llvm-project/lld/ELF/Writer.cpp

1119 lines
35 KiB
C++

//===- Writer.cpp ---------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Writer.h"
#include "Chunks.h"
#include "Config.h"
#include "Error.h"
#include "Symbols.h"
#include "SymbolTable.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace lld;
using namespace lld::elf2;
static const int PageSize = 4096;
// On freebsd x86_64 the first page cannot be mmaped.
// On linux that is controled by vm.mmap_min_addr. At least on some x86_64
// installs that is 65536, so the first 15 pages cannot be used.
// Given that, the smallest value that can be used in here is 0x10000.
// If using 2MB pages, the smallest page aligned address that works is
// 0x200000, but it looks like every OS uses 4k pages for executables.
// FIXME: This is architecture and OS dependent.
static const int VAStart = 0x10000;
namespace {
// OutputSection represents a section in an output file. It's a
// container of chunks. OutputSection and Chunk are 1:N relationship.
// Chunks cannot belong to more than one OutputSections. The writer
// creates multiple OutputSections and assign them unique,
// non-overlapping file offsets and VAs.
template <bool Is64Bits> class OutputSectionBase {
public:
typedef
typename std::conditional<Is64Bits, Elf64_Dyn, Elf32_Dyn>::type Elf_Dyn;
typedef typename std::conditional<Is64Bits, uint64_t, uint32_t>::type uintX_t;
typedef
typename std::conditional<Is64Bits, Elf64_Shdr, Elf32_Shdr>::type HeaderT;
OutputSectionBase(StringRef Name, uint32_t sh_type, uintX_t sh_flags)
: Name(Name) {
memset(&Header, 0, sizeof(HeaderT));
Header.sh_type = sh_type;
Header.sh_flags = sh_flags;
}
void setVA(uintX_t VA) { Header.sh_addr = VA; }
uintX_t getVA() const { return Header.sh_addr; }
void setFileOffset(uintX_t Off) { Header.sh_offset = Off; }
template <endianness E>
void writeHeaderTo(typename ELFFile<ELFType<E, Is64Bits>>::Elf_Shdr *SHdr);
StringRef getName() { return Name; }
void setNameOffset(uintX_t Offset) { Header.sh_name = Offset; }
unsigned getSectionIndex() const { return SectionIndex; }
void setSectionIndex(unsigned I) { SectionIndex = I; }
// Returns the size of the section in the output file.
uintX_t getSize() { return Header.sh_size; }
void setSize(uintX_t Val) { Header.sh_size = Val; }
uintX_t getFlags() { return Header.sh_flags; }
uintX_t getFileOff() { return Header.sh_offset; }
uintX_t getAlign() {
// The ELF spec states that a value of 0 means the section has no alignment
// constraits.
return std::max<uintX_t>(Header.sh_addralign, 1);
}
uint32_t getType() { return Header.sh_type; }
virtual void finalize() {}
virtual void writeTo(uint8_t *Buf) = 0;
protected:
StringRef Name;
HeaderT Header;
unsigned SectionIndex;
~OutputSectionBase() = default;
};
template <class ELFT> class SymbolTableSection;
template <class ELFT> struct DynamicReloc {
typedef typename ELFFile<ELFT>::Elf_Rela Elf_Rela;
const SectionChunk<ELFT> &C;
const Elf_Rela &RI;
};
template <class ELFT>
class RelocationSection final : public OutputSectionBase<ELFT::Is64Bits> {
typedef typename ELFFile<ELFT>::Elf_Rela Elf_Rela;
public:
RelocationSection(SymbolTableSection<ELFT> &DynSymSec)
: OutputSectionBase<ELFT::Is64Bits>(".rela.dyn", SHT_RELA, SHF_ALLOC),
DynSymSec(DynSymSec) {
this->Header.sh_entsize = sizeof(Elf_Rela);
this->Header.sh_addralign = ELFT::Is64Bits ? 8 : 4;
}
void addReloc(const DynamicReloc<ELFT> &Reloc) { Relocs.push_back(Reloc); }
void finalize() override {
this->Header.sh_link = DynSymSec.getSectionIndex();
this->Header.sh_size = Relocs.size() * sizeof(Elf_Rela);
}
void writeTo(uint8_t *Buf) override {
auto *P = reinterpret_cast<Elf_Rela *>(Buf);
bool IsMips64EL = Relocs[0].C.getFile()->getObj()->isMips64EL();
for (const DynamicReloc<ELFT> &Rel : Relocs) {
const SectionChunk<ELFT> &C = Rel.C;
const Elf_Rela &RI = Rel.RI;
OutputSection<ELFT> *Out = C.getOutputSection();
uint32_t SymIndex = RI.getSymbol(IsMips64EL);
const SymbolBody *Body = C.getFile()->getSymbolBody(SymIndex);
P->r_offset = RI.r_offset + C.getOutputSectionOff() + Out->getVA();
P->setSymbolAndType(Body->getDynamicSymbolTableIndex(),
RI.getType(IsMips64EL), IsMips64EL);
P->r_addend = RI.r_addend;
++P;
}
}
bool hasRelocs() const { return !Relocs.empty(); }
private:
std::vector<DynamicReloc<ELFT>> Relocs;
SymbolTableSection<ELFT> &DynSymSec;
};
}
template <class ELFT>
class lld::elf2::OutputSection final
: public OutputSectionBase<ELFT::Is64Bits> {
