewD
|
|
// (ignoring CUDA attrs). This is an error unless that function is defined
|
|
// in a system header, in which case we simply return without making NewD
|
|
// host+device.
|
|
NamedDecl *Match = *It;
|
|
if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
|
|
Diag(NewD->getLocation(),
|
|
diag::err_cuda_unattributed_constexpr_cannot_overload_device)
|
|
<< NewD;
|
|
Diag(Match->getLocation(),
|
|
diag::note_cuda_conflicting_device_function_declared_here);
|
|
}
|
|
return;
|
|
}
|
|
|
|
NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
|
|
NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
|
|
}
|
|
|
|
// In CUDA, there are some constructs which may appear in semantically-valid
|
|
// code, but trigger errors if we ever generate code for the function in which
|
|
// they appear. Essentially every construct you're not allowed to use on the
|
|
// device falls into this category, because you are allowed to use these
|
|
// constructs in a __host__ __device__ function, but only if that function is
|
|
// never codegen'ed on the device.
|
|
//
|
|
// To handle semantic checking for these constructs, we keep track of the set of
|
|
// functions we know will be emitted, either because we could tell a priori that
|
|
// they would be emitted, or because they were transitively called by a
|
|
// known-emitted function.
|
|
//
|
|
// We also keep a partial call graph of which not-known-emitted functions call
|
|
// which other not-known-emitted functions.
|
|
//
|
|
// When we see something which is illegal if the current function is emitted
|
|
// (usually by way of CUDADiagIfDeviceCode, CUDADiagIfHostCode, or
|
|
// CheckCUDACall), we first check if the current function is known-emitted. If
|
|
// so, we immediately output the diagnostic.
|
|
//
|
|
// Otherwise, we "defer" the diagnostic. It sits in Sema::CUDADeferredDiags
|
|
// until we discover that the function is known-emitted, at which point we take
|
|
// it out of this map and emit the diagnostic.
|
|
|
|
Sema::CUDADiagBuilder::CUDADiagBuilder(Kind K, SourceLocation Loc,
|
|
unsigned DiagID, FunctionDecl *Fn,
|
|
Sema &S)
|
|
: S(S), Loc(Loc), DiagID(DiagID), Fn(Fn),
|
|
ShowCallStack(K == K_ImmediateWithCallStack || K == K_Deferred) {
|
|
switch (K) {
|
|
case K_Nop:
|
|
break;
|
|
case K_Immediate:
|
|
case K_ImmediateWithCallStack:
|
|
ImmediateDiag.emplace(S.Diag(Loc, DiagID));
|
|
break;
|
|
case K_Deferred:
|
|
assert(Fn && "Must have a function to attach the deferred diag to.");
|
|
PartialDiag.emplace(S.PDiag(DiagID));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Print notes showing how we can reach FD starting from an a priori
|
|
// known-callable function.
|
|
static void EmitCallStackNotes(Sema &S, FunctionDecl *FD) {
|
|
auto FnIt = S.CUDAKnownEmittedFns.find(FD);
|
|
while (FnIt != S.CUDAKnownEmittedFns.end()) {
|
|
DiagnosticBuilder Builder(
|
|
S.Diags.Report(FnIt->second.Loc, diag::note_called_by));
|
|
Builder << FnIt->second.FD;
|
|
Builder.setForceEmit();
|
|
|
|
FnIt = S.CUDAKnownEmittedFns.find(FnIt->second.FD);
|
|
}
|
|
}
|
|
|
|
Sema::CUDADiagBuilder::~CUDADiagBuilder() {
|
|
if (ImmediateDiag) {
|
|
// Emit our diagnostic and, if it was a warning or error, output a callstack
|
|
// if Fn isn't a priori known-emitted.
|
|
bool IsWarningOrError = S.getDiagnostics().getDiagnosticLevel(
|
|
DiagID, Loc) >= DiagnosticsEngine::Warning;
|
|
ImmediateDiag.reset(); // Emit the immediate diag.
|
|
if (IsWarningOrError && ShowCallStack)
|
|
EmitCallStackNotes(S, Fn);
|
|
} else if (PartialDiag) {
|
|
assert(ShowCallStack && "Must always show call stack for deferred diags.");
|
|
S.CUDADeferredDiags[Fn].push_back({Loc, std::move(*PartialDiag)});
|
|
}
|
|
}
|
|
|
|
// Do we know that we will eventually codegen the given function?
|
|
static bool IsKnownEmitted(Sema &S, FunctionDecl *FD) {
|
|
// Templates are emitted when they're instantiated.
|
|
if (FD->isDependentContext())
|
|
return false;
|
|
|
|
// When compiling for device, host functions are never emitted. Similarly,
|
|
// when compiling for host, device and global functions are never emitted.
