llvm-project/clang/lib/Driver/Driver.cpp

5922 lines
225 KiB
C++

//===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Driver/Driver.h"
#include "ToolChains/AIX.h"
#include "ToolChains/AMDGPU.h"
#include "ToolChains/AMDGPUOpenMP.h"
#include "ToolChains/AVR.h"
#include "ToolChains/Ananas.h"
#include "ToolChains/BareMetal.h"
#include "ToolChains/Clang.h"
#include "ToolChains/CloudABI.h"
#include "ToolChains/Contiki.h"
#include "ToolChains/CrossWindows.h"
#include "ToolChains/Cuda.h"
#include "ToolChains/Darwin.h"
#include "ToolChains/DragonFly.h"
#include "ToolChains/FreeBSD.h"
#include "ToolChains/Fuchsia.h"
#include "ToolChains/Gnu.h"
#include "ToolChains/HIPAMD.h"
#include "ToolChains/HIPSPV.h"
#include "ToolChains/Haiku.h"
#include "ToolChains/Hexagon.h"
#include "ToolChains/Hurd.h"
#include "ToolChains/Lanai.h"
#include "ToolChains/Linux.h"
#include "ToolChains/MSP430.h"
#include "ToolChains/MSVC.h"
#include "ToolChains/MinGW.h"
#include "ToolChains/Minix.h"
#include "ToolChains/MipsLinux.h"
#include "ToolChains/Myriad.h"
#include "ToolChains/NaCl.h"
#include "ToolChains/NetBSD.h"
#include "ToolChains/OpenBSD.h"
#include "ToolChains/PPCFreeBSD.h"
#include "ToolChains/PPCLinux.h"
#include "ToolChains/PS4CPU.h"
#include "ToolChains/RISCVToolchain.h"
#include "ToolChains/SPIRV.h"
#include "ToolChains/Solaris.h"
#include "ToolChains/TCE.h"
#include "ToolChains/VEToolchain.h"
#include "ToolChains/WebAssembly.h"
#include "ToolChains/XCore.h"
#include "ToolChains/ZOS.h"
#include "clang/Basic/TargetID.h"
#include "clang/Basic/Version.h"
#include "clang/Config/config.h"
#include "clang/Driver/Action.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Driver/InputInfo.h"
#include "clang/Driver/Job.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/SanitizerArgs.h"
#include "clang/Driver/Tool.h"
#include "clang/Driver/ToolChain.h"
#include "clang/Driver/Types.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Option/Arg.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Option/OptSpecifier.h"
#include "llvm/Option/OptTable.h"
#include "llvm/Option/Option.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ExitCodes.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <memory>
#include <utility>
#if LLVM_ON_UNIX
#include <unistd.h> // getpid
#endif
using namespace clang::driver;
using namespace clang;
using namespace llvm::opt;
static llvm::Optional<llvm::Triple>
getOffloadTargetTriple(const Driver &D, const ArgList &Args) {
auto OffloadTargets = Args.getAllArgValues(options::OPT_offload_EQ);
// Offload compilation flow does not support multiple targets for now. We
// need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too)
// to support multiple tool chains first.
switch (OffloadTargets.size()) {
default:
D.Diag(diag::err_drv_only_one_offload_target_supported);
return llvm::None;
case 0:
D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << "";
return llvm::None;
case 1:
break;
}
return llvm::Triple(OffloadTargets[0]);
}
static llvm::Optional<llvm::Triple>
getNVIDIAOffloadTargetTriple(const Driver &D, const ArgList &Args,
const llvm::Triple &HostTriple) {
if (!Args.hasArg(options::OPT_offload_EQ)) {
return llvm::Triple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda"
: "nvptx-nvidia-cuda");
}
auto TT = getOffloadTargetTriple(D, Args);
if (TT && (TT->getArch() == llvm::Triple::spirv32 ||
TT->getArch() == llvm::Triple::spirv64)) {
if (Args.hasArg(options::OPT_emit_llvm))
return TT;
D.Diag(diag::err_drv_cuda_offload_only_emit_bc);
return llvm::None;
}
D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
return llvm::None;
}
static llvm::Optional<llvm::Triple>
getHIPOffloadTargetTriple(const Driver &D, const ArgList &Args) {
if (!Args.hasArg(options::OPT_offload_EQ)) {
return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple.
