llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp

422 lines
15 KiB
C++

//===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass optimizes atomic operations by using a single lane of a wavefront
/// to perform the atomic operation, thus reducing contention on that memory
/// location.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#define DEBUG_TYPE "amdgpu-atomic-optimizer"
using namespace llvm;
namespace {
enum DPP_CTRL {
DPP_ROW_SR1 = 0x111,
DPP_ROW_SR2 = 0x112,
DPP_ROW_SR4 = 0x114,
DPP_ROW_SR8 = 0x118,
DPP_WF_SR1 = 0x138,
DPP_ROW_BCAST15 = 0x142,
DPP_ROW_BCAST31 = 0x143
};
struct ReplacementInfo {
Instruction *I;
Instruction::BinaryOps Op;
unsigned ValIdx;
bool ValDivergent;
};
class AMDGPUAtomicOptimizer : public FunctionPass,
public InstVisitor<AMDGPUAtomicOptimizer> {
private:
SmallVector<ReplacementInfo, 8> ToReplace;
const LegacyDivergenceAnalysis *DA;
const DataLayout *DL;
DominatorTree *DT;
bool HasDPP;
void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op,
unsigned ValIdx, bool ValDivergent) const;
void setConvergent(CallInst *const CI) const;
public:
static char ID;
AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<LegacyDivergenceAnalysis>();
AU.addRequired<TargetPassConfig>();
}
void visitAtomicRMWInst(AtomicRMWInst &I);
void visitIntrinsicInst(IntrinsicInst &I);
};
} // namespace
char AMDGPUAtomicOptimizer::ID = 0;
char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
if (skipFunction(F)) {
return false;
}
DA = &getAnalysis<LegacyDivergenceAnalysis>();
DL = &F.getParent()->getDataLayout();
DominatorTreeWrapperPass *const DTW =
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DT = DTW ? &DTW->getDomTree() : nullptr;
const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
const TargetMachine &TM = TPC.getTM<TargetMachine>();
const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
HasDPP = ST.hasDPP();
visit(F);
const bool Changed = !ToReplace.empty();
for (ReplacementInfo &Info : ToReplace) {
optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
}
ToReplace.clear();
return Changed;
}
void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
// Early exit for unhandled address space atomic instructions.
switch (I.getPointerAddressSpace()) {
default:
return;
case AMDGPUAS::GLOBAL_ADDRESS:
case AMDGPUAS::LOCAL_ADDRESS:
break;
}
Instruction::BinaryOps Op;
switch (I.getOperation()) {
default:
return;
case AtomicRMWInst::Add:
Op = Instruction::Add;
break;
case AtomicRMWInst::Sub:
Op = Instruction::Sub;
break;
}
const unsigned PtrIdx = 0;
const unsigned ValIdx = 1;
// If the pointer operand is divergent, then each lane is doing an atomic
// operation on a different address, and we cannot optimize that.
if (DA->isDivergent(I.getOperand(PtrIdx))) {
return;
}
const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
// If the value operand is divergent, each lane is contributing a different
// value to the atomic calculation. We can only optimize divergent values if
// we have DPP available on our subtarget, and the atomic operation is 32
// bits.
if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
return;
}
// If we get here, we can optimize the atomic using a single wavefront-wide
// atomic operation to do the calculation for the entire wavefront, so
// remember the instruction so we can come back to it.
const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
ToReplace.push_back(Info);
}
void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
Instruction::BinaryOps Op;
switch (I.getIntrinsicID()) {
default:
return;
case Intrinsic::amdgcn_buffer_atomic_add:
case Intrinsic::amdgcn_struct_buffer_atomic_add:
case Intrinsic::amdgcn_raw_buffer_atomic_add:
Op = Instruction::Add;
break;
case Intrinsic::amdgcn_buffer_atomic_sub:
case Intrinsic::amdgcn_struct_buffer_atomic_sub:
case Intrinsic::amdgcn_raw_buffer_atomic_sub:
Op = Instruction::Sub;
break;
}
const unsigned ValIdx = 0;
const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
// If the value operand is divergent, each lane is contributing a different
// value to the atomic calculation. We can only optimize divergent values if
// we have DPP available on our subtarget, and the atomic operation is 32
// bits.
if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
return;
}
// If any of the other arguments to the intrinsic are divergent, we can't
// optimize the operation.
for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
if (DA->isDivergent(I.getOperand(Idx))) {
return;
}
}
// If we get here, we can optimize the atomic using a single wavefront-wide
// atomic operation to do the calculation for the entire wavefront, so
// remember the instruction so we can come back to it.
const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
ToReplace.push_back(Info);
}
void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
Instruction::BinaryOps Op,
unsigned ValIdx,
bool ValDivergent) const {
LLVMContext &Context = I.getContext();
// Start building just before the instruction.
IRBuilder<> B(&I);
Type *const Ty = I.getType();
const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
// This is the value in the atomic operation we need to combine in order to
// reduce the number of atomic operations.
Value *const V = I.getOperand(ValIdx);
// We need to know how many lanes are active within the wavefront, and we do
// this by getting the exec register, which tells us all the lanes that are
// active.
MDNode *const RegName =
llvm::MDNode::get(Context, llvm::MDString::get(Context, "exec"));
Value *const Metadata = llvm::MetadataAsValue::get(Context, RegName);
CallInst *const Exec =
B.CreateIntrinsic(Intrinsic::read_register, {B.getInt64Ty()}, {Metadata});
setConvergent(Exec);
// We need to know how many lanes are active within the wavefront that are
// below us. If we counted each lane linearly starting from 0, a lane is
// below us only if its associated index was less than ours. We do this by
// using the mbcnt intrinsic.