|
|
// (Technically, we do emit a host-side stub for global functions, but this
|
|
// doesn't count for our purposes here.)
|
|
Sema::CUDAFunctionTarget T = S.IdentifyCUDATarget(FD);
|
|
if (S.getLangOpts().CUDAIsDevice && T == Sema::CFT_Host)
|
|
return false;
|
|
if (!S.getLangOpts().CUDAIsDevice &&
|
|
(T == Sema::CFT_Device || T == Sema::CFT_Global))
|
|
return false;
|
|
|
|
// Check whether this function is externally visible -- if so, it's
|
|
// known-emitted.
|
|
//
|
|
// We have to check the GVA linkage of the function's *definition* -- if we
|
|
// only have a declaration, we don't know whether or not the function will be
|
|
// emitted, because (say) the definition could include "inline".
|
|
FunctionDecl *Def = FD->getDefinition();
|
|
|
|
if (Def &&
|
|
!isDiscardableGVALinkage(S.getASTContext().GetGVALinkageForFunction(Def)))
|
|
return true;
|
|
|
|
// Otherwise, the function is known-emitted if it's in our set of
|
|
// known-emitted functions.
|
|
return S.CUDAKnownEmittedFns.count(FD) > 0;
|
|
}
|
|
|
|
Sema::CUDADiagBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc,
|
|
unsigned DiagID) {
|
|
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
|
|
CUDADiagBuilder::Kind DiagKind = [&] {
|
|
switch (CurrentCUDATarget()) {
|
|
case CFT_Global:
|
|
case CFT_Device:
|
|
return CUDADiagBuilder::K_Immediate;
|
|
case CFT_HostDevice:
|
|
// An HD function counts as host code if we're compiling for host, and
|
|
// device code if we're compiling for device. Defer any errors in device
|
|
// mode until the function is known-emitted.
|
|
if (getLangOpts().CUDAIsDevice) {
|
|
return IsKnownEmitted(*this, dyn_cast<FunctionDecl>(CurContext))
|
|
? CUDADiagBuilder::K_ImmediateWithCallStack
|
|
: CUDADiagBuilder::K_Deferred;
|
|
}
|
|
return CUDADiagBuilder::K_Nop;
|
|
|
|
default:
|
|
return CUDADiagBuilder::K_Nop;
|
|
}
|
|
}();
|
|
return CUDADiagBuilder(DiagKind, Loc, DiagID,
|
|
dyn_cast<FunctionDecl>(CurContext), *this);
|
|
}
|
|
|
|
Sema::CUDADiagBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc,
|
|
unsigned DiagID) {
|
|
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
|
|
CUDADiagBuilder::Kind DiagKind = [&] {
|
|
switch (CurrentCUDATarget()) {
|
|
case CFT_Host:
|
|
return CUDADiagBuilder::K_Immediate;
|
|
case CFT_HostDevice:
|
|
// An HD function counts as host code if we're compiling for host, and
|
|
// device code if we're compiling for device. Defer any errors in device
|
|
// mode until the function is known-emitted.
|
|
if (getLangOpts().CUDAIsDevice)
|
|
return CUDADiagBuilder::K_Nop;
|
|
|
|
return IsKnownEmitted(*this, dyn_cast<FunctionDecl>(CurContext))
|
|
? CUDADiagBuilder::K_ImmediateWithCallStack
|
|
: CUDADiagBuilder::K_Deferred;
|
|
default:
|
|
return CUDADiagBuilder::K_Nop;
|
|
}
|
|
}();
|
|
return CUDADiagBuilder(DiagKind, Loc, DiagID,
|
|
dyn_cast<FunctionDecl>(CurContext), *this);
|
|
}
|
|
|
|
// Emit any deferred diagnostics for FD and erase them from the map in which
|
|
// they're stored.
|
|
static void EmitDeferredDiags(Sema &S, FunctionDecl *FD) {
|
|
auto It = S.CUDADeferredDiags.find(FD);
|
|
if (It == S.CUDADeferredDiags.end())
|
|
return;
|
|
bool HasWarningOrError = false;
|
|
for (PartialDiagnosticAt &PDAt : It->second) {
|
|
const SourceLocation &Loc = PDAt.first;
|
|
const PartialDiagnostic &PD = PDAt.second;
|
|
HasWarningOrError |= S.getDiagnostics().getDiagnosticLevel(
|
|
PD.getDiagID(), Loc) >= DiagnosticsEngine::Warning;
|
|
DiagnosticBuilder Builder(S.Diags.Report(Loc, PD.getDiagID()));
|
|
Builder.setForceEmit();
|
|
PD.Emit(Builder);
|
|
}
|
|
S.CUDADeferredDiags.erase(It);
|
|
|
|
// FIXME: Should this be called after every warning/error emitted in the loop
|
|
// above, instead of just once per function? That would be consistent with
|
|
// how we handle immediate errors, but it also seems like a bit much.