}
auto TT = getOffloadTargetTriple(D, Args);
if (!TT)
return llvm::None;
if (TT->getArch() == llvm::Triple::amdgcn &&
TT->getVendor() == llvm::Triple::AMD &&
TT->getOS() == llvm::Triple::AMDHSA)
return TT;
if (TT->getArch() == llvm::Triple::spirv64)
return TT;
D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
return llvm::None;
}
// static
std::string Driver::GetResourcesPath(StringRef BinaryPath,
StringRef CustomResourceDir) {
// Since the resource directory is embedded in the module hash, it's important
// that all places that need it call this function, so that they get the
// exact same string ("a/../b/" and "b/" get different hashes, for example).
// Dir is bin/ or lib/, depending on where BinaryPath is.
std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
SmallString<128> P(Dir);
if (CustomResourceDir != "") {
llvm::sys::path::append(P, CustomResourceDir);
} else {
// On Windows, libclang.dll is in bin/.
// On non-Windows, libclang.so/.dylib is in lib/.
// With a static-library build of libclang, LibClangPath will contain the
// path of the embedding binary, which for LLVM binaries will be in bin/.
// ../lib gets us to lib/ in both cases.
P = llvm::sys::path::parent_path(Dir);
llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
CLANG_VERSION_STRING);
}
return std::string(P.str());
}
Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
DiagnosticsEngine &Diags, std::string Title,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
: Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None),
ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
DriverTitle(Title), CCCPrintBindings(false), CCPrintOptions(false),
CCPrintHeaders(false), CCLogDiagnostics(false), CCGenDiagnostics(false),
CCPrintProcessStats(false), TargetTriple(TargetTriple), Saver(Alloc),
CheckInputsExist(true), GenReproducer(false),
SuppressMissingInputWarning(false) {
// Provide a sane fallback if no VFS is specified.
if (!this->VFS)
this->VFS = llvm::vfs::getRealFileSystem();
Name = std::string(llvm::sys::path::filename(ClangExecutable));
Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
InstalledDir = Dir; // Provide a sensible default installed dir.
if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
// Prepend InstalledDir if SysRoot is relative
SmallString<128> P(InstalledDir);
llvm::sys::path::append(P, SysRoot);
SysRoot = std::string(P);
}
#if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
#endif
#if defined(CLANG_CONFIG_FILE_USER_DIR)
UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
#endif
// Compute the path to the resource directory.
ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
}
void Driver::setDriverMode(StringRef Value) {
static const std::string OptName =
getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
.Case("gcc", GCCMode)
.Case("g++", GXXMode)
.Case("cpp", CPPMode)
.Case("cl", CLMode)
.Case("flang", FlangMode)
.Default(None))
Mode = *M;
else
Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
}
InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
bool IsClCompatMode,
bool &ContainsError) {
llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
ContainsError = false;
unsigned IncludedFlagsBitmask;
unsigned ExcludedFlagsBitmask;
std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
getIncludeExcludeOptionFlagMasks(IsClCompatMode);
// Make sure that Flang-only options don't pollute the Clang output
// TODO: Make sure that Clang-only options don't pollute Flang output
if (!IsFlangMode())
ExcludedFlagsBitmask |= options::FlangOnlyOption;
unsigned MissingArgIndex, MissingArgCount;
InputArgList Args =
getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
IncludedFlagsBitmask, ExcludedFlagsBitmask);
// Check for missing argument error.
if (MissingArgCount) {
Diag(diag::err_drv_missing_argument)
<< Args.getArgString(MissingArgIndex) << MissingArgCount;
ContainsError |=
Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
SourceLocation()) > DiagnosticsEngine::Warning;
}
// Check for unsupported options.
