llvm-project/llvm/lib/Target/X86/X86ScheduleZnver1.td

1540 lines
47 KiB
TableGen

//=- X86ScheduleZnver1.td - X86 Znver1 Scheduling -------------*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for Znver1 to support instruction
// scheduling and other instruction cost heuristics.
//
//===----------------------------------------------------------------------===//
def Znver1Model : SchedMachineModel {
// Zen can decode 4 instructions per cycle.
let IssueWidth = 4;
// Based on the reorder buffer we define MicroOpBufferSize
let MicroOpBufferSize = 192;
let LoadLatency = 4;
let MispredictPenalty = 17;
let HighLatency = 25;
let PostRAScheduler = 1;
// FIXME: This variable is required for incomplete model.
// We haven't catered all instructions.
// So, we reset the value of this variable so as to
// say that the model is incomplete.
let CompleteModel = 0;
}
let SchedModel = Znver1Model in {
// Zen can issue micro-ops to 10 different units in one cycle.
// These are
// * Four integer ALU units (ZALU0, ZALU1, ZALU2, ZALU3)
// * Two AGU units (ZAGU0, ZAGU1)
// * Four FPU units (ZFPU0, ZFPU1, ZFPU2, ZFPU3)
// AGUs feed load store queues @two loads and 1 store per cycle.
// Four ALU units are defined below
def ZnALU0 : ProcResource<1>;
def ZnALU1 : ProcResource<1>;
def ZnALU2 : ProcResource<1>;
def ZnALU3 : ProcResource<1>;
// Two AGU units are defined below
def ZnAGU0 : ProcResource<1>;
def ZnAGU1 : ProcResource<1>;
// Four FPU units are defined below
def ZnFPU0 : ProcResource<1>;
def ZnFPU1 : ProcResource<1>;
def ZnFPU2 : ProcResource<1>;
def ZnFPU3 : ProcResource<1>;
// FPU grouping
def ZnFPU013 : ProcResGroup<[ZnFPU0, ZnFPU1, ZnFPU3]>;
def ZnFPU01 : ProcResGroup<[ZnFPU0, ZnFPU1]>;
def ZnFPU12 : ProcResGroup<[ZnFPU1, ZnFPU2]>;
def ZnFPU13 : ProcResGroup<[ZnFPU1, ZnFPU3]>;
def ZnFPU23 : ProcResGroup<[ZnFPU2, ZnFPU3]>;
def ZnFPU02 : ProcResGroup<[ZnFPU0, ZnFPU2]>;
def ZnFPU03 : ProcResGroup<[ZnFPU0, ZnFPU3]>;
// Below are the grouping of the units.
// Micro-ops to be issued to multiple units are tackled this way.
// ALU grouping
// ZnALU03 - 0,3 grouping
def ZnALU03: ProcResGroup<[ZnALU0, ZnALU3]>;
// 56 Entry (14x4 entries) Int Scheduler
def ZnALU : ProcResGroup<[ZnALU0, ZnALU1, ZnALU2, ZnALU3]> {
let BufferSize=56;
}
// 28 Entry (14x2) AGU group. AGUs can't be used for all ALU operations
// but are relevant for some instructions
def ZnAGU : ProcResGroup<[ZnAGU0, ZnAGU1]> {
let BufferSize=28;
}
// Integer Multiplication issued on ALU1.
def ZnMultiplier : ProcResource<1>;
// Integer division issued on ALU2.
def ZnDivider : ProcResource<1>;
// 4 Cycles load-to use Latency is captured
def : ReadAdvance<ReadAfterLd, 4>;
// The Integer PRF for Zen is 168 entries, and it holds the architectural and
// speculative version of the 64-bit integer registers.
// Reference: "Software Optimization Guide for AMD Family 17h Processors"
def ZnIntegerPRF : RegisterFile<168, [GR64, CCR]>;
// 36 Entry (9x4 entries) floating-point Scheduler
def ZnFPU : ProcResGroup<[ZnFPU0, ZnFPU1, ZnFPU2, ZnFPU3]> {
let BufferSize=36;
}
// The Zen FP Retire Queue renames SIMD and FP uOps onto a pool of 160 128-bit
// registers. Operations on 256-bit data types are cracked into two COPs.
// Reference: "Software Optimization Guide for AMD Family 17h Processors"
def ZnFpuPRF: RegisterFile<160, [VR64, VR128, VR256], [1, 1, 2]>;
// The unit can track up to 192 macro ops in-flight.
// The retire unit handles in-order commit of up to 8 macro ops per cycle.
// Reference: "Software Optimization Guide for AMD Family 17h Processors"
// To be noted, the retire unit is shared between integer and FP ops.
// In SMT mode it is 96 entry per thread. But, we do not use the conservative
// value here because there is currently no way to fully mode the SMT mode,
// so there is no point in trying.
def ZnRCU : RetireControlUnit<192, 8>;
// FIXME: there are 72 read buffers and 44 write buffers.
// (a folded load is an instruction that loads and does some operation)
// Ex: ADDPD xmm,[mem]-> This instruction has two micro-ops
// Instructions with folded loads are usually micro-fused, so they only appear
// as two micro-ops.
// a. load and
// b. addpd
// This multiclass is for folded loads for integer units.
multiclass ZnWriteResPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [], int UOps = 1,
int LoadLat = 4, int LoadUOps = 1> {
// Register variant takes 1-cycle on Execution Port.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses a cycle on ZnAGU
// adds LoadLat cycles to the latency (default = 4).
def : WriteRes<SchedRW.Folded, !listconcat([ZnAGU], ExePorts)> {
let Latency = !add(Lat, LoadLat);
let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res));
let NumMicroOps = !add(UOps, LoadUOps);
}
}
// This multiclass is for folded loads for floating point units.
multiclass ZnWriteResFpuPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [], int UOps = 1,
int LoadLat = 7, int LoadUOps = 0> {
// Register variant takes 1-cycle on Execution Port.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses a cycle on ZnAGU
// adds LoadLat cycles to the latency (default = 7).
def : WriteRes<SchedRW.Folded, !listconcat([ZnAGU], ExePorts)> {
let Latency = !add(Lat, LoadLat);
let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res));
let NumMicroOps = !add(UOps, LoadUOps);
}
}
// WriteRMW is set for instructions with Memory write
// operation in codegen
def : WriteRes<WriteRMW, [ZnAGU]>;
def : WriteRes<WriteStore, [ZnAGU]>;
def : WriteRes<WriteStoreNT, [ZnAGU]>;
def : WriteRes<WriteMove, [ZnALU]>;
def : WriteRes<WriteLoad, [ZnAGU]> { let Latency = 8; }
def : WriteRes<WriteZero, []>;
def : WriteRes<WriteLEA, [ZnALU]>;
defm : ZnWriteResPair<WriteALU, [ZnALU], 1>;
defm : ZnWriteResPair<WriteADC, [ZnALU], 1>;
defm : ZnWriteResPair<WriteIMul, [ZnALU1, ZnMultiplier], 4>;
defm : ZnWriteResPair<WriteIMul64, [ZnALU1, ZnMultiplier], 4, [1,1], 2>;
defm : X86WriteRes<WriteBSWAP32, [ZnALU], 1, [4], 1>;
defm : X86WriteRes<WriteBSWAP64, [ZnALU], 1, [4], 1>;
defm : X86WriteRes<WriteXCHG, [ZnALU], 1, [2], 2>;
defm : ZnWriteResPair<WriteShift, [ZnALU], 1>;
defm : X86WriteRes<WriteSHDrri, [ZnALU], 1, [1], 1>;
defm : X86WriteResUnsupported<WriteSHDrrcl>;
defm : X86WriteResUnsupported<WriteSHDmri>;
defm : X86WriteResUnsupported<WriteSHDmrcl>;
defm : ZnWriteResPair<WriteJump, [ZnALU], 1>;
defm : ZnWriteResFpuPair<WriteCRC32, [ZnFPU0], 3>;
defm : ZnWriteResPair<WriteCMOV, [ZnALU], 1>;
defm : ZnWriteResPair<WriteCMOV2, [ZnALU], 1>;
def : WriteRes<WriteSETCC, [ZnALU]>;
def : WriteRes<WriteSETCCStore, [ZnALU, ZnAGU]>;
defm : X86WriteRes<WriteLAHFSAHF, [ZnALU], 2, [1], 2>;
def : WriteRes<WriteBitTest,[ZnALU]>;
// Bit counts.
defm : ZnWriteResPair<WriteBSF, [ZnALU], 3>;
defm : ZnWriteResPair<WriteBSR, [ZnALU], 3>;
defm : ZnWriteResPair<WriteLZCNT, [ZnALU], 2>;
defm : ZnWriteResPair<WriteTZCNT, [ZnALU], 2>;
defm : ZnWriteResPair<WritePOPCNT, [ZnALU], 1>;
// Treat misc copies as a move.
