forked from OSchip/llvm-project
422 lines
15 KiB
C++
422 lines
15 KiB
C++
//===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This pass optimizes atomic operations by using a single lane of a wavefront
|
|
/// to perform the atomic operation, thus reducing contention on that memory
|
|
/// location.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
#define DEBUG_TYPE "amdgpu-atomic-optimizer"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
enum DPP_CTRL {
|
|
DPP_ROW_SR1 = 0x111,
|
|
DPP_ROW_SR2 = 0x112,
|
|
DPP_ROW_SR4 = 0x114,
|
|
DPP_ROW_SR8 = 0x118,
|
|
DPP_WF_SR1 = 0x138,
|
|
DPP_ROW_BCAST15 = 0x142,
|
|
DPP_ROW_BCAST31 = 0x143
|
|
};
|
|
|
|
struct ReplacementInfo {
|
|
Instruction *I;
|
|
Instruction::BinaryOps Op;
|
|
unsigned ValIdx;
|
|
bool ValDivergent;
|
|
};
|
|
|
|
class AMDGPUAtomicOptimizer : public FunctionPass,
|
|
public InstVisitor<AMDGPUAtomicOptimizer> {
|
|
private:
|
|
SmallVector<ReplacementInfo, 8> ToReplace;
|
|
const LegacyDivergenceAnalysis *DA;
|
|
const DataLayout *DL;
|
|
DominatorTree *DT;
|
|
bool HasDPP;
|
|
|
|
void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op,
|
|
unsigned ValIdx, bool ValDivergent) const;
|
|
|
|
void setConvergent(CallInst *const CI) const;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addRequired<LegacyDivergenceAnalysis>();
|
|
AU.addRequired<TargetPassConfig>();
|
|
}
|
|
|
|
void visitAtomicRMWInst(AtomicRMWInst &I);
|
|
void visitIntrinsicInst(IntrinsicInst &I);
|
|
};
|
|
|
|
} // namespace
|
|
|
|
char AMDGPUAtomicOptimizer::ID = 0;
|
|
|
|
char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
|
|
|
|
bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
|
|
if (skipFunction(F)) {
|
|
return false;
|
|
}
|
|
|
|
DA = &getAnalysis<LegacyDivergenceAnalysis>();
|
|
DL = &F.getParent()->getDataLayout();
|
|
DominatorTreeWrapperPass *const DTW =
|
|
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
DT = DTW ? &DTW->getDomTree() : nullptr;
|
|
const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
|
|
const TargetMachine &TM = TPC.getTM<TargetMachine>();
|
|
const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
|
|
HasDPP = ST.hasDPP();
|
|
|
|
visit(F);
|
|
|
|
const bool Changed = !ToReplace.empty();
|
|
|
|
for (ReplacementInfo &Info : ToReplace) {
|
|
optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
|
|
}
|
|
|
|
ToReplace.clear();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
|
|
// Early exit for unhandled address space atomic instructions.
|
|
switch (I.getPointerAddressSpace()) {
|
|
default:
|
|
return;
|
|
case AMDGPUAS::GLOBAL_ADDRESS:
|
|
case AMDGPUAS::LOCAL_ADDRESS:
|
|
break;
|
|
}
|
|
|
|
Instruction::BinaryOps Op;
|
|
|
|
switch (I.getOperation()) {
|
|
default:
|
|
return;
|
|
case AtomicRMWInst::Add:
|
|
Op = Instruction::Add;
|
|
break;
|
|
case AtomicRMWInst::Sub:
|
|
Op = Instruction::Sub;
|
|
break;
|
|
}
|
|
|
|
const unsigned PtrIdx = 0;
|
|
const unsigned ValIdx = 1;
|
|
|
|
// If the pointer operand is divergent, then each lane is doing an atomic
|
|
// operation on a different address, and we cannot optimize that.
|
|
if (DA->isDivergent(I.getOperand(PtrIdx))) {
|
|
return;
|
|
}
|
|
|
|
const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
|
|
|
|
// If the value operand is divergent, each lane is contributing a different
|
|
// value to the atomic calculation. We can only optimize divergent values if
|
|
// we have DPP available on our subtarget, and the atomic operation is 32
|
|
// bits.
|
|
if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
|
|
return;
|
|
}
|
|
|
|
// If we get here, we can optimize the atomic using a single wavefront-wide
|
|
// atomic operation to do the calculation for the entire wavefront, so
|
|
// remember the instruction so we can come back to it.
|
|
const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
|
|
|
|
ToReplace.push_back(Info);
|
|
}
|
|
|
|
void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
|
|
Instruction::BinaryOps Op;
|
|
|
|
switch (I.getIntrinsicID()) {
|
|
default:
|
|
return;
|
|
case Intrinsic::amdgcn_buffer_atomic_add:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_add:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_add:
|
|
Op = Instruction::Add;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_sub:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_sub:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_sub:
|
|
Op = Instruction::Sub;
|
|
break;
|
|
}
|
|
|
|
const unsigned ValIdx = 0;
|
|
|
|
const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
|
|
|
|
// If the value operand is divergent, each lane is contributing a different
|
|
// value to the atomic calculation. We can only optimize divergent values if
|
|
// we have DPP available on our subtarget, and the atomic operation is 32
|
|
// bits.