public:
typedef typename OutputSectionBase<ELFT::Is64Bits>::uintX_t uintX_t;
typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
typedef typename ELFFile<ELFT>::Elf_Rel Elf_Rel;
typedef typename ELFFile<ELFT>::Elf_Rela Elf_Rela;
OutputSection(StringRef Name, uint32_t sh_type, uintX_t sh_flags,
RelocationSection<ELFT> &RelaDynSec)
: OutputSectionBase<ELFT::Is64Bits>(Name, sh_type, sh_flags),
RelaDynSec(RelaDynSec) {}
void addChunk(SectionChunk<ELFT> *C);
void writeTo(uint8_t *Buf) override;
template <bool isRela>
void relocate(uint8_t *Buf,
iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels,
const ObjectFile<ELFT> &File, uintX_t BaseAddr);
void relocateOne(uint8_t *Buf, const Elf_Rela &Rel, uint32_t Type,
uintX_t BaseAddr, uintX_t SymVA);
void relocateOne(uint8_t *Buf, const Elf_Rel &Rel, uint32_t Type,
uintX_t BaseAddr, uintX_t SymVA);
private:
std::vector<SectionChunk<ELFT> *> Chunks;
RelocationSection<ELFT> &RelaDynSec;
};
namespace {
template <bool Is64Bits>
class InterpSection final : public OutputSectionBase<Is64Bits> {
public:
InterpSection()
: OutputSectionBase<Is64Bits>(".interp", SHT_PROGBITS, SHF_ALLOC) {
this->Header.sh_size = Config->DynamicLinker.size() + 1;
this->Header.sh_addralign = 1;
}
void writeTo(uint8_t *Buf) override {
memcpy(Buf, Config->DynamicLinker.data(), Config->DynamicLinker.size());
}
};
template <bool Is64Bits>
class StringTableSection final : public OutputSectionBase<Is64Bits> {
public:
typedef typename OutputSectionBase<Is64Bits>::uintX_t uintX_t;
StringTableSection(bool Dynamic)
: OutputSectionBase<Is64Bits>(Dynamic ? ".dynstr" : ".strtab", SHT_STRTAB,
Dynamic ? (uintX_t)SHF_ALLOC : 0),
Dynamic(Dynamic) {
this->Header.sh_addralign = 1;
}
void add(StringRef S) { StrTabBuilder.add(S); }
size_t getFileOff(StringRef S) const { return StrTabBuilder.getOffset(S); }
StringRef data() const { return StrTabBuilder.data(); }
void writeTo(uint8_t *Buf) override;
void finalize() override {
StrTabBuilder.finalize(StringTableBuilder::ELF);
this->Header.sh_size = StrTabBuilder.data().size();
}
bool isDynamic() const { return Dynamic; }
private:
const bool Dynamic;
llvm::StringTableBuilder StrTabBuilder;
};
template <class ELFT> class Writer;
template <class ELFT>
class SymbolTableSection final : public OutputSectionBase<ELFT::Is64Bits> {
public:
typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym;
typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range;
typedef typename OutputSectionBase<ELFT::Is64Bits>::uintX_t uintX_t;
SymbolTableSection(Writer<ELFT> &W, SymbolTable &Table,
StringTableSection<ELFT::Is64Bits> &StrTabSec)
: OutputSectionBase<ELFT::Is64Bits>(
StrTabSec.isDynamic() ? ".dynsym" : ".symtab",
StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0),
Table(Table), StrTabSec(StrTabSec), W(W) {
typedef OutputSectionBase<ELFT::Is64Bits> Base;
typename Base::HeaderT &Header = this->Header;
Header.sh_entsize = sizeof(Elf_Sym);
Header.sh_addralign = ELFT::Is64Bits ? 8 : 4;
}
void finalize() override {
this->Header.sh_size = getNumSymbols() * sizeof(Elf_Sym);
this->Header.sh_link = StrTabSec.getSectionIndex();
this->Header.sh_info = NumLocals + 1;
}
void writeTo(uint8_t *Buf) override;
const SymbolTable &getSymTable() const { return Table; }
void addSymbol(StringRef Name, bool isLocal = false) {
StrTabSec.add(Name);
++NumVisible;
if (isLocal)
++NumLocals;
}
StringTableSection<ELFT::Is64Bits> &getStrTabSec() { return StrTabSec; }
unsigned getNumSymbols() const { return NumVisible + 1; }
private:
SymbolTable &Table;
StringTableSection<ELFT::Is64Bits> &StrTabSec;
unsigned NumVisible = 0;
unsigned NumLocals = 0;
const Writer<ELFT> &W;
};
template <class ELFT>
class HashTableSection final : public OutputSectionBase<ELFT::Is64Bits> {
typedef typename ELFFile<ELFT>::Elf_Word Elf_Word;
public:
HashTableSection(SymbolTableSection<ELFT> &DynSymSec)
: OutputSectionBase<ELFT::Is64Bits>(".hash", SHT_HASH, SHF_ALLOC),
DynSymSec(DynSymSec) {
this->Header.sh_entsize = sizeof(Elf_Word);
this->Header.sh_addralign = sizeof(Elf_Word);
}
void addSymbol(SymbolBody *S) {
StringRef Name = S->getName();
DynSymSec.addSymbol(Name);
Hashes.push_back(hash(Name));
S->setDynamicSymbolTableIndex(Hashes.size());
}
void finalize() override {
this->Header.sh_link = DynSymSec.getSectionIndex();
assert(DynSymSec.getNumSymbols() == Hashes.size() + 1);
unsigned NumEntries = 2; // nbucket and nchain.