def : InstRW<[WriteMove], (instrs COPY)>;
// BMI1 BEXTR, BMI2 BZHI
defm : ZnWriteResPair<WriteBEXTR, [ZnALU], 1>;
defm : ZnWriteResPair<WriteBZHI, [ZnALU], 1>;
// IDIV
defm : ZnWriteResPair<WriteDiv8, [ZnALU2, ZnDivider], 15, [1,15], 1>;
defm : ZnWriteResPair<WriteDiv16, [ZnALU2, ZnDivider], 17, [1,17], 2>;
defm : ZnWriteResPair<WriteDiv32, [ZnALU2, ZnDivider], 25, [1,25], 2>;
defm : ZnWriteResPair<WriteDiv64, [ZnALU2, ZnDivider], 41, [1,41], 2>;
defm : ZnWriteResPair<WriteIDiv8, [ZnALU2, ZnDivider], 15, [1,15], 1>;
defm : ZnWriteResPair<WriteIDiv16, [ZnALU2, ZnDivider], 17, [1,17], 2>;
defm : ZnWriteResPair<WriteIDiv32, [ZnALU2, ZnDivider], 25, [1,25], 2>;
defm : ZnWriteResPair<WriteIDiv64, [ZnALU2, ZnDivider], 41, [1,41], 2>;
// IMULH
def : WriteRes<WriteIMulH, [ZnALU1, ZnMultiplier]>{
let Latency = 4;
}
// Floating point operations
defm : X86WriteRes<WriteFLoad, [ZnAGU], 8, [1], 1>;
defm : X86WriteRes<WriteFLoadX, [ZnAGU], 8, [1], 1>;
defm : X86WriteRes<WriteFLoadY, [ZnAGU], 8, [1], 1>;
defm : X86WriteRes<WriteFMaskedLoad, [ZnAGU,ZnFPU01], 8, [1,1], 1>;
defm : X86WriteRes<WriteFMaskedLoadY, [ZnAGU,ZnFPU01], 8, [1,2], 2>;
defm : X86WriteRes<WriteFStore, [ZnAGU], 1, [1], 1>;
defm : X86WriteRes<WriteFStoreX, [ZnAGU], 1, [1], 1>;
defm : X86WriteRes<WriteFStoreY, [ZnAGU], 1, [1], 1>;
defm : X86WriteRes<WriteFStoreNT, [ZnAGU,ZnFPU2], 8, [1,1], 1>;
defm : X86WriteRes<WriteFStoreNTX, [ZnAGU], 1, [1], 1>;
defm : X86WriteRes<WriteFStoreNTY, [ZnAGU], 1, [1], 1>;
defm : X86WriteRes<WriteFMaskedStore, [ZnAGU,ZnFPU01], 4, [1,1], 1>;
defm : X86WriteRes<WriteFMaskedStoreY, [ZnAGU,ZnFPU01], 5, [1,2], 2>;
defm : X86WriteRes<WriteFMove, [ZnFPU], 1, [1], 1>;
defm : X86WriteRes<WriteFMoveX, [ZnFPU], 1, [1], 1>;
defm : X86WriteRes<WriteFMoveY, [ZnFPU], 1, [1], 1>;
defm : ZnWriteResFpuPair<WriteFAdd, [ZnFPU0], 3>;
defm : ZnWriteResFpuPair<WriteFAddX, [ZnFPU0], 3>;
defm : ZnWriteResFpuPair<WriteFAddY, [ZnFPU0], 3>;
defm : X86WriteResPairUnsupported<WriteFAddZ>;
defm : ZnWriteResFpuPair<WriteFAdd64, [ZnFPU0], 3>;
defm : ZnWriteResFpuPair<WriteFAdd64X, [ZnFPU0], 3>;
defm : ZnWriteResFpuPair<WriteFAdd64Y, [ZnFPU0], 3>;
defm : X86WriteResPairUnsupported<WriteFAdd64Z>;
defm : ZnWriteResFpuPair<WriteFCmp, [ZnFPU0], 3>;
defm : ZnWriteResFpuPair<WriteFCmpX, [ZnFPU0], 3>;
defm : ZnWriteResFpuPair<WriteFCmpY, [ZnFPU0], 3>;
defm : X86WriteResPairUnsupported<WriteFCmpZ>;
defm : ZnWriteResFpuPair<WriteFCmp64, [ZnFPU0], 3>;
defm : ZnWriteResFpuPair<WriteFCmp64X, [ZnFPU0], 3>;
defm : ZnWriteResFpuPair<WriteFCmp64Y, [ZnFPU0], 3>;
defm : X86WriteResPairUnsupported<WriteFCmp64Z>;
defm : ZnWriteResFpuPair<WriteFCom, [ZnFPU0], 3>;
defm : ZnWriteResFpuPair<WriteFBlend, [ZnFPU01], 1>;
defm : ZnWriteResFpuPair<WriteFBlendY, [ZnFPU01], 1>;
defm : X86WriteResPairUnsupported<WriteFBlendZ>;
defm : ZnWriteResFpuPair<WriteFVarBlend, [ZnFPU01], 1>;
defm : ZnWriteResFpuPair<WriteFVarBlendY,[ZnFPU01], 1>;
defm : X86WriteResPairUnsupported<WriteFVarBlendZ>;
defm : ZnWriteResFpuPair<WriteVarBlend, [ZnFPU0], 1>;
defm : ZnWriteResFpuPair<WriteVarBlendY, [ZnFPU0], 1>;
defm : X86WriteResPairUnsupported<WriteVarBlendZ>;
defm : ZnWriteResFpuPair<WriteCvtSS2I, [ZnFPU3], 5>;
defm : ZnWriteResFpuPair<WriteCvtPS2I, [ZnFPU3], 5>;
defm : ZnWriteResFpuPair<WriteCvtPS2IY, [ZnFPU3], 5>;
defm : X86WriteResPairUnsupported<WriteCvtPS2IZ>;
defm : ZnWriteResFpuPair<WriteCvtSD2I, [ZnFPU3], 5>;
defm : ZnWriteResFpuPair<WriteCvtPD2I, [ZnFPU3], 5>;
defm : ZnWriteResFpuPair<WriteCvtPD2IY, [ZnFPU3], 5>;
defm : X86WriteResPairUnsupported<WriteCvtPD2IZ>;
defm : ZnWriteResFpuPair<WriteCvtI2SS, [ZnFPU3], 5>;
defm : ZnWriteResFpuPair<WriteCvtI2PS, [ZnFPU3], 5>;
defm : ZnWriteResFpuPair<WriteCvtI2PSY, [ZnFPU3], 5>;
defm : X86WriteResPairUnsupported<WriteCvtI2PSZ>;
defm : ZnWriteResFpuPair<WriteCvtI2SD, [ZnFPU3], 5>;
defm : ZnWriteResFpuPair<WriteCvtI2PD, [ZnFPU3], 5>;
defm : ZnWriteResFpuPair<WriteCvtI2PDY, [ZnFPU3], 5>;
defm : X86WriteResPairUnsupported<WriteCvtI2PDZ>;
defm : ZnWriteResFpuPair<WriteFDiv, [ZnFPU3], 15>;
defm : ZnWriteResFpuPair<WriteFDivX, [ZnFPU3], 15>;
//defm : ZnWriteResFpuPair<WriteFDivY, [ZnFPU3], 15>;
defm : X86WriteResPairUnsupported<WriteFDivZ>;
defm : ZnWriteResFpuPair<WriteFDiv64, [ZnFPU3], 15>;
defm : ZnWriteResFpuPair<WriteFDiv64X, [ZnFPU3], 15>;
//defm : ZnWriteResFpuPair<WriteFDiv64Y, [ZnFPU3], 15>;
defm : X86WriteResPairUnsupported<WriteFDiv64Z>;
defm : ZnWriteResFpuPair<WriteFSign, [ZnFPU3], 2>;
defm : ZnWriteResFpuPair<WriteFRnd, [ZnFPU3], 4, [1], 1, 7, 1>; // FIXME: Should folds require 1 extra uops?
defm : ZnWriteResFpuPair<WriteFRndY, [ZnFPU3], 4, [1], 1, 7, 1>; // FIXME: Should folds require 1 extra uops?