|
|
if (HasWarningOrError)
|
|
EmitCallStackNotes(S, FD);
|
|
}
|
|
|
|
// Indicate that this function (and thus everything it transtively calls) will
|
|
// be codegen'ed, and emit any deferred diagnostics on this function and its
|
|
// (transitive) callees.
|
|
static void MarkKnownEmitted(Sema &S, FunctionDecl *OrigCaller,
|
|
FunctionDecl *OrigCallee, SourceLocation OrigLoc) {
|
|
// Nothing to do if we already know that FD is emitted.
|
|
if (IsKnownEmitted(S, OrigCallee)) {
|
|
assert(!S.CUDACallGraph.count(OrigCallee));
|
|
return;
|
|
}
|
|
|
|
// We've just discovered that OrigCallee is known-emitted. Walk our call
|
|
// graph to see what else we can now discover also must be emitted.
|
|
|
|
struct CallInfo {
|
|
FunctionDecl *Caller;
|
|
FunctionDecl *Callee;
|
|
SourceLocation Loc;
|
|
};
|
|
llvm::SmallVector<CallInfo, 4> Worklist = {{OrigCaller, OrigCallee, OrigLoc}};
|
|
llvm::SmallSet<CanonicalDeclPtr<FunctionDecl>, 4> Seen;
|
|
Seen.insert(OrigCallee);
|
|
while (!Worklist.empty()) {
|
|
CallInfo C = Worklist.pop_back_val();
|
|
assert(!IsKnownEmitted(S, C.Callee) &&
|
|
"Worklist should not contain known-emitted functions.");
|
|
S.CUDAKnownEmittedFns[C.Callee] = {C.Caller, C.Loc};
|
|
EmitDeferredDiags(S, C.Callee);
|
|
|
|
// If this is a template instantiation, explore its callgraph as well:
|
|
// Non-dependent calls are part of the template's callgraph, while dependent
|
|
// calls are part of to the instantiation's call graph.
|
|
if (auto *Templ = C.Callee->getPrimaryTemplate()) {
|
|
FunctionDecl *TemplFD = Templ->getAsFunction();
|
|
if (!Seen.count(TemplFD) && !S.CUDAKnownEmittedFns.count(TemplFD)) {
|
|
Seen.insert(TemplFD);
|
|
Worklist.push_back(
|
|
{/* Caller = */ C.Caller, /* Callee = */ TemplFD, C.Loc});
|
|
}
|
|
}
|
|
|
|
// Add all functions called by Callee to our worklist.
|
|
auto CGIt = S.CUDACallGraph.find(C.Callee);
|
|
if (CGIt == S.CUDACallGraph.end())
|
|
continue;
|
|
|
|
for (std::pair<CanonicalDeclPtr<FunctionDecl>, SourceLocation> FDLoc :
|
|
CGIt->second) {
|
|
FunctionDecl *NewCallee = FDLoc.first;
|
|
SourceLocation CallLoc = FDLoc.second;
|
|
if (Seen.count(NewCallee) || IsKnownEmitted(S, NewCallee))
|
|
continue;
|
|
Seen.insert(NewCallee);
|
|
Worklist.push_back(
|
|
{/* Caller = */ C.Callee, /* Callee = */ NewCallee, CallLoc});
|
|
}
|
|
|
|
// C.Callee is now known-emitted, so we no longer need to maintain its list
|
|
// of callees in CUDACallGraph.
|
|
S.CUDACallGraph.erase(CGIt);
|
|
}
|
|
}
|
|
|
|
bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
|
|
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
|
|
assert(Callee && "Callee may not be null.");
|
|
// FIXME: Is bailing out early correct here? Should we instead assume that
|
|
// the caller is a global initializer?
|
|
FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
|
|
if (!Caller)
|
|
return true;
|
|
|
|
// If the caller is known-emitted, mark the callee as known-emitted.
|
|
// Otherwise, mark the call in our call graph so we can traverse it later.
|
|
bool CallerKnownEmitted = IsKnownEmitted(*this, Caller);
|
|
if (CallerKnownEmitted) {
|
|
// Host-side references to a __global__ function refer to the stub, so the
|
|
// function itself is never emitted and therefore should not be marked.
|
|
if (getLangOpts().CUDAIsDevice || IdentifyCUDATarget(Callee) != CFT_Global)
|
|
MarkKnownEmitted(*this, Caller, Callee, Loc);
|
|
} else {
|
|
// If we have
|
|
// host fn calls kernel fn calls host+device,
|
|
// the HD function does not get instantiated on the host. We model this by
|
|
// omitting at the call to the kernel from the callgraph. This ensures
|
|
// that, when compiling for host, only HD functions actually called from the
|
|
// host get marked as known-emitted.