NumEntries += DynSymSec.getNumSymbols(); // The chain entries.
// Create as many buckets as there are symbols.
// FIXME: This is simplistic. We can try to optimize it, but implementing
// support for SHT_GNU_HASH is probably even more profitable.
NumEntries += DynSymSec.getNumSymbols();
this->Header.sh_size = NumEntries * sizeof(Elf_Word);
}
void writeTo(uint8_t *Buf) override {
unsigned NumSymbols = DynSymSec.getNumSymbols();
auto *P = reinterpret_cast<Elf_Word *>(Buf);
*P++ = NumSymbols; // nbucket
*P++ = NumSymbols; // nchain
Elf_Word *Buckets = P;
Elf_Word *Chains = P + NumSymbols;
for (unsigned I = 1; I < NumSymbols; ++I) {
uint32_t Hash = Hashes[I - 1] % NumSymbols;
Chains[I] = Buckets[Hash];
Buckets[Hash] = I;
}
}
SymbolTableSection<ELFT> &getDynSymSec() { return DynSymSec; }
private:
uint32_t hash(StringRef Name) {
uint32_t H = 0;
for (char C : Name) {
H = (H << 4) + C;
uint32_t G = H & 0xf0000000;
if (G)
H ^= G >> 24;
H &= ~G;
}
return H;
}
SymbolTableSection<ELFT> &DynSymSec;
std::vector<uint32_t> Hashes;
};
template <class ELFT>
class DynamicSection final : public OutputSectionBase<ELFT::Is64Bits> {
typedef OutputSectionBase<ELFT::Is64Bits> Base;
typedef typename Base::HeaderT HeaderT;
typedef typename Base::Elf_Dyn Elf_Dyn;
public:
DynamicSection(SymbolTable &SymTab, HashTableSection<ELFT> &HashSec,
RelocationSection<ELFT> &RelaDynSec)
: OutputSectionBase<ELFT::Is64Bits>(".dynamic", SHT_DYNAMIC,
SHF_ALLOC | SHF_WRITE),
HashSec(HashSec), DynSymSec(HashSec.getDynSymSec()),
DynStrSec(DynSymSec.getStrTabSec()), RelaDynSec(RelaDynSec),
SymTab(SymTab) {
typename Base::HeaderT &Header = this->Header;
Header.sh_addralign = ELFT::Is64Bits ? 8 : 4;
Header.sh_entsize = ELFT::Is64Bits ? 16 : 8;
}
void finalize() override {
typename Base::HeaderT &Header = this->Header;
Header.sh_link = DynStrSec.getSectionIndex();
unsigned NumEntries = 0;
if (RelaDynSec.hasRelocs()) {
++NumEntries; // DT_RELA
++NumEntries; // DT_RELASZ
}
++NumEntries; // DT_SYMTAB
++NumEntries; // DT_STRTAB
++NumEntries; // DT_STRSZ
++NumEntries; // DT_HASH
StringRef RPath = Config->RPath;
if (!RPath.empty()) {
++NumEntries; // DT_RUNPATH
DynStrSec.add(RPath);
}
const std::vector<std::unique_ptr<SharedFileBase>> &SharedFiles =
SymTab.getSharedFiles();
for (const std::unique_ptr<SharedFileBase> &File : SharedFiles)
DynStrSec.add(File->getName());
NumEntries += SharedFiles.size();
++NumEntries; // DT_NULL
Header.sh_size = NumEntries * Header.sh_entsize;
}
void writeTo(uint8_t *Buf) override {
auto *P = reinterpret_cast<Elf_Dyn *>(Buf);
if (RelaDynSec.hasRelocs()) {
P->d_tag = DT_RELA;
P->d_un.d_ptr = RelaDynSec.getVA();
++P;
P->d_tag = DT_RELASZ;
P->d_un.d_val = RelaDynSec.getSize();
++P;
}
P->d_tag = DT_SYMTAB;
P->d_un.d_ptr = DynSymSec.getVA();
++P;
P->d_tag = DT_STRTAB;
P->d_un.d_ptr = DynStrSec.getVA();
++P;
P->d_tag = DT_STRSZ;
P->d_un.d_val = DynStrSec.data().size();
++P;
P->d_tag = DT_HASH;
P->d_un.d_ptr = HashSec.getVA();
++P;
StringRef RPath = Config->RPath;
if (!RPath.empty()) {
P->d_tag = DT_RUNPATH;
P->d_un.d_val = DynStrSec.getFileOff(RPath);
++P;
}
const std::vector<std::unique_ptr<SharedFileBase>> &SharedFiles =
SymTab.getSharedFiles();
for (const std::unique_ptr<SharedFileBase> &File : SharedFiles) {
P->d_tag = DT_NEEDED;
P->d_un.d_val = DynStrSec.getFileOff(File->getName());
++P;
}
P->d_tag = DT_NULL;
P->d_un.d_val = 0;
++P;
}
private:
HashTableSection<ELFT> &HashSec;
SymbolTableSection<ELFT> &DynSymSec;
StringTableSection<ELFT::Is64Bits> &DynStrSec;
RelocationSection<ELFT> &RelaDynSec;
SymbolTable &SymTab;
};
// The writer writes a SymbolTable result to a file.