defm : X86WriteResPairUnsupported<WriteFRndZ>;
defm : ZnWriteResFpuPair<WriteFLogic, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteFLogicY, [ZnFPU], 1>;
defm : X86WriteResPairUnsupported<WriteFLogicZ>;
defm : ZnWriteResFpuPair<WriteFTest, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteFTestY, [ZnFPU], 1>;
defm : X86WriteResPairUnsupported<WriteFTestZ>;
defm : ZnWriteResFpuPair<WriteFShuffle, [ZnFPU12], 1>;
defm : ZnWriteResFpuPair<WriteFShuffleY, [ZnFPU12], 1>;
defm : X86WriteResPairUnsupported<WriteFShuffleZ>;
defm : ZnWriteResFpuPair<WriteFVarShuffle, [ZnFPU12], 1>;
defm : ZnWriteResFpuPair<WriteFVarShuffleY,[ZnFPU12], 1>;
defm : X86WriteResPairUnsupported<WriteFVarShuffleZ>;
defm : ZnWriteResFpuPair<WriteFMul, [ZnFPU01], 3, [1], 1, 7, 1>;
defm : ZnWriteResFpuPair<WriteFMulX, [ZnFPU01], 3, [1], 1, 7, 1>;
defm : ZnWriteResFpuPair<WriteFMulY, [ZnFPU01], 4, [1], 1, 7, 1>;
defm : X86WriteResPairUnsupported<WriteFMulZ>;
defm : ZnWriteResFpuPair<WriteFMul64, [ZnFPU01], 3, [1], 1, 7, 1>;
defm : ZnWriteResFpuPair<WriteFMul64X, [ZnFPU01], 3, [1], 1, 7, 1>;
defm : ZnWriteResFpuPair<WriteFMul64Y, [ZnFPU01], 4, [1], 1, 7, 1>;
defm : X86WriteResPairUnsupported<WriteFMul64Z>;
defm : ZnWriteResFpuPair<WriteFMA, [ZnFPU03], 5>;
defm : ZnWriteResFpuPair<WriteFMAX, [ZnFPU03], 5>;
defm : ZnWriteResFpuPair<WriteFMAY, [ZnFPU03], 5>;
defm : X86WriteResPairUnsupported<WriteFMAZ>;
defm : ZnWriteResFpuPair<WriteFRcp, [ZnFPU01], 5>;
defm : ZnWriteResFpuPair<WriteFRcpX, [ZnFPU01], 5>;
defm : ZnWriteResFpuPair<WriteFRcpY, [ZnFPU01], 5, [1], 1, 7, 2>;
defm : X86WriteResPairUnsupported<WriteFRcpZ>;
//defm : ZnWriteResFpuPair<WriteFRsqrt, [ZnFPU02], 5>;
defm : ZnWriteResFpuPair<WriteFRsqrtX, [ZnFPU01], 5, [1], 1, 7, 1>;
//defm : ZnWriteResFpuPair<WriteFRsqrtY, [ZnFPU01], 5, [2], 2>;
defm : X86WriteResPairUnsupported<WriteFRsqrtZ>;
defm : ZnWriteResFpuPair<WriteFSqrt, [ZnFPU3], 20, [20]>;
defm : ZnWriteResFpuPair<WriteFSqrtX, [ZnFPU3], 20, [20]>;
defm : ZnWriteResFpuPair<WriteFSqrtY, [ZnFPU3], 28, [28], 1, 7, 1>;
defm : X86WriteResPairUnsupported<WriteFSqrtZ>;
defm : ZnWriteResFpuPair<WriteFSqrt64, [ZnFPU3], 20, [20]>;
defm : ZnWriteResFpuPair<WriteFSqrt64X, [ZnFPU3], 20, [20]>;
defm : ZnWriteResFpuPair<WriteFSqrt64Y, [ZnFPU3], 40, [40], 1, 7, 1>;
defm : X86WriteResPairUnsupported<WriteFSqrt64Z>;
defm : ZnWriteResFpuPair<WriteFSqrt80, [ZnFPU3], 20, [20]>;
// Vector integer operations which uses FPU units
defm : X86WriteRes<WriteVecLoad, [ZnAGU], 8, [1], 1>;
defm : X86WriteRes<WriteVecLoadX, [ZnAGU], 8, [1], 1>;
defm : X86WriteRes<WriteVecLoadY, [ZnAGU], 8, [1], 1>;
defm : X86WriteRes<WriteVecLoadNT, [ZnAGU], 8, [1], 1>;
defm : X86WriteRes<WriteVecLoadNTY, [ZnAGU], 8, [1], 1>;
defm : X86WriteRes<WriteVecMaskedLoad, [ZnAGU,ZnFPU01], 8, [1,2], 2>;
defm : X86WriteRes<WriteVecMaskedLoadY, [ZnAGU,ZnFPU01], 9, [1,3], 2>;
defm : X86WriteRes<WriteVecStore, [ZnAGU], 1, [1], 1>;
defm : X86WriteRes<WriteVecStoreX, [ZnAGU], 1, [1], 1>;
defm : X86WriteRes<WriteVecStoreY, [ZnAGU], 1, [1], 1>;
defm : X86WriteRes<WriteVecStoreNT, [ZnAGU], 1, [1], 1>;
defm : X86WriteRes<WriteVecStoreNTY, [ZnAGU], 1, [1], 1>;
defm : X86WriteRes<WriteVecMaskedStore, [ZnAGU,ZnFPU01], 4, [1,1], 1>;
defm : X86WriteRes<WriteVecMaskedStoreY, [ZnAGU,ZnFPU01], 5, [1,2], 2>;
defm : X86WriteRes<WriteVecMove, [ZnFPU], 1, [1], 1>;
defm : X86WriteRes<WriteVecMoveX, [ZnFPU], 1, [1], 1>;
defm : X86WriteRes<WriteVecMoveY, [ZnFPU], 2, [1], 2>;
defm : X86WriteRes<WriteVecMoveToGpr, [ZnFPU2], 2, [1], 1>;
defm : X86WriteRes<WriteVecMoveFromGpr, [ZnFPU2], 3, [1], 1>;
defm : X86WriteRes<WriteEMMS, [ZnFPU], 2, [1], 1>;
defm : ZnWriteResFpuPair<WriteVecShift, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteVecShiftX, [ZnFPU2], 1>;
defm : ZnWriteResFpuPair<WriteVecShiftY, [ZnFPU2], 2>;
defm : X86WriteResPairUnsupported<WriteVecShiftZ>;
defm : ZnWriteResFpuPair<WriteVecShiftImm, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteVecShiftImmX, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteVecShiftImmY, [ZnFPU], 1>;
defm : X86WriteResPairUnsupported<WriteVecShiftImmZ>;
defm : ZnWriteResFpuPair<WriteVecLogic, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteVecLogicX, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteVecLogicY, [ZnFPU], 1>;
defm : X86WriteResPairUnsupported<WriteVecLogicZ>;
defm : ZnWriteResFpuPair<WriteVecTest, [ZnFPU12], 1, [2], 1, 7, 1>;
defm : ZnWriteResFpuPair<WriteVecTestY, [ZnFPU12], 1, [2], 1, 7, 1>;
defm : X86WriteResPairUnsupported<WriteVecTestZ>;
defm : ZnWriteResFpuPair<WriteVecALU, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteVecALUX, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteVecALUY, [ZnFPU], 1>;
defm : X86WriteResPairUnsupported<WriteVecALUZ>;
defm : ZnWriteResFpuPair<WriteVecIMul, [ZnFPU0], 4>;
defm : ZnWriteResFpuPair<WriteVecIMulX, [ZnFPU0], 4>;
defm : ZnWriteResFpuPair<WriteVecIMulY, [ZnFPU0], 4>;
defm : X86WriteResPairUnsupported<WriteVecIMulZ>;
defm : ZnWriteResFpuPair<WritePMULLD, [ZnFPU0], 4, [1], 1, 7, 1>; // FIXME
defm : ZnWriteResFpuPair<WritePMULLDY, [ZnFPU0], 5, [2], 1, 7, 1>; // FIXME
defm : X86WriteResPairUnsupported<WritePMULLDZ>;
defm : ZnWriteResFpuPair<WriteShuffle, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteShuffleX, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteShuffleY, [ZnFPU], 1>;
defm : X86WriteResPairUnsupported<WriteShuffleZ>;
defm : ZnWriteResFpuPair<WriteVarShuffle, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteVarShuffleX,[ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteVarShuffleY,[ZnFPU], 1>;
defm : X86WriteResPairUnsupported<WriteVarShuffleZ>;
defm : ZnWriteResFpuPair<WriteBlend, [ZnFPU01], 1>;
defm : ZnWriteResFpuPair<WriteBlendY, [ZnFPU01], 1>;
defm : X86WriteResPairUnsupported<WriteBlendZ>;
defm : ZnWriteResFpuPair<WriteShuffle256, [ZnFPU], 2>;
defm : ZnWriteResFpuPair<WriteVarShuffle256, [ZnFPU], 2>;
defm : ZnWriteResFpuPair<WritePSADBW, [ZnFPU0], 3>;
defm : ZnWriteResFpuPair<WritePSADBWX, [ZnFPU0], 3>;
defm : ZnWriteResFpuPair<WritePSADBWY, [ZnFPU0], 3>;
defm : X86WriteResPairUnsupported<WritePSADBWZ>;
defm : ZnWriteResFpuPair<WritePHMINPOS, [ZnFPU0], 4>;
// Vector Shift Operations
defm : ZnWriteResFpuPair<WriteVarVecShift, [ZnFPU12], 1>;
defm : ZnWriteResFpuPair<WriteVarVecShiftY, [ZnFPU12], 1>;
defm : X86WriteResPairUnsupported<WriteVarVecShiftZ>;
// Vector insert/extract operations.
defm : ZnWriteResFpuPair<WriteVecInsert, [ZnFPU], 1>;
def : WriteRes<WriteVecExtract, [ZnFPU12, ZnFPU2]> {
let Latency = 2;
let ResourceCycles = [1, 2];
}
def : WriteRes<WriteVecExtractSt, [ZnAGU, ZnFPU12, ZnFPU2]> {
let Latency = 5;
let NumMicroOps = 2;
let ResourceCycles = [1, 2, 3];
}
// MOVMSK Instructions.
def : WriteRes<WriteFMOVMSK, [ZnFPU2]>;
def : WriteRes<WriteMMXMOVMSK, [ZnFPU2]>;
def : WriteRes<WriteVecMOVMSK, [ZnFPU2]>;
def : WriteRes<WriteVecMOVMSKY, [ZnFPU2]> {
let NumMicroOps = 2;
let Latency = 2;
let ResourceCycles = [2];
}
// AES Instructions.
defm : ZnWriteResFpuPair<WriteAESDecEnc, [ZnFPU01], 4>;
defm : ZnWriteResFpuPair<WriteAESIMC, [ZnFPU01], 4>;
defm : ZnWriteResFpuPair<WriteAESKeyGen, [ZnFPU01], 4>;
def : WriteRes<WriteFence, [ZnAGU]>;
def : WriteRes<WriteNop, []>;
// Following instructions with latency=100 are microcoded.