|
|
if (getLangOpts().CUDAIsDevice || IdentifyCUDATarget(Callee) != CFT_Global)
|
|
CUDACallGraph[Caller].insert({Callee, Loc});
|
|
}
|
|
|
|
CUDADiagBuilder::Kind DiagKind = [&] {
|
|
switch (IdentifyCUDAPreference(Caller, Callee)) {
|
|
case CFP_Never:
|
|
return CUDADiagBuilder::K_Immediate;
|
|
case CFP_WrongSide:
|
|
assert(Caller && "WrongSide calls require a non-null caller");
|
|
// If we know the caller will be emitted, we know this wrong-side call
|
|
// will be emitted, so it's an immediate error. Otherwise, defer the
|
|
// error until we know the caller is emitted.
|
|
return CallerKnownEmitted ? CUDADiagBuilder::K_ImmediateWithCallStack
|
|
: CUDADiagBuilder::K_Deferred;
|
|
default:
|
|
return CUDADiagBuilder::K_Nop;
|
|
}
|
|
}();
|
|
|
|
if (DiagKind == CUDADiagBuilder::K_Nop)
|
|
return true;
|
|
|
|
// Avoid emitting this error twice for the same location. Using a hashtable
|
|
// like this is unfortunate, but because we must continue parsing as normal
|
|
// after encountering a deferred error, it's otherwise very tricky for us to
|
|
// ensure that we only emit this deferred error once.
|
|
if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second)
|
|
return true;
|
|
|
|
CUDADiagBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this)
|
|
<< IdentifyCUDATarget(Callee) << Callee << IdentifyCUDATarget(Caller);
|
|
CUDADiagBuilder(DiagKind, Callee->getLocation(), diag::note_previous_decl,
|
|
Caller, *this)
|
|
<< Callee;
|
|
return DiagKind != CUDADiagBuilder::K_Immediate &&
|
|
DiagKind != CUDADiagBuilder::K_ImmediateWithCallStack;
|
|
}
|
|
|
|
void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
|
|
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
|
|
if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>())
|
|
return;
|
|
FunctionDecl *CurFn = dyn_cast<FunctionDecl>(CurContext);
|
|
if (!CurFn)
|
|
return;
|
|
CUDAFunctionTarget Target = IdentifyCUDATarget(CurFn);
|
|
if (Target == CFT_Global || Target == CFT_Device) {
|
|
Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
|
|
} else if (Target == CFT_HostDevice) {
|
|
Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
|
|
Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
|
|
}
|
|
}
|
|
|
|
void Sema::checkCUDATargetOverload(FunctionDecl *NewFD,
|
|
const LookupResult &Previous) {
|
|
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
|
|
CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD);
|
|
for (NamedDecl *OldND : Previous) {
|
|
FunctionDecl *OldFD = OldND->getAsFunction();
|
|
if (!OldFD)
|
|
continue;
|
|
|
|
CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD);
|
|
// Don't allow HD and global functions to overload other functions with the
|
|
// same signature. We allow overloading based on CUDA attributes so that
|
|
// functions can have different implementations on the host and device, but
|
|
// HD/global functions "exist" in some sense on both the host and device, so
|
|
// should have the same implementation on both sides.
|
|
if (NewTarget != OldTarget &&
|
|
((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
|
|
(NewTarget == CFT_Global) || (OldTarget == CFT_Global)) &&
|
|
!IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
|
|
/* ConsiderCudaAttrs = */ false)) {
|
|
Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
|
|
<< NewTarget << NewFD->getDeclName() << OldTarget << OldFD;
|
|
Diag(OldFD->getLocation(), diag::note_previous_declaration);
|
|
NewFD->setInvalidDecl();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename AttrTy>
|
|
static void copyAttrIfPresent(Sema &S, FunctionDecl *FD,
|
|
const FunctionDecl &TemplateFD) {
|
|
if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
|
|
AttrTy *Clone = Attribute->clone(S.Context);
|
|
Clone->setInherited(true);
|
|
FD->addAttr(Clone);
|
|
}
|
|
}
|
|
|
|
void Sema::inheritCUDATargetAttrs(FunctionDecl *FD,
|
|
const FunctionTemplateDecl &TD) {
|
|
const FunctionDecl &TemplateFD = *TD.getTemplatedDecl();
|
|
copyAttrIfPresent<CUDAGlobalAttr>(*this, FD, TemplateFD);
|
|
copyAttrIfPresent<CUDAHostAttr>(*this, FD, TemplateFD);
|
|
copyAttrIfPresent<CUDADeviceAttr>(*this, FD, TemplateFD);
|
|
}
|