template <class ELFT> class Writer {
public:
typedef typename ELFFile<ELFT>::uintX_t uintX_t;
typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
typedef typename ELFFile<ELFT>::Elf_Ehdr Elf_Ehdr;
typedef typename ELFFile<ELFT>::Elf_Phdr Elf_Phdr;
typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym;
typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range;
typedef typename ELFFile<ELFT>::Elf_Rela Elf_Rela;
Writer(SymbolTable *T)
: SymTabSec(*this, *T, StrTabSec), DynSymSec(*this, *T, DynStrSec),
RelaDynSec(DynSymSec), HashSec(DynSymSec),
DynamicSec(*T, HashSec, RelaDynSec) {}
void run();
const OutputSection<ELFT> &getBSS() const {
assert(BSSSec);
return *BSSSec;
}
private:
void createSections();
void scanRelocs(const SectionChunk<ELFT> &C);
void assignAddresses();
void openFile(StringRef OutputPath);
void writeHeader();
void writeSections();
bool needsInterpSection() const {
return !SymTabSec.getSymTable().getSharedFiles().empty() &&
!Config->DynamicLinker.empty();
}
bool needsDynamicSections() const {
return !SymTabSec.getSymTable().getSharedFiles().empty() || Config->Shared;
}
unsigned getVAStart() const { return Config->Shared ? 0 : VAStart; }
std::unique_ptr<llvm::FileOutputBuffer> Buffer;
llvm::SpecificBumpPtrAllocator<OutputSection<ELFT>> CAlloc;
std::vector<OutputSectionBase<ELFT::Is64Bits> *> OutputSections;
unsigned getNumSections() const { return OutputSections.size() + 1; }
uintX_t FileSize;
uintX_t ProgramHeaderOff;
uintX_t SectionHeaderOff;
unsigned NumPhdrs;
StringTableSection<ELFT::Is64Bits> StrTabSec = { /*dynamic=*/false };
StringTableSection<ELFT::Is64Bits> DynStrSec = { /*dynamic=*/true };
SymbolTableSection<ELFT> SymTabSec;
SymbolTableSection<ELFT> DynSymSec;
RelocationSection<ELFT> RelaDynSec;
HashTableSection<ELFT> HashSec;
DynamicSection<ELFT> DynamicSec;
InterpSection<ELFT::Is64Bits> InterpSec;
OutputSection<ELFT> *BSSSec = nullptr;
};
} // anonymous namespace
namespace lld {
namespace elf2 {
template <class ELFT>
void writeResult(SymbolTable *Symtab) { Writer<ELFT>(Symtab).run(); }
template void writeResult<ELF32LE>(SymbolTable *);
template void writeResult<ELF32BE>(SymbolTable *);
template void writeResult<ELF64LE>(SymbolTable *);
template void writeResult<ELF64BE>(SymbolTable *);
} // namespace elf2
} // namespace lld
// The main function of the writer.
template <class ELFT> void Writer<ELFT>::run() {
createSections();
assignAddresses();
openFile(Config->OutputFile);
writeHeader();
writeSections();
error(Buffer->commit());
}
template <class ELFT>
void OutputSection<ELFT>::addChunk(SectionChunk<ELFT> *C) {
Chunks.push_back(C);
C->setOutputSection(this);
uint32_t Align = C->getAlign();
if (Align > this->Header.sh_addralign)
this->Header.sh_addralign = Align;
uintX_t Off = this->Header.sh_size;
Off = RoundUpToAlignment(Off, Align);
C->setOutputSectionOff(Off);
Off += C->getSize();
this->Header.sh_size = Off;
}
template <class ELFT>
static typename ELFFile<ELFT>::uintX_t
getSymVA(const DefinedRegular<ELFT> *DR) {
const SectionChunk<ELFT> *SC = &DR->Section;
OutputSection<ELFT> *OS = SC->getOutputSection();
return OS->getVA() + SC->getOutputSectionOff() + DR->Sym.st_value;
}
template <class ELFT>
void OutputSection<ELFT>::relocateOne(uint8_t *Buf, const Elf_Rel &Rel,
uint32_t Type, uintX_t BaseAddr,
uintX_t SymVA) {
uintX_t Offset = Rel.r_offset;
uint8_t *Location = Buf + Offset;
switch (Type) {
case R_386_32:
support::endian::write32le(Location, SymVA);
break;
default:
llvm::errs() << Twine("unrecognized reloc ") + Twine(Type) << '\n';
break;
}
}
template <class ELFT>
void OutputSection<ELFT>::relocateOne(uint8_t *Buf, const Elf_Rela &Rel,
uint32_t Type, uintX_t BaseAddr,
uintX_t SymVA) {
uintX_t Offset = Rel.r_offset;
uint8_t *Location = Buf + Offset;
switch (Type) {
case R_X86_64_PC32:
support::endian::write32le(Location,
SymVA + (Rel.r_addend - (BaseAddr + Offset)));
break;
case R_X86_64_64:
support::endian::write64le(Location, SymVA + Rel.r_addend);
break;
case R_X86_64_32: {
case R_X86_64_32S:
uint64_t VA = SymVA + Rel.r_addend;
if (Type == R_X86_64_32 && !isUInt<32>(VA))
error("R_X86_64_32 out of range");
else if (!isInt<32>(VA))
error("R_X86_64_32S out of range");
support::endian::write32le(Location, VA);
break;
}
default:
llvm::errs() << Twine("unrecognized reloc ") + Twine(Type) << '\n';