for (const Arg *A : Args) {
if (A->getOption().hasFlag(options::Unsupported)) {
unsigned DiagID;
auto ArgString = A->getAsString(Args);
std::string Nearest;
if (getOpts().findNearest(
ArgString, Nearest, IncludedFlagsBitmask,
ExcludedFlagsBitmask | options::Unsupported) > 1) {
DiagID = diag::err_drv_unsupported_opt;
Diag(DiagID) << ArgString;
} else {
DiagID = diag::err_drv_unsupported_opt_with_suggestion;
Diag(DiagID) << ArgString << Nearest;
}
ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
DiagnosticsEngine::Warning;
continue;
}
// Warn about -mcpu= without an argument.
if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
ContainsError |= Diags.getDiagnosticLevel(
diag::warn_drv_empty_joined_argument,
SourceLocation()) > DiagnosticsEngine::Warning;
}
}
for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
unsigned DiagID;
auto ArgString = A->getAsString(Args);
std::string Nearest;
if (getOpts().findNearest(
ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
: diag::err_drv_unknown_argument;
Diags.Report(DiagID) << ArgString;
} else {
DiagID = IsCLMode()
? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
: diag::err_drv_unknown_argument_with_suggestion;
Diags.Report(DiagID) << ArgString << Nearest;
}
ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
DiagnosticsEngine::Warning;
}
return Args;
}
// Determine which compilation mode we are in. We look for options which
// affect the phase, starting with the earliest phases, and record which
// option we used to determine the final phase.
phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
Arg **FinalPhaseArg) const {
Arg *PhaseArg = nullptr;
phases::ID FinalPhase;
// -{E,EP,P,M,MM} only run the preprocessor.
if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
(PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
(PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
(PhaseArg = DAL.getLastArg(options::OPT__SLASH_P)) ||
CCGenDiagnostics) {
FinalPhase = phases::Preprocess;
// --precompile only runs up to precompilation.
} else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
FinalPhase = phases::Precompile;
// -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
} else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
(PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
(PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
(PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
(PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
(PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
(PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
(PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
(PhaseArg = DAL.getLastArg(options::OPT_emit_ast)) ||
(PhaseArg = DAL.getLastArg(options::OPT_extract_api))) {
FinalPhase = phases::Compile;
// -S only runs up to the backend.
} else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
FinalPhase = phases::Backend;
// -c compilation only runs up to the assembler.
} else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
FinalPhase = phases::Assemble;
} else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) {
FinalPhase = phases::IfsMerge;
// Otherwise do everything.
} else
FinalPhase = phases::Link;
if (FinalPhaseArg)
*FinalPhaseArg = PhaseArg;
return FinalPhase;
}
static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
StringRef Value, bool Claim = true) {
Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
Args.getBaseArgs().MakeIndex(Value), Value.data());
Args.AddSynthesizedArg(A);
if (Claim)
A->claim();
return A;
}
DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
const llvm::opt::OptTable &Opts = getOpts();
DerivedArgList *DAL = new DerivedArgList(Args);
bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
bool IgnoreUnused = false;
for (Arg *A : Args) {
if (IgnoreUnused)
A->claim();
if (A->getOption().matches(options::OPT_start_no_unused_arguments)) {
IgnoreUnused = true;
continue;
}
if (A->getOption().matches(options::OPT_end_no_unused_arguments)) {
IgnoreUnused = false;
continue;
}
// Unfortunately, we have to parse some forwarding options (-Xassembler,
// -Xlinker, -Xpreprocessor) because we either integrate their functionality
// (assembler and preprocessor), or bypass a previous driver ('collect2').
// Rewrite linker options, to replace --no-demangle with a custom internal
// option.
if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
A->getOption().matches(options::OPT_Xlinker)) &&
A->containsValue("--no-demangle")) {
// Add the rewritten no-demangle argument.
DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
// Add the remaining values as Xlinker arguments.
for (StringRef Val : A->getValues())
if (Val != "--no-demangle")
DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
continue;
}
// Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
// some build systems. We don't try to be complete here because we don't
// care to encourage this usage model.
if (A->getOption().matches(options::OPT_Wp_COMMA) &&
(A->getValue(0) == StringRef("-MD") ||
A->getValue(0) == StringRef("-MMD"))) {
// Rewrite to -MD/-MMD along with -MF.
if (A->getValue(0) == StringRef("-MD"))
DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
else
DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
if (A->getNumValues() == 2)
DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
continue;
}
// Rewrite reserved library names.
if (A->getOption().matches(options::OPT_l)) {
StringRef Value = A->getValue();
// Rewrite unless -nostdlib is present.
if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
Value == "stdc++") {
DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
continue;
}
// Rewrite unconditionally.
if (Value == "cc_kext") {
DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
continue;
}
}
// Pick up inputs via the -- option.
if (A->getOption().matches(options::OPT__DASH_DASH)) {
A->claim();
for (StringRef Val : A->getValues())
DAL->append(MakeInputArg(*DAL, Opts, Val, false));
continue;
}
DAL->append(A);
}
// Enforce -static if -miamcu is present.
if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_static));
// Add a default value of -mlinker-version=, if one was given and the user
// didn't specify one.
#if defined(HOST_LINK_VERSION)
if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
strlen(HOST_LINK_VERSION) > 0) {
DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
HOST_LINK_VERSION);
DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
}
#endif
return DAL;
}
/// Compute target triple from args.
///
/// This routine provides the logic to compute a target triple from various
/// args passed to the driver and the default triple string.
static llvm::Triple computeTargetTriple(const Driver &D,
StringRef TargetTriple,
const ArgList &Args,
StringRef DarwinArchName = "") {
// FIXME: Already done in Compilation *Driver::BuildCompilation
if (const Arg *A = Args.getLastArg(options::OPT_target))
TargetTriple = A->getValue();
llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
// GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
// -gnu* only, and we can not change this, so we have to detect that case as
// being the Hurd OS.
if (TargetTriple.contains("-unknown-gnu") || TargetTriple.contains("-pc-gnu"))
Target.setOSName("hurd");
// Handle Apple-specific options available here.
if (Target.isOSBinFormatMachO()) {
// If an explicit Darwin arch name is given, that trumps all.
if (!DarwinArchName.empty()) {
tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
return Target;
}
// Handle the Darwin '-arch' flag.
if (Arg *A = Args.getLastArg(options::OPT_arch)) {
StringRef ArchName = A->getValue();
tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
}
}
// Handle pseudo-target flags '-mlittle-endian'/'-EL' and
// '-mbig-endian'/'-EB'.
if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
options::OPT_mbig_endian)) {
if (A->getOption().matches(options::OPT_mlittle_endian)) {
llvm::Triple LE = Target.getLittleEndianArchVariant();
if (LE.getArch() != llvm::Triple::UnknownArch)
Target = std::move(LE);
} else {
llvm::Triple BE = Target.getBigEndianArchVariant();
if (BE.getArch() != llvm::Triple::UnknownArch)
Target = std::move(BE);
}
}
// Skip further flag support on OSes which don't support '-m32' or '-m64'.
if (Target.getArch() == llvm::Triple::tce ||
Target.getOS() == llvm::Triple::Minix)
return Target;
// On AIX, the env OBJECT_MODE may affect the resulting arch variant.