// We set long latency so as to block the entire pipeline.
defm : ZnWriteResFpuPair<WriteFShuffle256, [ZnFPU], 100>;
defm : ZnWriteResFpuPair<WriteFVarShuffle256, [ZnFPU], 100>;
// Microcoded Instructions
def ZnWriteMicrocoded : SchedWriteRes<[]> {
let Latency = 100;
}
def : SchedAlias<WriteMicrocoded, ZnWriteMicrocoded>;
def : SchedAlias<WriteFCMOV, ZnWriteMicrocoded>;
def : SchedAlias<WriteSystem, ZnWriteMicrocoded>;
def : SchedAlias<WriteMPSAD, ZnWriteMicrocoded>;
def : SchedAlias<WriteMPSADY, ZnWriteMicrocoded>;
def : SchedAlias<WriteMPSADLd, ZnWriteMicrocoded>;
def : SchedAlias<WriteMPSADYLd, ZnWriteMicrocoded>;
def : SchedAlias<WriteCLMul, ZnWriteMicrocoded>;
def : SchedAlias<WriteCLMulLd, ZnWriteMicrocoded>;
def : SchedAlias<WritePCmpIStrM, ZnWriteMicrocoded>;
def : SchedAlias<WritePCmpIStrMLd, ZnWriteMicrocoded>;
def : SchedAlias<WritePCmpEStrI, ZnWriteMicrocoded>;
def : SchedAlias<WritePCmpEStrILd, ZnWriteMicrocoded>;
def : SchedAlias<WritePCmpEStrM, ZnWriteMicrocoded>;
def : SchedAlias<WritePCmpEStrMLd, ZnWriteMicrocoded>;
def : SchedAlias<WritePCmpIStrI, ZnWriteMicrocoded>;
def : SchedAlias<WritePCmpIStrILd, ZnWriteMicrocoded>;
def : SchedAlias<WriteLDMXCSR, ZnWriteMicrocoded>;
def : SchedAlias<WriteSTMXCSR, ZnWriteMicrocoded>;
//=== Regex based InstRW ===//
// Notation:
// - r: register.
// - m = memory.
// - i = immediate
// - mm: 64 bit mmx register.
// - x = 128 bit xmm register.
// - (x)mm = mmx or xmm register.
// - y = 256 bit ymm register.
// - v = any vector register.
//=== Integer Instructions ===//
//-- Move instructions --//
// MOV.
// r16,m.
def : InstRW<[WriteALULd, ReadAfterLd], (instregex "MOV16rm")>;
// MOVSX, MOVZX.
// r,m.
def : InstRW<[WriteLoad], (instregex "MOV(S|Z)X32rm(8|16)")>;
// XCHG.
// r,m.
def ZnWriteXCHGrm : SchedWriteRes<[ZnAGU, ZnALU]> {
let Latency = 5;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteXCHGrm, ReadAfterLd], (instregex "XCHG(8|16|32|64)rm")>;
def : InstRW<[WriteMicrocoded], (instrs XLAT)>;
// POP16.
// r.
def ZnWritePop16r : SchedWriteRes<[ZnAGU]>{
let Latency = 5;
let NumMicroOps = 2;
}
def : InstRW<[ZnWritePop16r], (instregex "POP16rmm")>;
def : InstRW<[WriteMicrocoded], (instregex "POPF(16|32)")>;
def : InstRW<[WriteMicrocoded], (instregex "POPA(16|32)")>;
// PUSH.
// r. Has default values.
// m.
def ZnWritePUSH : SchedWriteRes<[ZnAGU]>{
let Latency = 4;
}
def : InstRW<[ZnWritePUSH], (instregex "PUSH(16|32)rmm")>;
//PUSHF
def : InstRW<[WriteMicrocoded], (instregex "PUSHF(16|32)")>;
// PUSHA.
def ZnWritePushA : SchedWriteRes<[ZnAGU]> {
let Latency = 8;
}
def : InstRW<[ZnWritePushA], (instregex "PUSHA(16|32)")>;
//LAHF
def : InstRW<[WriteMicrocoded], (instrs LAHF)>;
// MOVBE.
// r,m.
def ZnWriteMOVBE : SchedWriteRes<[ZnAGU, ZnALU]> {
let Latency = 5;
}
def : InstRW<[ZnWriteMOVBE, ReadAfterLd], (instregex "MOVBE(16|32|64)rm")>;
// m16,r16.
def : InstRW<[ZnWriteMOVBE], (instregex "MOVBE(16|32|64)mr")>;
//-- Arithmetic instructions --//
// ADD SUB.
// m,r/i.
def : InstRW<[WriteALULd], (instregex "(ADD|SUB)(8|16|32|64)m(r|i)",
"(ADD|SUB)(8|16|32|64)mi8",
"(ADD|SUB)64mi32")>;
// ADC SBB.
// m,r/i.
def : InstRW<[WriteALULd],
(instregex "(ADC|SBB)(8|16|32|64)m(r|i)",
"(ADC|SBB)(16|32|64)mi8",
"(ADC|SBB)64mi32")>;
// INC DEC NOT NEG.
// m.
def : InstRW<[WriteALULd],
(instregex "(INC|DEC|NOT|NEG)(8|16|32|64)m")>;
// MUL IMUL.
// r16.
def ZnWriteMul16 : SchedWriteRes<[ZnALU1, ZnMultiplier]> {
let Latency = 3;
}
def : InstRW<[ZnWriteMul16], (instrs IMUL16r, MUL16r)>;
def : InstRW<[ZnWriteMul16], (instrs IMUL16rr, IMUL16rri, IMUL16rri8)>; // TODO: is this right?
def : InstRW<[ZnWriteMul16], (instrs IMUL16rm, IMUL16rmi, IMUL16rmi8)>; // TODO: this is definitely wrong but matches what the instregex did.
// m16.
def ZnWriteMul16Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> {
let Latency = 8;
}
def : InstRW<[ZnWriteMul16Ld, ReadAfterLd], (instrs IMUL16m, MUL16m)>;
// r32.
def ZnWriteMul32 : SchedWriteRes<[ZnALU1, ZnMultiplier]> {
let Latency = 3;
}
def : InstRW<[ZnWriteMul32], (instrs IMUL32r, MUL32r)>;
def : InstRW<[ZnWriteMul32], (instrs IMUL32rr, IMUL32rri, IMUL32rri8)>; // TODO: is this right?
def : InstRW<[ZnWriteMul32], (instrs IMUL32rm, IMUL32rmi, IMUL32rmi8)>; // TODO: this is definitely wrong but matches what the instregex did.
// m32.
def ZnWriteMul32Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> {
let Latency = 8;
}
def : InstRW<[ZnWriteMul32Ld, ReadAfterLd], (instrs IMUL32m, MUL32m)>;
// r64.
def ZnWriteMul64 : SchedWriteRes<[ZnALU1, ZnMultiplier]> {
let Latency = 4;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteMul64], (instrs IMUL64r, MUL64r)>;
def : InstRW<[ZnWriteMul64], (instrs IMUL64rr, IMUL64rri8, IMUL64rri32)>; // TODO: is this right?
def : InstRW<[ZnWriteMul64], (instrs IMUL64rm, IMUL64rmi32, IMUL64rmi8)>; // TODO: this is definitely wrong but matches what the instregex did.
// m64.
def ZnWriteMul64Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> {
let Latency = 9;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteMul64Ld, ReadAfterLd], (instrs IMUL64m, MUL64m)>;
// MULX.
// r32,r32,r32.
def ZnWriteMulX32 : SchedWriteRes<[ZnALU1, ZnMultiplier]> {
let Latency = 3;
let ResourceCycles = [1, 2];
}
def : InstRW<[ZnWriteMulX32], (instrs MULX32rr)>;
// r32,r32,m32.
def ZnWriteMulX32Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> {
let Latency = 8;
let ResourceCycles = [1, 2, 2];
}
def : InstRW<[ZnWriteMulX32Ld, ReadAfterLd], (instrs MULX32rm)>;
// r64,r64,r64.
def ZnWriteMulX64 : SchedWriteRes<[ZnALU1]> {
let Latency = 3;
}
def : InstRW<[ZnWriteMulX64], (instrs MULX64rr)>;
// r64,r64,m64.
def ZnWriteMulX64Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> {
let Latency = 8;
}
def : InstRW<[ZnWriteMulX64Ld, ReadAfterLd], (instrs MULX64rm)>;
//-- Control transfer instructions --//
// J(E|R)CXZ.
def ZnWriteJCXZ : SchedWriteRes<[ZnALU03]>;
def : InstRW<[ZnWriteJCXZ], (instrs JCXZ, JECXZ, JRCXZ)>;
// INTO
def : InstRW<[WriteMicrocoded], (instrs INTO)>;
// LOOP.
def ZnWriteLOOP : SchedWriteRes<[ZnALU03]>;
def : InstRW<[ZnWriteLOOP], (instrs LOOP)>;
// LOOP(N)E, LOOP(N)Z
def ZnWriteLOOPE : SchedWriteRes<[ZnALU03]>;
def : InstRW<[ZnWriteLOOPE], (instrs LOOPE, LOOPNE)>;
// CALL.