Value *const BitCast = B.CreateBitCast(Exec, VecTy);
Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
CallInst *const PartialMbcnt = B.CreateIntrinsic(
Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
{ExtractHi, PartialMbcnt});
Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false);
Value *LaneOffset = nullptr;
Value *NewV = nullptr;
// If we have a divergent value in each lane, we need to combine the value
// using DPP.
if (ValDivergent) {
// First we need to set all inactive invocations to 0, so that they can
// correctly contribute to the final result.
CallInst *const SetInactive = B.CreateIntrinsic(
Intrinsic::amdgcn_set_inactive, Ty, {V, B.getIntN(TyBitWidth, 0)});
setConvergent(SetInactive);
NewV = SetInactive;
const unsigned Iters = 6;
const unsigned DPPCtrl[Iters] = {DPP_ROW_SR1, DPP_ROW_SR2,
DPP_ROW_SR4, DPP_ROW_SR8,
DPP_ROW_BCAST15, DPP_ROW_BCAST31};
const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
// This loop performs an inclusive scan across the wavefront, with all lanes
// active (by using the WWM intrinsic).
for (unsigned Idx = 0; Idx < Iters; Idx++) {
CallInst *const DPP = B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, Ty,
{NewV, B.getInt32(DPPCtrl[Idx]),
B.getInt32(RowMask[Idx]),
B.getInt32(0xf), B.getFalse()});
setConvergent(DPP);
Value *const WWM = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP);
NewV = B.CreateBinOp(Op, NewV, WWM);
NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
}
// NewV has returned the inclusive scan of V, but for the lane offset we
// require an exclusive scan. We do this by shifting the values from the
// entire wavefront right by 1, and by setting the bound_ctrl (last argument
// to the intrinsic below) to true, we can guarantee that 0 will be shifted
// into the 0'th invocation.
CallInst *const DPP =
B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, {Ty},
{NewV, B.getInt32(DPP_WF_SR1), B.getInt32(0xf),
B.getInt32(0xf), B.getTrue()});
setConvergent(DPP);
LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP);
// Read the value from the last lane, which has accumlated the values of
// each active lane in the wavefront. This will be our new value with which
// we will provide to the atomic operation.
if (TyBitWidth == 64) {
Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
Value *const ExtractHi =
B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
CallInst *const ReadLaneLo = B.CreateIntrinsic(
Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
setConvergent(ReadLaneLo);
CallInst *const ReadLaneHi = B.CreateIntrinsic(
Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
setConvergent(ReadLaneHi);
Value *const PartialInsert = B.CreateInsertElement(
UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
Value *const Insert =
B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
NewV = B.CreateBitCast(Insert, Ty);
} else if (TyBitWidth == 32) {
CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane,
{}, {NewV, B.getInt32(63)});
setConvergent(ReadLane);
NewV = ReadLane;
} else {
llvm_unreachable("Unhandled atomic bit width");
}
} else {
// Get the total number of active lanes we have by using popcount.
Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Exec);
Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false);
// Calculate the new value we will be contributing to the atomic operation
// for the entire wavefront.
NewV = B.CreateMul(V, CtpopCast);
LaneOffset = B.CreateMul(V, MbcntCast);
}
// We only want a single lane to enter our new control flow, and we do this
// by checking if there are any active lanes below us. Only one lane will
// have 0 active lanes below us, so that will be the only one to progress.
Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0));
// Store I's original basic block before we split the block.
BasicBlock *const EntryBB = I.getParent();
// We need to introduce some new control flow to force a single lane to be
// active. We do this by splitting I's basic block at I, and introducing the
// new block such that:
// entry --> single_lane -\
// \------------------> exit
Instruction *const SingleLaneTerminator =
SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
// Move the IR builder into single_lane next.
B.SetInsertPoint(SingleLaneTerminator);
// Clone the original atomic operation into single lane, replacing the
// original value with our newly created one.
Instruction *const NewI = I.clone();
B.Insert(NewI);
NewI->setOperand(ValIdx, NewV);
// Move the IR builder into exit next, and start inserting just before the
// original instruction.
B.SetInsertPoint(&I);
// Create a PHI node to get our new atomic result into the exit block.
PHINode *const PHI = B.CreatePHI(Ty, 2);
PHI->addIncoming(UndefValue::get(Ty), EntryBB);
PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
// We need to broadcast the value who was the lowest active lane (the first
// lane) to all other lanes in the wavefront. We use an intrinsic for this,
// but have to handle 64-bit broadcasts with two calls to this intrinsic.
Value *BroadcastI = nullptr;
if (TyBitWidth == 64) {
Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
Value *const ExtractHi =
B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
CallInst *const ReadFirstLaneLo =
B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
setConvergent(ReadFirstLaneLo);
CallInst *const ReadFirstLaneHi =
B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
setConvergent(ReadFirstLaneHi);
Value *const PartialInsert = B.CreateInsertElement(
UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
Value *const Insert =
B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
BroadcastI = B.CreateBitCast(Insert, Ty);
} else if (TyBitWidth == 32) {
CallInst *const ReadFirstLane =
B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
setConvergent(ReadFirstLane);
BroadcastI = ReadFirstLane;
} else {
llvm_unreachable("Unhandled atomic bit width");
}
// Now that we have the result of our single atomic operation, we need to
// get our individual lane's slice into the result. We use the lane offset we
// previously calculated combined with the atomic result value we got from the
// first lane, to get our lane's index into the atomic result.
Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset);
// Replace the original atomic instruction with the new one.
I.replaceAllUsesWith(Result);
// And delete the original.
I.eraseFromParent();
}
void AMDGPUAtomicOptimizer::setConvergent(CallInst *const CI) const {
CI->addAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
}
INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
"AMDGPU atomic optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
"AMDGPU atomic optimizations", false, false)
FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
return new AMDGPUAtomicOptimizer();
}