break;
}
}
template <class ELFT>
template <bool isRela>
void OutputSection<ELFT>::relocate(
uint8_t *Buf, iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels,
const ObjectFile<ELFT> &File, uintX_t BaseAddr) {
typedef Elf_Rel_Impl<ELFT, isRela> RelType;
bool IsMips64EL = File.getObj()->isMips64EL();
for (const RelType &RI : Rels) {
uint32_t SymIndex = RI.getSymbol(IsMips64EL);
const SymbolBody *Body = File.getSymbolBody(SymIndex);
if (!Body)
continue;
uintX_t SymVA;
if (auto *DR = dyn_cast<DefinedRegular<ELFT>>(Body))
SymVA = getSymVA<ELFT>(DR);
else if (auto *DA = dyn_cast<DefinedAbsolute<ELFT>>(Body))
SymVA = DA->Sym.st_value;
else
// Skip unsupported for now.
continue;
uint32_t Type = RI.getType(IsMips64EL);
relocateOne(Buf, RI, Type, BaseAddr, SymVA);
}
}
template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) {
for (SectionChunk<ELFT> *C : Chunks) {
C->writeTo(Buf);
const ObjectFile<ELFT> *File = C->getFile();
ELFFile<ELFT> *EObj = File->getObj();
uint8_t *Base = Buf + C->getOutputSectionOff();
uintX_t BaseAddr = this->getVA() + C->getOutputSectionOff();
// Iterate over all relocation sections that apply to this section.
for (const Elf_Shdr *RelSec : C->RelocSections) {
if (RelSec->sh_type == SHT_RELA)
relocate(Base, EObj->relas(RelSec), *File, BaseAddr);
else
relocate(Base, EObj->rels(RelSec), *File, BaseAddr);
}
}
}
template <bool Is64Bits>
void StringTableSection<Is64Bits>::writeTo(uint8_t *Buf) {
StringRef Data = StrTabBuilder.data();
memcpy(Buf, Data.data(), Data.size());
}
template <class ELFT>
static int compareSym(const typename ELFFile<ELFT>::Elf_Sym *A,
const typename ELFFile<ELFT>::Elf_Sym *B) {
uint32_t AN = A->st_name;
uint32_t BN = B->st_name;
assert(AN != BN);
return AN - BN;
}
static bool includeInSymtab(const SymbolBody &B) {
if (B.isLazy())
return false;
if (!B.isUsedInRegularObj())
return false;
uint8_t V = B.getMostConstrainingVisibility();
if (V != STV_DEFAULT && V != STV_PROTECTED)
return false;
return true;
}
template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) {
Buf += sizeof(Elf_Sym);
// All symbols with STB_LOCAL binding precede the weak and global symbols.
// .dynsym only contains global symbols.
if (!Config->DiscardAll && !StrTabSec.isDynamic()) {
for (const std::unique_ptr<ObjectFileBase> &FileB :
Table.getObjectFiles()) {
auto &File = cast<ObjectFile<ELFT>>(*FileB);
Elf_Sym_Range Syms = File.getLocalSymbols();
for (const Elf_Sym &Sym : Syms) {
auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
ErrorOr<StringRef> SymName = Sym.getName(File.getStringTable());
ESym->st_name = (SymName) ? StrTabSec.getFileOff(*SymName) : 0;
ESym->st_value = Sym.st_value;
ESym->st_size = Sym.st_size;
Buf += sizeof(Elf_Sym);
}
}
}
uint8_t *GlobalStart = Buf;
for (auto &P : Table.getSymbols()) {
StringRef Name = P.first;
Symbol *Sym = P.second;
SymbolBody *Body = Sym->Body;
if (!includeInSymtab(*Body))
continue;
const Elf_Sym &InputSym = cast<ELFSymbolBody<ELFT>>(Body)->Sym;
auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
ESym->st_name = StrTabSec.getFileOff(Name);
const SectionChunk<ELFT> *Section = nullptr;
const OutputSection<ELFT> *Out = nullptr;
switch (Body->kind()) {
case SymbolBody::DefinedRegularKind:
Section = &cast<DefinedRegular<ELFT>>(Body)->Section;
break;
case SymbolBody::DefinedCommonKind:
Out = &W.getBSS();
break;
case SymbolBody::UndefinedKind:
case SymbolBody::DefinedAbsoluteKind:
case SymbolBody::SharedKind:
break;
case SymbolBody::LazyKind:
llvm_unreachable("Lazy symbol got to output symbol table!");
}
ESym->setBindingAndType(InputSym.getBinding(), InputSym.getType());
ESym->st_size = InputSym.st_size;
ESym->setVisibility(Body->getMostConstrainingVisibility());
if (InputSym.isAbsolute()) {
ESym->st_shndx = SHN_ABS;
ESym->st_value = InputSym.st_value;
}
if (Section)
Out = Section->getOutputSection();
if (Out) {
ESym->st_shndx = Out->getSectionIndex();
uintX_t VA = Out->getVA();
if (Section)
VA += Section->getOutputSectionOff();
if (auto *C = dyn_cast<DefinedCommon<ELFT>>(Body))
VA += C->OffsetInBSS;
else
VA += InputSym.st_value;
ESym->st_value = VA;
}
Buf += sizeof(Elf_Sym);
}
// The order the global symbols are in is not defined. We can use an arbitrary
// order, but it has to be reproducible. That is true even when cross linking.