// r.
def ZnWriteCALLr : SchedWriteRes<[ZnAGU, ZnALU03]>;
def : InstRW<[ZnWriteCALLr], (instregex "CALL(16|32)r")>;
def : InstRW<[WriteMicrocoded], (instregex "CALL(16|32)m")>;
// RET.
def ZnWriteRET : SchedWriteRes<[ZnALU03]> {
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteRET], (instregex "RET(L|Q|W)", "LRET(L|Q|W)",
"IRET(16|32|64)")>;
//-- Logic instructions --//
// AND OR XOR.
// m,r/i.
def : InstRW<[WriteALULd],
(instregex "(AND|OR|XOR)(8|16|32|64)m(r|i)",
"(AND|OR|XOR)(8|16|32|64)mi8", "(AND|OR|XOR)64mi32")>;
// Define ALU latency variants
def ZnWriteALULat2 : SchedWriteRes<[ZnALU]> {
let Latency = 2;
}
def ZnWriteALULat2Ld : SchedWriteRes<[ZnAGU, ZnALU]> {
let Latency = 6;
}
// BT.
// m,i.
def : InstRW<[WriteShiftLd], (instregex "BT(16|32|64)mi8")>;
// BTR BTS BTC.
// r,r,i.
def ZnWriteBTRSC : SchedWriteRes<[ZnALU]> {
let Latency = 2;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteBTRSC], (instregex "BT(R|S|C)(16|32|64)r(r|i8)")>;
// m,r,i.
def ZnWriteBTRSCm : SchedWriteRes<[ZnAGU, ZnALU]> {
let Latency = 6;
let NumMicroOps = 2;
}
// m,r,i.
def : InstRW<[ZnWriteBTRSCm], (instregex "BT(R|S|C)(16|32|64)m(r|i8)")>;
// BLSI BLSMSK BLSR.
// r,r.
def : InstRW<[ZnWriteALULat2], (instregex "BLS(I|MSK|R)(32|64)rr")>;
// r,m.
def : InstRW<[ZnWriteALULat2Ld], (instregex "BLS(I|MSK|R)(32|64)rm")>;
// CLD STD.
def : InstRW<[WriteALU], (instrs STD, CLD)>;
// PDEP PEXT.
// r,r,r.
def : InstRW<[WriteMicrocoded], (instregex "PDEP(32|64)rr", "PEXT(32|64)rr")>;
// r,r,m.
def : InstRW<[WriteMicrocoded], (instregex "PDEP(32|64)rm", "PEXT(32|64)rm")>;
// RCR RCL.
// m,i.
def : InstRW<[WriteMicrocoded], (instregex "RC(R|L)(8|16|32|64)m(1|i|CL)")>;
// SHR SHL SAR.
// m,i.
def : InstRW<[WriteShiftLd], (instregex "S(A|H)(R|L)(8|16|32|64)m(i|1)")>;
// SHRD SHLD.
// m,r
def : InstRW<[WriteShiftLd], (instregex "SH(R|L)D(16|32|64)mri8")>;
// r,r,cl.
def : InstRW<[WriteMicrocoded], (instregex "SH(R|L)D(16|32|64)rrCL")>;
// m,r,cl.
def : InstRW<[WriteMicrocoded], (instregex "SH(R|L)D(16|32|64)mrCL")>;
//-- Misc instructions --//
// CMPXCHG.
def ZnWriteCMPXCHG : SchedWriteRes<[ZnAGU, ZnALU]> {
let Latency = 8;
let NumMicroOps = 5;
}
def : InstRW<[ZnWriteCMPXCHG], (instregex "CMPXCHG(8|16|32|64)rm")>;
// CMPXCHG8B.
def ZnWriteCMPXCHG8B : SchedWriteRes<[ZnAGU, ZnALU]> {
let NumMicroOps = 18;
}
def : InstRW<[ZnWriteCMPXCHG8B], (instrs CMPXCHG8B)>;
def : InstRW<[WriteMicrocoded], (instrs CMPXCHG16B)>;
// LEAVE
def ZnWriteLEAVE : SchedWriteRes<[ZnALU, ZnAGU]> {
let Latency = 8;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteLEAVE], (instregex "LEAVE")>;
// PAUSE.
def : InstRW<[WriteMicrocoded], (instrs PAUSE)>;
// RDTSC.
def : InstRW<[WriteMicrocoded], (instregex "RDTSC")>;
// RDPMC.
def : InstRW<[WriteMicrocoded], (instrs RDPMC)>;
// RDRAND.
def : InstRW<[WriteMicrocoded], (instregex "RDRAND(16|32|64)r")>;
// XGETBV.
def : InstRW<[WriteMicrocoded], (instregex "XGETBV")>;
//-- String instructions --//
// CMPS.
def : InstRW<[WriteMicrocoded], (instregex "CMPS(B|L|Q|W)")>;
// LODSB/W.
def : InstRW<[WriteMicrocoded], (instregex "LODS(B|W)")>;
// LODSD/Q.
def : InstRW<[WriteMicrocoded], (instregex "LODS(L|Q)")>;
// MOVS.
def : InstRW<[WriteMicrocoded], (instregex "MOVS(B|L|Q|W)")>;
// SCAS.
def : InstRW<[WriteMicrocoded], (instregex "SCAS(B|W|L|Q)")>;
// STOS
def : InstRW<[WriteMicrocoded], (instregex "STOS(B|L|Q|W)")>;
// XADD.
def ZnXADD : SchedWriteRes<[ZnALU]>;
def : InstRW<[ZnXADD], (instregex "XADD(8|16|32|64)rr")>;
def : InstRW<[WriteMicrocoded], (instregex "XADD(8|16|32|64)rm")>;
//=== Floating Point x87 Instructions ===//
//-- Move instructions --//
def ZnWriteFLDr : SchedWriteRes<[ZnFPU13]> ;
def ZnWriteSTr: SchedWriteRes<[ZnFPU23]> {
let Latency = 5;
let NumMicroOps = 2;
}
// LD_F.
// r.
def : InstRW<[ZnWriteFLDr], (instregex "LD_Frr")>;
// m.
def ZnWriteLD_F80m : SchedWriteRes<[ZnAGU, ZnFPU13]> {
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteLD_F80m], (instregex "LD_F80m")>;
// FBLD.
def : InstRW<[WriteMicrocoded], (instregex "FBLDm")>;
// FST(P).
// r.
def : InstRW<[ZnWriteSTr], (instregex "ST_(F|FP)rr")>;
// m80.
def ZnWriteST_FP80m : SchedWriteRes<[ZnAGU, ZnFPU23]> {
let Latency = 5;
}
def : InstRW<[ZnWriteST_FP80m], (instregex "ST_FP80m")>;
// FBSTP.
// m80.
def : InstRW<[WriteMicrocoded], (instregex "FBSTPm")>;
def ZnWriteFXCH : SchedWriteRes<[ZnFPU]>;
// FXCHG.
def : InstRW<[ZnWriteFXCH], (instrs XCH_F)>;
// FILD.
def ZnWriteFILD : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 11;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteFILD], (instregex "ILD_F(16|32|64)m")>;
// FIST(P) FISTTP.
def ZnWriteFIST : SchedWriteRes<[ZnAGU, ZnFPU23]> {
let Latency = 12;
}
def : InstRW<[ZnWriteFIST], (instregex "IS(T|TT)_(F|FP)(16|32|64)m")>;
def ZnWriteFPU13 : SchedWriteRes<[ZnAGU, ZnFPU13]> {
let Latency = 8;
}
def ZnWriteFPU3 : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 11;
}
// FLDZ.
def : SchedAlias<WriteFLD0, ZnWriteFPU13>;
// FLD1.
def : SchedAlias<WriteFLD1, ZnWriteFPU3>;
// FLDPI FLDL2E etc.
def : SchedAlias<WriteFLDC, ZnWriteFPU3>;
// FNSTSW.