|
|
if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
|
|
return;
|
|
}
|
|
|
|
// If any of the other arguments to the intrinsic are divergent, we can't
|
|
// optimize the operation.
|
|
for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
|
|
if (DA->isDivergent(I.getOperand(Idx))) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If we get here, we can optimize the atomic using a single wavefront-wide
|
|
// atomic operation to do the calculation for the entire wavefront, so
|
|
// remember the instruction so we can come back to it.
|
|
const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
|
|
|
|
ToReplace.push_back(Info);
|
|
}
|
|
|
|
void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
|
|
Instruction::BinaryOps Op,
|
|
unsigned ValIdx,
|
|
bool ValDivergent) const {
|
|
LLVMContext &Context = I.getContext();
|
|
|
|
// Start building just before the instruction.
|
|
IRBuilder<> B(&I);
|
|
|
|
Type *const Ty = I.getType();
|
|
const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
|
|
Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
|
|
|
|
// This is the value in the atomic operation we need to combine in order to
|
|
// reduce the number of atomic operations.
|
|
Value *const V = I.getOperand(ValIdx);
|
|
|
|
// We need to know how many lanes are active within the wavefront, and we do
|
|
// this by getting the exec register, which tells us all the lanes that are
|
|
// active.
|
|
MDNode *const RegName =
|
|
llvm::MDNode::get(Context, llvm::MDString::get(Context, "exec"));
|
|
Value *const Metadata = llvm::MetadataAsValue::get(Context, RegName);
|
|
CallInst *const Exec =
|
|
B.CreateIntrinsic(Intrinsic::read_register, {B.getInt64Ty()}, {Metadata});
|
|
setConvergent(Exec);
|
|
|
|
// We need to know how many lanes are active within the wavefront that are
|
|
// below us. If we counted each lane linearly starting from 0, a lane is
|
|
// below us only if its associated index was less than ours. We do this by
|
|
// using the mbcnt intrinsic.
|
|
Value *const BitCast = B.CreateBitCast(Exec, VecTy);
|
|
Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
|
|
Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
|
|
CallInst *const PartialMbcnt = B.CreateIntrinsic(
|
|
Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
|
|
CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
|
|
{ExtractHi, PartialMbcnt});
|
|
|
|
Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false);
|
|
|
|
Value *LaneOffset = nullptr;
|
|
Value *NewV = nullptr;
|
|
|
|
// If we have a divergent value in each lane, we need to combine the value
|
|
// using DPP.
|
|
if (ValDivergent) {
|
|
// First we need to set all inactive invocations to 0, so that they can
|
|
// correctly contribute to the final result.
|
|
CallInst *const SetInactive = B.CreateIntrinsic(
|
|
Intrinsic::amdgcn_set_inactive, Ty, {V, B.getIntN(TyBitWidth, 0)});
|
|
setConvergent(SetInactive);
|
|
NewV = SetInactive;
|
|
|
|
const unsigned Iters = 6;
|
|
const unsigned DPPCtrl[Iters] = {DPP_ROW_SR1, DPP_ROW_SR2,
|
|
DPP_ROW_SR4, DPP_ROW_SR8,
|
|
DPP_ROW_BCAST15, DPP_ROW_BCAST31};
|
|
const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
|
|
|
|
// This loop performs an inclusive scan across the wavefront, with all lanes
|
|
// active (by using the WWM intrinsic).
|
|
for (unsigned Idx = 0; Idx < Iters; Idx++) {
|
|
CallInst *const DPP = B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, Ty,
|
|
{NewV, B.getInt32(DPPCtrl[Idx]),
|
|
B.getInt32(RowMask[Idx]),
|
|
B.getInt32(0xf), B.getFalse()});
|
|
setConvergent(DPP);
|
|
Value *const WWM = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP);
|
|
|
|
NewV = B.CreateBinOp(Op, NewV, WWM);
|
|
NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
|
|
}
|
|
|
|
// NewV has returned the inclusive scan of V, but for the lane offset we
|
|
// require an exclusive scan. We do this by shifting the values from the
|
|
// entire wavefront right by 1, and by setting the bound_ctrl (last argument
|
|
// to the intrinsic below) to true, we can guarantee that 0 will be shifted
|
|
// into the 0'th invocation.
|
|
CallInst *const DPP =
|
|
B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, {Ty},
|
|
{NewV, B.getInt32(DPP_WF_SR1), B.getInt32(0xf),
|
|
B.getInt32(0xf), B.getTrue()});
|
|
setConvergent(DPP);
|
|
LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP);
|
|
|
|
// Read the value from the last lane, which has accumlated the values of
|
|
// each active lane in the wavefront. This will be our new value with which
|
|
// we will provide to the atomic operation.