// The default hashing of StringRef produces different results on 32 and 64
// bit systems so we sort by st_name. That is arbitrary but deterministic.
// FIXME: Experiment with passing in a custom hashing instead.
auto *Syms = reinterpret_cast<Elf_Sym *>(GlobalStart);
array_pod_sort(Syms, Syms + NumVisible - NumLocals, compareSym<ELFT>);
}
template <bool Is64Bits>
template <endianness E>
void OutputSectionBase<Is64Bits>::writeHeaderTo(
typename ELFFile<ELFType<E, Is64Bits>>::Elf_Shdr *SHdr) {
SHdr->sh_name = Header.sh_name;
SHdr->sh_type = Header.sh_type;
SHdr->sh_flags = Header.sh_flags;
SHdr->sh_addr = Header.sh_addr;
SHdr->sh_offset = Header.sh_offset;
SHdr->sh_size = Header.sh_size;
SHdr->sh_link = Header.sh_link;
SHdr->sh_info = Header.sh_info;
SHdr->sh_addralign = Header.sh_addralign;
SHdr->sh_entsize = Header.sh_entsize;
}
namespace {
template <bool Is64Bits> struct SectionKey {
typedef typename std::conditional<Is64Bits, uint64_t, uint32_t>::type uintX_t;
StringRef Name;
uint32_t sh_type;
uintX_t sh_flags;
};
}
namespace llvm {
template <bool Is64Bits> struct DenseMapInfo<SectionKey<Is64Bits>> {
static SectionKey<Is64Bits> getEmptyKey() {
return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0};
}
static SectionKey<Is64Bits> getTombstoneKey() {
return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0,
0};
}
static unsigned getHashValue(const SectionKey<Is64Bits> &Val) {
return hash_combine(Val.Name, Val.sh_type, Val.sh_flags);
}
static bool isEqual(const SectionKey<Is64Bits> &LHS,
const SectionKey<Is64Bits> &RHS) {
return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) &&
LHS.sh_type == RHS.sh_type && LHS.sh_flags == RHS.sh_flags;
}
};
}
template <class ELFT>
static bool cmpAlign(const DefinedCommon<ELFT> *A,
const DefinedCommon<ELFT> *B) {
return A->MaxAlignment > B->MaxAlignment;
}
template <bool Is64Bits>
static bool compSec(OutputSectionBase<Is64Bits> *A,
OutputSectionBase<Is64Bits> *B) {
// Place SHF_ALLOC sections first.
return (A->getFlags() & SHF_ALLOC) && !(B->getFlags() & SHF_ALLOC);
}
// The reason we have to do this early scan is as follows
// * To mmap the output file, we need to know the size
// * For that, we need to know how many dynamic relocs we will have.
// It might be possible to avoid this by outputting the file with write:
// * Write the allocated output sections, computing addresses.
// * Apply relocations, recording which ones require a dynamic reloc.
// * Write the dynamic relocations.
// * Write the rest of the file.
template <class ELFT>
void Writer<ELFT>::scanRelocs(const SectionChunk<ELFT> &C) {
const ObjectFile<ELFT> *File = C.getFile();
ELFFile<ELFT> *EObj = File->getObj();
if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC))
return;
for (const Elf_Shdr *RelSec : C.RelocSections) {
if (RelSec->sh_type != SHT_RELA)
continue;
for (const Elf_Rela &RI : EObj->relas(RelSec)) {
uint32_t SymIndex = RI.getSymbol(EObj->isMips64EL());
const SymbolBody *Body = File->getSymbolBody(SymIndex);
if (!Body)
continue;
auto *S = dyn_cast<SharedSymbol<ELFT>>(Body);
if (!S)
continue;
RelaDynSec.addReloc({C, RI});
}
}
}
// Create output section objects and add them to OutputSections.
template <class ELFT> void Writer<ELFT>::createSections() {
SmallDenseMap<SectionKey<ELFT::Is64Bits>, OutputSection<ELFT> *> Map;
auto getSection = [&](StringRef Name, uint32_t sh_type,
uintX_t sh_flags) -> OutputSection<ELFT> * {
SectionKey<ELFT::Is64Bits> Key{Name, sh_type, sh_flags};
OutputSection<ELFT> *&Sec = Map[Key];
if (!Sec) {
Sec = new (CAlloc.Allocate())
OutputSection<ELFT>(Key.Name, Key.sh_type, Key.sh_flags, RelaDynSec);
OutputSections.push_back(Sec);
}
return Sec;
};
// FIXME: Try to avoid the extra walk over all global symbols.