// AX.
def : InstRW<[WriteMicrocoded], (instrs FNSTSW16r)>;
// m16.
def : InstRW<[WriteMicrocoded], (instrs FNSTSWm)>;
// FLDCW.
def : InstRW<[WriteMicrocoded], (instrs FLDCW16m)>;
// FNSTCW.
def : InstRW<[WriteMicrocoded], (instrs FNSTCW16m)>;
// FINCSTP FDECSTP.
def : InstRW<[ZnWriteFPU3], (instrs FINCSTP, FDECSTP)>;
// FFREE.
def : InstRW<[ZnWriteFPU3], (instregex "FFREE")>;
// FNSAVE.
def : InstRW<[WriteMicrocoded], (instregex "FSAVEm")>;
// FRSTOR.
def : InstRW<[WriteMicrocoded], (instregex "FRSTORm")>;
//-- Arithmetic instructions --//
def ZnWriteFPU3Lat1 : SchedWriteRes<[ZnFPU3]> ;
def ZnWriteFPU0Lat1 : SchedWriteRes<[ZnFPU0]> ;
def ZnWriteFPU0Lat1Ld : SchedWriteRes<[ZnAGU, ZnFPU0]> {
let Latency = 8;
}
// FCHS.
def : InstRW<[ZnWriteFPU3Lat1], (instregex "CHS_F")>;
// FCOM(P) FUCOM(P).
// r.
def : InstRW<[ZnWriteFPU0Lat1], (instregex "COM(P?)_FST0r", "UCOM_F(P?)r")>;
// m.
def : InstRW<[ZnWriteFPU0Lat1Ld], (instregex "FCOM(P?)(32|64)m")>;
// FCOMPP FUCOMPP.
// r.
def : InstRW<[ZnWriteFPU0Lat1], (instrs FCOMPP, UCOM_FPPr)>;
def ZnWriteFPU02 : SchedWriteRes<[ZnAGU, ZnFPU02]>
{
let Latency = 9;
}
// FCOMI(P) FUCOMI(P).
// m.
def : InstRW<[ZnWriteFPU02], (instrs COM_FIPr, COM_FIr, UCOM_FIPr, UCOM_FIr)>;
def ZnWriteFPU03 : SchedWriteRes<[ZnAGU, ZnFPU03]>
{
let Latency = 12;
let NumMicroOps = 2;
let ResourceCycles = [1,3];
}
// FICOM(P).
def : InstRW<[ZnWriteFPU03], (instregex "FICOM(P?)(16|32)m")>;
// FTST.
def : InstRW<[ZnWriteFPU0Lat1], (instregex "TST_F")>;
// FXAM.
def : InstRW<[ZnWriteFPU3Lat1], (instrs FXAM)>;
// FPREM.
def : InstRW<[WriteMicrocoded], (instrs FPREM)>;
// FPREM1.
def : InstRW<[WriteMicrocoded], (instrs FPREM1)>;
// FRNDINT.
def : InstRW<[WriteMicrocoded], (instrs FRNDINT)>;
// FSCALE.
def : InstRW<[WriteMicrocoded], (instrs FSCALE)>;
// FXTRACT.
def : InstRW<[WriteMicrocoded], (instrs FXTRACT)>;
// FNOP.
def : InstRW<[ZnWriteFPU0Lat1], (instrs FNOP)>;
// WAIT.
def : InstRW<[ZnWriteFPU0Lat1], (instrs WAIT)>;
// FNCLEX.
def : InstRW<[WriteMicrocoded], (instrs FNCLEX)>;
// FNINIT.
def : InstRW<[WriteMicrocoded], (instrs FNINIT)>;
//=== Integer MMX and XMM Instructions ===//
// PACKSSWB/DW.
// mm <- mm.
def ZnWriteFPU12 : SchedWriteRes<[ZnFPU12]> ;
def ZnWriteFPU12Y : SchedWriteRes<[ZnFPU12]> {
let NumMicroOps = 2;
}
def ZnWriteFPU12m : SchedWriteRes<[ZnAGU, ZnFPU12]> ;
def ZnWriteFPU12Ym : SchedWriteRes<[ZnAGU, ZnFPU12]> {
let Latency = 8;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteFPU12], (instrs MMX_PACKSSDWirr,
MMX_PACKSSWBirr,
MMX_PACKUSWBirr)>;
def : InstRW<[ZnWriteFPU12m], (instrs MMX_PACKSSDWirm,
MMX_PACKSSWBirm,
MMX_PACKUSWBirm)>;
// VPMOVSX/ZX BW BD BQ WD WQ DQ.
// y <- x.
def : InstRW<[ZnWriteFPU12Y], (instregex "VPMOV(SX|ZX)(BW|BD|BQ|WD|WQ|DQ)Yrr")>;
def : InstRW<[ZnWriteFPU12Ym], (instregex "VPMOV(SX|ZX)(BW|BD|BQ|WD|WQ|DQ)Yrm")>;
def ZnWriteFPU013 : SchedWriteRes<[ZnFPU013]> ;
def ZnWriteFPU013Y : SchedWriteRes<[ZnFPU013]> {
let Latency = 2;
}
def ZnWriteFPU013m : SchedWriteRes<[ZnAGU, ZnFPU013]> {
let Latency = 8;
let NumMicroOps = 2;
}
def ZnWriteFPU013Ld : SchedWriteRes<[ZnAGU, ZnFPU013]> {
let Latency = 8;
let NumMicroOps = 2;
}
def ZnWriteFPU013LdY : SchedWriteRes<[ZnAGU, ZnFPU013]> {
let Latency = 9;
let NumMicroOps = 2;
}
// PBLENDW.
// x,x,i / v,v,v,i
def : InstRW<[ZnWriteFPU013], (instregex "(V?)PBLENDWrri")>;
// ymm
def : InstRW<[ZnWriteFPU013Y], (instrs VPBLENDWYrri)>;
// x,m,i / v,v,m,i
def : InstRW<[ZnWriteFPU013Ld], (instregex "(V?)PBLENDWrmi")>;
// y,m,i
def : InstRW<[ZnWriteFPU013LdY], (instrs VPBLENDWYrmi)>;
def ZnWriteFPU01 : SchedWriteRes<[ZnFPU01]> ;
def ZnWriteFPU01Y : SchedWriteRes<[ZnFPU01]> {
let NumMicroOps = 2;
}
// VPBLENDD.
// v,v,v,i.
def : InstRW<[ZnWriteFPU01], (instrs VPBLENDDrri)>;
// ymm
def : InstRW<[ZnWriteFPU01Y], (instrs VPBLENDDYrri)>;
// v,v,m,i
def ZnWriteFPU01Op2 : SchedWriteRes<[ZnAGU, ZnFPU01]> {
let NumMicroOps = 2;
let Latency = 8;
let ResourceCycles = [1, 2];
}
def ZnWriteFPU01Op2Y : SchedWriteRes<[ZnAGU, ZnFPU01]> {
let NumMicroOps = 2;
let Latency = 9;
let ResourceCycles = [1, 3];
}
def : InstRW<[ZnWriteFPU01Op2], (instrs VPBLENDDrmi)>;
def : InstRW<[ZnWriteFPU01Op2Y], (instrs VPBLENDDYrmi)>;
// MASKMOVQ.
def : InstRW<[WriteMicrocoded], (instregex "MMX_MASKMOVQ(64)?")>;
// MASKMOVDQU.
def : InstRW<[WriteMicrocoded], (instregex "(V?)MASKMOVDQU(64)?")>;
// VPMASKMOVD.
// ymm
def : InstRW<[WriteMicrocoded],
(instregex "VPMASKMOVD(Y?)rm")>;
// m, v,v.
def : InstRW<[WriteMicrocoded], (instregex "VPMASKMOV(D|Q)(Y?)mr")>;
// VPBROADCAST B/W.
// x, m8/16.
def ZnWriteVPBROADCAST128Ld : SchedWriteRes<[ZnAGU, ZnFPU12]> {
let Latency = 8;
let NumMicroOps = 2;
let ResourceCycles = [1, 2];
}
def : InstRW<[ZnWriteVPBROADCAST128Ld],
(instregex "VPBROADCAST(B|W)rm")>;
// y, m8/16
def ZnWriteVPBROADCAST256Ld : SchedWriteRes<[ZnAGU, ZnFPU1]> {
let Latency = 8;
let NumMicroOps = 2;
let ResourceCycles = [1, 2];
}
def : InstRW<[ZnWriteVPBROADCAST256Ld],
(instregex "VPBROADCAST(B|W)Yrm")>;
// VPGATHER.
def : InstRW<[WriteMicrocoded], (instregex "VPGATHER(Q|D)(Q|D)(Y?)rm")>;
//-- Arithmetic instructions --//
// HADD, HSUB PS/PD
// PHADD|PHSUB (S) W/D.
def : SchedAlias<WritePHAdd, ZnWriteMicrocoded>;
def : SchedAlias<WritePHAddLd, ZnWriteMicrocoded>;
def : SchedAlias<WritePHAddX, ZnWriteMicrocoded>;
def : SchedAlias<WritePHAddXLd, ZnWriteMicrocoded>;
def : SchedAlias<WritePHAddY, ZnWriteMicrocoded>;
def : SchedAlias<WritePHAddYLd, ZnWriteMicrocoded>;
// PCMPGTQ.
def ZnWritePCMPGTQr : SchedWriteRes<[ZnFPU03]>;
def : InstRW<[ZnWritePCMPGTQr], (instregex "(V?)PCMPGTQ(Y?)rr")>;
// x <- x,m.
def ZnWritePCMPGTQm : SchedWriteRes<[ZnAGU, ZnFPU03]> {
let Latency = 8;
}
// ymm.
def ZnWritePCMPGTQYm : SchedWriteRes<[ZnAGU, ZnFPU03]> {
let Latency = 8;
let NumMicroOps = 2;
let ResourceCycles = [1,2];
}
def : InstRW<[ZnWritePCMPGTQm], (instregex "(V?)PCMPGTQrm")>;
def : InstRW<[ZnWritePCMPGTQYm], (instrs VPCMPGTQYrm)>;
//-- Logic instructions --//
// PSLL,PSRL,PSRA W/D/Q.