|
|
if (TyBitWidth == 64) {
|
|
Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
|
|
Value *const ExtractHi =
|
|
B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
|
|
CallInst *const ReadLaneLo = B.CreateIntrinsic(
|
|
Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
|
|
setConvergent(ReadLaneLo);
|
|
CallInst *const ReadLaneHi = B.CreateIntrinsic(
|
|
Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
|
|
setConvergent(ReadLaneHi);
|
|
Value *const PartialInsert = B.CreateInsertElement(
|
|
UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
|
|
Value *const Insert =
|
|
B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
|
|
NewV = B.CreateBitCast(Insert, Ty);
|
|
} else if (TyBitWidth == 32) {
|
|
CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane,
|
|
{}, {NewV, B.getInt32(63)});
|
|
setConvergent(ReadLane);
|
|
NewV = ReadLane;
|
|
} else {
|
|
llvm_unreachable("Unhandled atomic bit width");
|
|
}
|
|
} else {
|
|
// Get the total number of active lanes we have by using popcount.
|
|
Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Exec);
|
|
Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false);
|
|
|
|
// Calculate the new value we will be contributing to the atomic operation
|
|
// for the entire wavefront.
|
|
NewV = B.CreateMul(V, CtpopCast);
|
|
LaneOffset = B.CreateMul(V, MbcntCast);
|
|
}
|
|
|
|
// We only want a single lane to enter our new control flow, and we do this
|
|
// by checking if there are any active lanes below us. Only one lane will
|
|
// have 0 active lanes below us, so that will be the only one to progress.
|
|
Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0));
|
|
|
|
// Store I's original basic block before we split the block.
|
|
BasicBlock *const EntryBB = I.getParent();
|
|
|
|
// We need to introduce some new control flow to force a single lane to be
|
|
// active. We do this by splitting I's basic block at I, and introducing the
|
|
// new block such that:
|
|
// entry --> single_lane -\
|
|
// \------------------> exit
|
|
Instruction *const SingleLaneTerminator =
|
|
SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
|
|
|
|
// Move the IR builder into single_lane next.
|
|
B.SetInsertPoint(SingleLaneTerminator);
|
|
|
|
// Clone the original atomic operation into single lane, replacing the
|
|
// original value with our newly created one.
|
|
Instruction *const NewI = I.clone();
|
|
B.Insert(NewI);
|
|
NewI->setOperand(ValIdx, NewV);
|
|
|
|
// Move the IR builder into exit next, and start inserting just before the
|
|
// original instruction.
|
|
B.SetInsertPoint(&I);
|
|
|
|
// Create a PHI node to get our new atomic result into the exit block.
|
|
PHINode *const PHI = B.CreatePHI(Ty, 2);
|
|
PHI->addIncoming(UndefValue::get(Ty), EntryBB);
|
|
PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
|
|
|
|
// We need to broadcast the value who was the lowest active lane (the first
|
|
// lane) to all other lanes in the wavefront. We use an intrinsic for this,
|
|
// but have to handle 64-bit broadcasts with two calls to this intrinsic.
|
|
Value *BroadcastI = nullptr;
|
|
|
|
if (TyBitWidth == 64) {
|
|
Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
|
|
Value *const ExtractHi =
|
|
B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
|
|
CallInst *const ReadFirstLaneLo =
|
|
B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
|
|
setConvergent(ReadFirstLaneLo);
|
|
CallInst *const ReadFirstLaneHi =
|
|
B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
|
|
setConvergent(ReadFirstLaneHi);
|
|
Value *const PartialInsert = B.CreateInsertElement(
|
|
UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
|
|
Value *const Insert =
|
|
B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
|
|
BroadcastI = B.CreateBitCast(Insert, Ty);
|
|
} else if (TyBitWidth == 32) {
|
|
CallInst *const ReadFirstLane =
|
|
B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
|
|
setConvergent(ReadFirstLane);
|
|
BroadcastI = ReadFirstLane;
|
|
} else {
|
|
llvm_unreachable("Unhandled atomic bit width");
|
|
}
|
|
|
|
// Now that we have the result of our single atomic operation, we need to
|
|
// get our individual lane's slice into the result. We use the lane offset we
|
|
// previously calculated combined with the atomic result value we got from the
|
|
// first lane, to get our lane's index into the atomic result.
|
|
Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset);
|
|
|
|
// Replace the original atomic instruction with the new one.
|
|
I.replaceAllUsesWith(Result);
|
|
|
|
// And delete the original.
|
|
I.eraseFromParent();
|
|
}
|
|
|
|
void AMDGPUAtomicOptimizer::setConvergent(CallInst *const CI) const {
|
|
CI->addAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
|
|
"AMDGPU atomic optimizations", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
|
|
INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
|
|
"AMDGPU atomic optimizations", false, false)
|
|
|
|
FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
|
|
return new AMDGPUAtomicOptimizer();
|
|
}
|