const SymbolTable &Symtab = SymTabSec.getSymTable();
std::vector<DefinedCommon<ELFT> *> CommonSymbols;
for (auto &P : Symtab.getSymbols()) {
StringRef Name = P.first;
SymbolBody *Body = P.second->Body;
if (Body->isStrongUndefined())
error(Twine("undefined symbol: ") + Name);
if (auto *C = dyn_cast<DefinedCommon<ELFT>>(Body))
CommonSymbols.push_back(C);
if (!includeInSymtab(*Body))
continue;
SymTabSec.addSymbol(Name);
// FIXME: This adds way too much to the dynamic symbol table. We only
// need to add the symbols use by dynamic relocations when producing
// an executable (ignoring --export-dynamic).
if (needsDynamicSections())
HashSec.addSymbol(Body);
}
for (const std::unique_ptr<ObjectFileBase> &FileB : Symtab.getObjectFiles()) {
auto &File = cast<ObjectFile<ELFT>>(*FileB);
if (!Config->DiscardAll) {
Elf_Sym_Range Syms = File.getLocalSymbols();
for (const Elf_Sym &Sym : Syms) {
ErrorOr<StringRef> SymName = Sym.getName(File.getStringTable());
if (SymName)
SymTabSec.addSymbol(*SymName, true);
}
}
for (SectionChunk<ELFT> *C : File.getChunks()) {
if (!C)
continue;
const Elf_Shdr *H = C->getSectionHdr();
OutputSection<ELFT> *Sec =
getSection(C->getSectionName(), H->sh_type, H->sh_flags);
Sec->addChunk(C);
scanRelocs(*C);
}
}
BSSSec = getSection(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE);
// Sort the common symbols by alignment as an heuristic to pack them better.
std::stable_sort(CommonSymbols.begin(), CommonSymbols.end(), cmpAlign<ELFT>);
uintX_t Off = BSSSec->getSize();
for (DefinedCommon<ELFT> *C : CommonSymbols) {
const Elf_Sym &Sym = C->Sym;
uintX_t Align = C->MaxAlignment;
Off = RoundUpToAlignment(Off, Align);
C->OffsetInBSS = Off;
Off += Sym.st_size;
}
BSSSec->setSize(Off);
OutputSections.push_back(&SymTabSec);
OutputSections.push_back(&StrTabSec);
if (needsDynamicSections()) {
if (needsInterpSection())
OutputSections.push_back(&InterpSec);
OutputSections.push_back(&DynSymSec);
OutputSections.push_back(&HashSec);
OutputSections.push_back(&DynamicSec);
OutputSections.push_back(&DynStrSec);
if (RelaDynSec.hasRelocs())
OutputSections.push_back(&RelaDynSec);
}
std::stable_sort(OutputSections.begin(), OutputSections.end(),
compSec<ELFT::Is64Bits>);
for (unsigned I = 0, N = OutputSections.size(); I < N; ++I)
OutputSections[I]->setSectionIndex(I + 1);
}
template <class ELFT>
static bool outputSectionHasPHDR(OutputSectionBase<ELFT::Is64Bits> *Sec) {
return (Sec->getSize() != 0) && (Sec->getFlags() & SHF_ALLOC);
}
// Visits all sections to assign incremental, non-overlapping RVAs and
// file offsets.
template <class ELFT> void Writer<ELFT>::assignAddresses() {
uintX_t VA = getVAStart();
uintX_t FileOff = 0;
FileOff += sizeof(Elf_Ehdr);
VA += sizeof(Elf_Ehdr);
// Reserve space for PHDRs.
ProgramHeaderOff = FileOff;
FileOff = RoundUpToAlignment(FileOff, PageSize);
VA = RoundUpToAlignment(VA, PageSize);
NumPhdrs = 0;
// Add a PHDR for PT_INTERP.
if (needsInterpSection())
++NumPhdrs;
// Add a PHDR for the elf header and program headers. Some dynamic linkers
// (musl at least) require them to be covered by a PT_LOAD.
++NumPhdrs;
for (OutputSectionBase<ELFT::Is64Bits> *Sec : OutputSections) {
StrTabSec.add(Sec->getName());
Sec->finalize();
// Since each output section gets its own PHDR, align each output section to
// a page.
if (outputSectionHasPHDR<ELFT>(Sec)) {
++NumPhdrs;
VA = RoundUpToAlignment(VA, PageSize);
FileOff = RoundUpToAlignment(FileOff, PageSize);
}
uintX_t Align = Sec->getAlign();
uintX_t Size = Sec->getSize();
if (Sec->getFlags() & SHF_ALLOC) {
VA = RoundUpToAlignment(VA, Align);
Sec->setVA(VA);
VA += Size;
}
FileOff = RoundUpToAlignment(FileOff, Align);
Sec->setFileOffset(FileOff);
if (Sec->getType() != SHT_NOBITS)
FileOff += Size;
}
// Add a PHDR for the dynamic table.
if (needsDynamicSections())
++NumPhdrs;
FileOff += OffsetToAlignment(FileOff, ELFT::Is64Bits ? 8 : 4);
// Add space for section headers.