// x,x / v,v,x.
def ZnWritePShift : SchedWriteRes<[ZnFPU2]> ;
def ZnWritePShiftY : SchedWriteRes<[ZnFPU2]> {
let Latency = 2;
}
// PSLL,PSRL DQ.
def : InstRW<[ZnWritePShift], (instregex "(V?)PS(R|L)LDQri")>;
def : InstRW<[ZnWritePShiftY], (instregex "(V?)PS(R|L)LDQYri")>;
//=== Floating Point XMM and YMM Instructions ===//
//-- Move instructions --//
// VPERM2F128.
def : InstRW<[WriteMicrocoded], (instrs VPERM2F128rr)>;
def : InstRW<[WriteMicrocoded], (instrs VPERM2F128rm)>;
def ZnWriteBROADCAST : SchedWriteRes<[ZnAGU, ZnFPU13]> {
let NumMicroOps = 2;
let Latency = 8;
}
// VBROADCASTF128.
def : InstRW<[ZnWriteBROADCAST], (instrs VBROADCASTF128)>;
// EXTRACTPS.
// r32,x,i.
def ZnWriteEXTRACTPSr : SchedWriteRes<[ZnFPU12, ZnFPU2]> {
let Latency = 2;
let NumMicroOps = 2;
let ResourceCycles = [1, 2];
}
def : InstRW<[ZnWriteEXTRACTPSr], (instregex "(V?)EXTRACTPSrr")>;
def ZnWriteEXTRACTPSm : SchedWriteRes<[ZnAGU,ZnFPU12, ZnFPU2]> {
let Latency = 5;
let NumMicroOps = 2;
let ResourceCycles = [5, 1, 2];
}
// m32,x,i.
def : InstRW<[ZnWriteEXTRACTPSm], (instregex "(V?)EXTRACTPSmr")>;
// VEXTRACTF128.
// x,y,i.
def : InstRW<[ZnWriteFPU013], (instrs VEXTRACTF128rr)>;
// m128,y,i.
def : InstRW<[ZnWriteFPU013m], (instrs VEXTRACTF128mr)>;
def ZnWriteVINSERT128r: SchedWriteRes<[ZnFPU013]> {
let Latency = 2;
let ResourceCycles = [2];
}
def ZnWriteVINSERT128Ld: SchedWriteRes<[ZnAGU,ZnFPU013]> {
let Latency = 9;
let NumMicroOps = 2;
let ResourceCycles = [1, 2];
}
// VINSERTF128.
// y,y,x,i.
def : InstRW<[ZnWriteVINSERT128r], (instrs VINSERTF128rr)>;
def : InstRW<[ZnWriteVINSERT128Ld], (instrs VINSERTF128rm)>;
// VGATHER.
def : InstRW<[WriteMicrocoded], (instregex "VGATHER(Q|D)(PD|PS)(Y?)rm")>;
//-- Conversion instructions --//
def ZnWriteCVTPD2PSr: SchedWriteRes<[ZnFPU3]> {
let Latency = 4;
}
def ZnWriteCVTPD2PSYr: SchedWriteRes<[ZnFPU3]> {
let Latency = 5;
}
// CVTPD2PS.
// x,x.
def : SchedAlias<WriteCvtPD2PS, ZnWriteCVTPD2PSr>;
// y,y.
def : SchedAlias<WriteCvtPD2PSY, ZnWriteCVTPD2PSYr>;
// z,z.
defm : X86WriteResUnsupported<WriteCvtPD2PSZ>;
def ZnWriteCVTPD2PSLd: SchedWriteRes<[ZnAGU,ZnFPU03]> {
let Latency = 11;
let NumMicroOps = 2;
let ResourceCycles = [1,2];
}
// x,m128.
def : SchedAlias<WriteCvtPD2PSLd, ZnWriteCVTPD2PSLd>;
// x,m256.
def ZnWriteCVTPD2PSYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 11;
}
def : SchedAlias<WriteCvtPD2PSYLd, ZnWriteCVTPD2PSYLd>;
// z,m512
defm : X86WriteResUnsupported<WriteCvtPD2PSZLd>;
// CVTSD2SS.
// x,x.
// Same as WriteCVTPD2PSr
def : SchedAlias<WriteCvtSD2SS, ZnWriteCVTPD2PSr>;
// x,m64.
def : SchedAlias<WriteCvtSD2SSLd, ZnWriteCVTPD2PSLd>;
// CVTPS2PD.
// x,x.
def ZnWriteCVTPS2PDr : SchedWriteRes<[ZnFPU3]> {
let Latency = 3;
}
def : SchedAlias<WriteCvtPS2PD, ZnWriteCVTPS2PDr>;
// x,m64.
// y,m128.
def ZnWriteCVTPS2PDLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 10;
let NumMicroOps = 2;
}
def : SchedAlias<WriteCvtPS2PDLd, ZnWriteCVTPS2PDLd>;
def : SchedAlias<WriteCvtPS2PDYLd, ZnWriteCVTPS2PDLd>;
defm : X86WriteResUnsupported<WriteCvtPS2PDZLd>;
// y,x.
def ZnWriteVCVTPS2PDY : SchedWriteRes<[ZnFPU3]> {
let Latency = 3;
}
def : SchedAlias<WriteCvtPS2PDY, ZnWriteVCVTPS2PDY>;
defm : X86WriteResUnsupported<WriteCvtPS2PDZ>;
// CVTSS2SD.
// x,x.
def ZnWriteCVTSS2SDr : SchedWriteRes<[ZnFPU3]> {
let Latency = 4;
}
def : SchedAlias<WriteCvtSS2SD, ZnWriteCVTSS2SDr>;
// x,m32.
def ZnWriteCVTSS2SDLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 11;
let NumMicroOps = 2;
let ResourceCycles = [1, 2];
}
def : SchedAlias<WriteCvtSS2SDLd, ZnWriteCVTSS2SDLd>;
def ZnWriteCVTDQ2PDr: SchedWriteRes<[ZnFPU12,ZnFPU3]> {
let Latency = 5;
}
// CVTDQ2PD.
// x,x.
def : InstRW<[ZnWriteCVTDQ2PDr], (instregex "(V)?CVTDQ2PDrr")>;
// Same as xmm
// y,x.
def : InstRW<[ZnWriteCVTDQ2PDr], (instrs VCVTDQ2PDYrr)>;
def ZnWriteCVTPD2DQr: SchedWriteRes<[ZnFPU12, ZnFPU3]> {
let Latency = 5;
}
// CVT(T)PD2DQ.
// x,x.
def : InstRW<[ZnWriteCVTDQ2PDr], (instregex "(V?)CVT(T?)PD2DQrr")>;
def ZnWriteCVTPD2DQLd: SchedWriteRes<[ZnAGU,ZnFPU12,ZnFPU3]> {
let Latency = 12;
let NumMicroOps = 2;
}
// x,m128.
def : InstRW<[ZnWriteCVTPD2DQLd], (instregex "(V?)CVT(T?)PD2DQrm")>;
// same as xmm handling
// x,y.
def : InstRW<[ZnWriteCVTPD2DQr], (instregex "VCVT(T?)PD2DQYrr")>;
// x,m256.
def : InstRW<[ZnWriteCVTPD2DQLd], (instregex "VCVT(T?)PD2DQYrm")>;
def ZnWriteCVTPS2PIr: SchedWriteRes<[ZnFPU3]> {
let Latency = 4;
}
// CVT(T)PS2PI.
// mm,x.
def : InstRW<[ZnWriteCVTPS2PIr], (instregex "MMX_CVT(T?)PS2PIirr")>;
// CVTPI2PD.
// x,mm.
def : InstRW<[ZnWriteCVTPS2PDr], (instrs MMX_CVTPI2PDirr)>;
// CVT(T)PD2PI.
// mm,x.
def : InstRW<[ZnWriteCVTPS2PIr], (instregex "MMX_CVT(T?)PD2PIirr")>;
def ZnWriteCVSTSI2SSr: SchedWriteRes<[ZnFPU3]> {
let Latency = 5;
}
// same as CVTPD2DQr
// CVT(T)SS2SI.
// r32,x.
def : InstRW<[ZnWriteCVTPD2DQr], (instregex "(V?)CVT(T?)SS2SI(64)?rr")>;
// same as CVTPD2DQm
// r32,m32.
def : InstRW<[ZnWriteCVTPD2DQLd], (instregex "(V?)CVT(T?)SS2SI(64)?rm")>;
def ZnWriteCVSTSI2SDr: SchedWriteRes<[ZnFPU013, ZnFPU3]> {
let Latency = 5;
}
// CVTSI2SD.