SectionHeaderOff = FileOff;
FileOff += getNumSections() * sizeof(Elf_Shdr);
FileSize = FileOff;
}
static uint32_t convertSectionFlagsToPHDRFlags(uint64_t Flags) {
uint32_t Ret = PF_R;
if (Flags & SHF_WRITE)
Ret |= PF_W;
if (Flags & SHF_EXECINSTR)
Ret |= PF_X;
return Ret;
}
template <class ELFT>
static void setValuesFromSection(typename ELFFile<ELFT>::Elf_Phdr &P,
OutputSectionBase<ELFT::Is64Bits> &S) {
P.p_flags = convertSectionFlagsToPHDRFlags(S.getFlags());
P.p_offset = S.getFileOff();
P.p_vaddr = S.getVA();
P.p_paddr = P.p_vaddr;
P.p_filesz = S.getSize();
P.p_memsz = P.p_filesz;
P.p_align = S.getAlign();
}
template <class ELFT> void Writer<ELFT>::writeHeader() {
uint8_t *Buf = Buffer->getBufferStart();
auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf);
EHdr->e_ident[EI_MAG0] = 0x7F;
EHdr->e_ident[EI_MAG1] = 0x45;
EHdr->e_ident[EI_MAG2] = 0x4C;
EHdr->e_ident[EI_MAG3] = 0x46;
EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
EHdr->e_ident[EI_DATA] = ELFT::TargetEndianness == llvm::support::little
? ELFDATA2LSB
: ELFDATA2MSB;
EHdr->e_ident[EI_VERSION] = EV_CURRENT;
EHdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
// FIXME: Generalize the segment construction similar to how we create
// output sections.
const SymbolTable &Symtab = SymTabSec.getSymTable();
EHdr->e_type = Config->Shared ? ET_DYN : ET_EXEC;
auto &FirstObj = cast<ObjectFile<ELFT>>(*Symtab.getFirstELF());
EHdr->e_machine = FirstObj.getEMachine();
EHdr->e_version = EV_CURRENT;
SymbolBody *Entry = Symtab.getEntrySym();
EHdr->e_entry = Entry ? getSymVA(cast<DefinedRegular<ELFT>>(Entry)) : 0;
EHdr->e_phoff = ProgramHeaderOff;
EHdr->e_shoff = SectionHeaderOff;
EHdr->e_ehsize = sizeof(Elf_Ehdr);
EHdr->e_phentsize = sizeof(Elf_Phdr);
EHdr->e_phnum = NumPhdrs;
EHdr->e_shentsize = sizeof(Elf_Shdr);
EHdr->e_shnum = getNumSections();
EHdr->e_shstrndx = StrTabSec.getSectionIndex();
auto PHdrs = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff);
if (needsInterpSection()) {
PHdrs->p_type = PT_INTERP;
setValuesFromSection<ELFT>(*PHdrs, InterpSec);
++PHdrs;
}
PHdrs->p_type = PT_LOAD;
PHdrs->p_flags = PF_R;
PHdrs->p_offset = 0;
PHdrs->p_vaddr = getVAStart();
PHdrs->p_paddr = PHdrs->p_vaddr;
PHdrs->p_filesz = ProgramHeaderOff + NumPhdrs * sizeof(Elf_Phdr);
PHdrs->p_memsz = PHdrs->p_filesz;
PHdrs->p_align = PageSize;
++PHdrs;
for (OutputSectionBase<ELFT::Is64Bits> *Sec : OutputSections) {
if (!outputSectionHasPHDR<ELFT>(Sec))
continue;
PHdrs->p_type = PT_LOAD;
PHdrs->p_flags = convertSectionFlagsToPHDRFlags(Sec->getFlags());
PHdrs->p_offset = Sec->getFileOff();
PHdrs->p_vaddr = Sec->getVA();
PHdrs->p_paddr = PHdrs->p_vaddr;
PHdrs->p_filesz = Sec->getType() == SHT_NOBITS ? 0 : Sec->getSize();
PHdrs->p_memsz = Sec->getSize();
PHdrs->p_align = PageSize;
++PHdrs;
}
if (needsDynamicSections()) {
PHdrs->p_type = PT_DYNAMIC;
setValuesFromSection<ELFT>(*PHdrs, DynamicSec);
}
auto SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff);
// First entry is null.
++SHdrs;
for (OutputSectionBase<ELFT::Is64Bits> *Sec : OutputSections) {
Sec->setNameOffset(StrTabSec.getFileOff(Sec->getName()));
Sec->template writeHeaderTo<ELFT::TargetEndianness>(SHdrs++);
}
}
template <class ELFT> void Writer<ELFT>::openFile(StringRef Path) {
ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
FileOutputBuffer::create(Path, FileSize, FileOutputBuffer::F_executable);
error(BufferOrErr, Twine("failed to open ") + Path);
Buffer = std::move(*BufferOrErr);
}
// Write section contents to a mmap'ed file.
template <class ELFT> void Writer<ELFT>::writeSections() {
uint8_t *Buf = Buffer->getBufferStart();
for (OutputSectionBase<ELFT::Is64Bits> *Sec : OutputSections)
Sec->writeTo(Buf + Sec->getFileOff());
}