// x,r32/64.
def : InstRW<[ZnWriteCVSTSI2SDr], (instregex "(V?)CVTSI(64)?2SDrr")>;
def ZnWriteCVSTSI2SIr: SchedWriteRes<[ZnFPU3, ZnFPU2]> {
let Latency = 5;
}
def ZnWriteCVSTSI2SILd: SchedWriteRes<[ZnAGU, ZnFPU3, ZnFPU2]> {
let Latency = 12;
}
// CVTSD2SI.
// r32/64
def : InstRW<[ZnWriteCVSTSI2SIr], (instregex "(V?)CVT(T?)SD2SI(64)?rr")>;
// r32,m32.
def : InstRW<[ZnWriteCVSTSI2SILd], (instregex "(V?)CVT(T?)SD2SI(64)?rm")>;
// VCVTPS2PH.
// x,v,i.
def : SchedAlias<WriteCvtPS2PH, ZnWriteMicrocoded>;
def : SchedAlias<WriteCvtPS2PHY, ZnWriteMicrocoded>;
defm : X86WriteResUnsupported<WriteCvtPS2PHZ>;
// m,v,i.
def : SchedAlias<WriteCvtPS2PHSt, ZnWriteMicrocoded>;
def : SchedAlias<WriteCvtPS2PHYSt, ZnWriteMicrocoded>;
defm : X86WriteResUnsupported<WriteCvtPS2PHZSt>;
// VCVTPH2PS.
// v,x.
def : SchedAlias<WriteCvtPH2PS, ZnWriteMicrocoded>;
def : SchedAlias<WriteCvtPH2PSY, ZnWriteMicrocoded>;
defm : X86WriteResUnsupported<WriteCvtPH2PSZ>;
// v,m.
def : SchedAlias<WriteCvtPH2PSLd, ZnWriteMicrocoded>;
def : SchedAlias<WriteCvtPH2PSYLd, ZnWriteMicrocoded>;
defm : X86WriteResUnsupported<WriteCvtPH2PSZLd>;
//-- SSE4A instructions --//
// EXTRQ
def ZnWriteEXTRQ: SchedWriteRes<[ZnFPU12, ZnFPU2]> {
let Latency = 2;
}
def : InstRW<[ZnWriteEXTRQ], (instregex "EXTRQ")>;
// INSERTQ
def ZnWriteINSERTQ: SchedWriteRes<[ZnFPU03,ZnFPU1]> {
let Latency = 4;
}
def : InstRW<[ZnWriteINSERTQ], (instregex "INSERTQ")>;
//-- SHA instructions --//
// SHA256MSG2
def : InstRW<[WriteMicrocoded], (instregex "SHA256MSG2(Y?)r(r|m)")>;
// SHA1MSG1, SHA256MSG1
// x,x.
def ZnWriteSHA1MSG1r : SchedWriteRes<[ZnFPU12]> {
let Latency = 2;
let ResourceCycles = [2];
}
def : InstRW<[ZnWriteSHA1MSG1r], (instregex "SHA(1|256)MSG1rr")>;
// x,m.
def ZnWriteSHA1MSG1Ld : SchedWriteRes<[ZnAGU, ZnFPU12]> {
let Latency = 9;
let ResourceCycles = [1,2];
}
def : InstRW<[ZnWriteSHA1MSG1Ld], (instregex "SHA(1|256)MSG1rm")>;
// SHA1MSG2
// x,x.
def ZnWriteSHA1MSG2r : SchedWriteRes<[ZnFPU12]> ;
def : InstRW<[ZnWriteSHA1MSG2r], (instregex "SHA1MSG2rr")>;
// x,m.
def ZnWriteSHA1MSG2Ld : SchedWriteRes<[ZnAGU, ZnFPU12]> {
let Latency = 8;
}
def : InstRW<[ZnWriteSHA1MSG2Ld], (instregex "SHA1MSG2rm")>;
// SHA1NEXTE
// x,x.
def ZnWriteSHA1NEXTEr : SchedWriteRes<[ZnFPU1]> ;
def : InstRW<[ZnWriteSHA1NEXTEr], (instregex "SHA1NEXTErr")>;
// x,m.
def ZnWriteSHA1NEXTELd : SchedWriteRes<[ZnAGU, ZnFPU1]> {
let Latency = 8;
}
def : InstRW<[ZnWriteSHA1NEXTELd], (instregex "SHA1NEXTErm")>;
// SHA1RNDS4
// x,x.
def ZnWriteSHA1RNDS4r : SchedWriteRes<[ZnFPU1]> {
let Latency = 6;
}
def : InstRW<[ZnWriteSHA1RNDS4r], (instregex "SHA1RNDS4rr")>;
// x,m.
def ZnWriteSHA1RNDS4Ld : SchedWriteRes<[ZnAGU, ZnFPU1]> {
let Latency = 13;
}
def : InstRW<[ZnWriteSHA1RNDS4Ld], (instregex "SHA1RNDS4rm")>;
// SHA256RNDS2
// x,x.
def ZnWriteSHA256RNDS2r : SchedWriteRes<[ZnFPU1]> {
let Latency = 4;
}
def : InstRW<[ZnWriteSHA256RNDS2r], (instregex "SHA256RNDS2rr")>;
// x,m.
def ZnWriteSHA256RNDS2Ld : SchedWriteRes<[ZnAGU, ZnFPU1]> {
let Latency = 11;
}
def : InstRW<[ZnWriteSHA256RNDS2Ld], (instregex "SHA256RNDS2rm")>;
//-- Arithmetic instructions --//
// HADD, HSUB PS/PD
def : SchedAlias<WriteFHAdd, ZnWriteMicrocoded>;
def : SchedAlias<WriteFHAddLd, ZnWriteMicrocoded>;
def : SchedAlias<WriteFHAddY, ZnWriteMicrocoded>;
def : SchedAlias<WriteFHAddYLd, ZnWriteMicrocoded>;
// VDIVPS.
// TODO - convert to ZnWriteResFpuPair
// y,y,y.
def ZnWriteVDIVPSYr : SchedWriteRes<[ZnFPU3]> {
let Latency = 12;
let ResourceCycles = [12];
}
def : SchedAlias<WriteFDivY, ZnWriteVDIVPSYr>;
// y,y,m256.
def ZnWriteVDIVPSYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 19;
let NumMicroOps = 2;
let ResourceCycles = [1, 19];
}
def : SchedAlias<WriteFDivYLd, ZnWriteVDIVPSYLd>;
// VDIVPD.
// TODO - convert to ZnWriteResFpuPair
// y,y,y.
def ZnWriteVDIVPDY : SchedWriteRes<[ZnFPU3]> {
let Latency = 15;
let ResourceCycles = [15];
}
def : SchedAlias<WriteFDiv64Y, ZnWriteVDIVPDY>;
// y,y,m256.
def ZnWriteVDIVPDYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 22;
let NumMicroOps = 2;
let ResourceCycles = [1,22];
}
def : SchedAlias<WriteFDiv64YLd, ZnWriteVDIVPDYLd>;
// DPPS.
// x,x,i / v,v,v,i.
def : SchedAlias<WriteDPPS, ZnWriteMicrocoded>;
def : SchedAlias<WriteDPPSY, ZnWriteMicrocoded>;
// x,m,i / v,v,m,i.
def : SchedAlias<WriteDPPSLd, ZnWriteMicrocoded>;
def : SchedAlias<WriteDPPSYLd,ZnWriteMicrocoded>;
// DPPD.
// x,x,i.
def : SchedAlias<WriteDPPD, ZnWriteMicrocoded>;
// x,m,i.
def : SchedAlias<WriteDPPDLd, ZnWriteMicrocoded>;
// RSQRTSS
// TODO - convert to ZnWriteResFpuPair
// x,x.
def ZnWriteRSQRTSSr : SchedWriteRes<[ZnFPU02]> {
let Latency = 5;
}
def : SchedAlias<WriteFRsqrt, ZnWriteRSQRTSSr>;
// x,m128.
def ZnWriteRSQRTSSLd: SchedWriteRes<[ZnAGU, ZnFPU02]> {
let Latency = 12;
let NumMicroOps = 2;
let ResourceCycles = [1,2]; // FIXME: Is this right?
}
def : SchedAlias<WriteFRsqrtLd, ZnWriteRSQRTSSLd>;
// RSQRTPS
// TODO - convert to ZnWriteResFpuPair
// y,y.
def ZnWriteRSQRTPSYr : SchedWriteRes<[ZnFPU01]> {
let Latency = 5;
let NumMicroOps = 2;
let ResourceCycles = [2];
}
def : SchedAlias<WriteFRsqrtY, ZnWriteRSQRTPSYr>;
// y,m256.
def ZnWriteRSQRTPSYLd : SchedWriteRes<[ZnAGU, ZnFPU01]> {
let Latency = 12;
let NumMicroOps = 2;
}
def : SchedAlias<WriteFRsqrtYLd, ZnWriteRSQRTPSYLd>;
//-- Other instructions --//
// VZEROUPPER.
def : InstRW<[WriteMicrocoded], (instrs VZEROUPPER)>;
// VZEROALL.
def : InstRW<[WriteMicrocoded], (instrs VZEROALL)>;
} // SchedModel