if (Target.isOSAIX()) {
if (Optional<std::string> ObjectModeValue =
llvm::sys::Process::GetEnv("OBJECT_MODE")) {
StringRef ObjectMode = *ObjectModeValue;
llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
if (ObjectMode.equals("64")) {
AT = Target.get64BitArchVariant().getArch();
} else if (ObjectMode.equals("32")) {
AT = Target.get32BitArchVariant().getArch();
} else {
D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
}
if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
Target.setArch(AT);
}
}
// Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
options::OPT_m32, options::OPT_m16);
if (A) {
llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
if (A->getOption().matches(options::OPT_m64)) {
AT = Target.get64BitArchVariant().getArch();
if (Target.getEnvironment() == llvm::Triple::GNUX32)
Target.setEnvironment(llvm::Triple::GNU);
else if (Target.getEnvironment() == llvm::Triple::MuslX32)
Target.setEnvironment(llvm::Triple::Musl);
} else if (A->getOption().matches(options::OPT_mx32) &&
Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
AT = llvm::Triple::x86_64;
if (Target.getEnvironment() == llvm::Triple::Musl)
Target.setEnvironment(llvm::Triple::MuslX32);
else
Target.setEnvironment(llvm::Triple::GNUX32);
} else if (A->getOption().matches(options::OPT_m32)) {
AT = Target.get32BitArchVariant().getArch();
if (Target.getEnvironment() == llvm::Triple::GNUX32)
Target.setEnvironment(llvm::Triple::GNU);
else if (Target.getEnvironment() == llvm::Triple::MuslX32)
Target.setEnvironment(llvm::Triple::Musl);
} else if (A->getOption().matches(options::OPT_m16) &&
Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
AT = llvm::Triple::x86;
Target.setEnvironment(llvm::Triple::CODE16);
}
if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) {
Target.setArch(AT);
if (Target.isWindowsGNUEnvironment())
toolchains::MinGW::fixTripleArch(D, Target, Args);
}
}
// Handle -miamcu flag.
if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
<< Target.str();
if (A && !A->getOption().matches(options::OPT_m32))
D.Diag(diag::err_drv_argument_not_allowed_with)
<< "-miamcu" << A->getBaseArg().getAsString(Args);
Target.setArch(llvm::Triple::x86);
Target.setArchName("i586");
Target.setEnvironment(llvm::Triple::UnknownEnvironment);
Target.setEnvironmentName("");
Target.setOS(llvm::Triple::ELFIAMCU);
Target.setVendor(llvm::Triple::UnknownVendor);
Target.setVendorName("intel");
}
// If target is MIPS adjust the target triple
// accordingly to provided ABI name.
A = Args.getLastArg(options::OPT_mabi_EQ);
if (A && Target.isMIPS()) {
StringRef ABIName = A->getValue();
if (ABIName == "32") {
Target = Target.get32BitArchVariant();
if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
Target.getEnvironment() == llvm::Triple::GNUABIN32)
Target.setEnvironment(llvm::Triple::GNU);
} else if (ABIName == "n32") {
Target = Target.get64BitArchVariant();
if (Target.getEnvironment() == llvm::Triple::GNU ||
Target.getEnvironment() == llvm::Triple::GNUABI64)
Target.setEnvironment(llvm::Triple::GNUABIN32);
} else if (ABIName == "64") {
Target = Target.get64BitArchVariant();
if (Target.getEnvironment() == llvm::Triple::GNU ||
Target.getEnvironment() == llvm::Triple::GNUABIN32)
Target.setEnvironment(llvm::Triple::GNUABI64);
}
}
// If target is RISC-V adjust the target triple according to
// provided architecture name
A = Args.getLastArg(options::OPT_march_EQ);
if (A && Target.isRISCV()) {
StringRef ArchName = A->getValue();
if (ArchName.startswith_insensitive("rv32"))
Target.setArch(llvm::Triple::riscv32);
else if (ArchName.startswith_insensitive("rv64"))
Target.setArch(llvm::Triple::riscv64);
}
return Target;
}
// Parse the LTO options and record the type of LTO compilation
// based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
// option occurs last.
static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args,
OptSpecifier OptEq, OptSpecifier OptNeg) {
if (!Args.hasFlag(OptEq, OptNeg, false))
return LTOK_None;
const Arg *A = Args.getLastArg(OptEq);
StringRef LTOName = A->getValue();
driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
.Case("full", LTOK_Full)
.Case("thin", LTOK_Thin)
.Default(LTOK_Unknown);
if (LTOMode == LTOK_Unknown) {
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << A->getValue();
return LTOK_None;
}
return LTOMode;
}
// Parse the LTO options.
void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
LTOMode =
parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto);
OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ,
options::OPT_fno_offload_lto);
}
/// Compute the desired OpenMP runtime from the flags provided.
Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
if (A)
RuntimeName = A->getValue();
auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
.Case("libomp", OMPRT_OMP)
.Case("libgomp", OMPRT_GOMP)
.Case("libiomp5", OMPRT_IOMP5)
.Default(OMPRT_Unknown);
if (RT == OMPRT_Unknown) {
if (A)
Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << A->getValue();
else
// FIXME: We could use a nicer diagnostic here.
Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
}
return RT;
}
void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
InputList &Inputs) {
//
// CUDA/HIP
//
// We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
// or HIP type. However, mixed CUDA/HIP compilation is not supported.
bool IsCuda =
llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
return types::isCuda(I.first);
});
bool IsHIP =
llvm::any_of(Inputs,
[](std::pair<types::ID, const llvm::opt::Arg *> &I) {
return types::isHIP(I.first);
}) ||
C.getInputArgs().hasArg(options::OPT_hip_link);
if (IsCuda && IsHIP) {
Diag(clang::diag::err_drv_mix_cuda_hip);
return;
}
if (IsCuda) {
const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
const llvm::Triple &HostTriple = HostTC->getTriple();
auto OFK = Action::OFK_Cuda;
auto CudaTriple =
getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), HostTriple);
if (!CudaTriple)
return;
// Use the CUDA and host triples as the key into the ToolChains map,
// because the device toolchain we create depends on both.
auto &CudaTC = ToolChains[CudaTriple->str() + "/" + HostTriple.str()];
if (!CudaTC) {
CudaTC = std::make_unique<toolchains::CudaToolChain>(
*this, *CudaTriple, *HostTC, C.getInputArgs(), OFK);
}
C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
} else if (IsHIP) {
if (auto *OMPTargetArg =
C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
Diag(clang::diag::err_drv_unsupported_opt_for_language_mode)
<< OMPTargetArg->getSpelling() << "HIP";
return;
}
const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
auto OFK = Action::OFK_HIP;
auto HIPTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
if (!HIPTriple)
return;
auto *HIPTC = &getOffloadingDeviceToolChain(C.getInputArgs(), *HIPTriple,
*HostTC, OFK);
assert(HIPTC && "Could not create offloading device tool chain.");
C.addOffloadDeviceToolChain(HIPTC, OFK);
}
//
// OpenMP
//
// We need to generate an OpenMP toolchain if the user specified targets with
// the -fopenmp-targets option.
if (Arg *OpenMPTargets =
C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
if (OpenMPTargets->getNumValues()) {
// We expect that -fopenmp-targets is always used in conjunction with the
// option -fopenmp specifying a valid runtime with offloading support,
// i.e. libomp or libiomp.
bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
options::OPT_fopenmp, options::OPT_fopenmp_EQ,
options::OPT_fno_openmp, false);
if (HasValidOpenMPRuntime) {
OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs());
HasValidOpenMPRuntime =
OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
}
if (HasValidOpenMPRuntime) {
llvm::StringMap<const char *> FoundNormalizedTriples;
for (const char *Val : OpenMPTargets->getValues()) {
llvm::Triple TT(ToolChain::getOpenMPTriple(Val));
std::string NormalizedName = TT.normalize();
// Make sure we don't have a duplicate triple.
auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
if (Duplicate != FoundNormalizedTriples.end()) {
Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
<< Val << Duplicate->second;
continue;
}
// Store the current triple so that we can check for duplicates in the
// following iterations.
FoundNormalizedTriples[NormalizedName] = Val;
// If the specified target is invalid, emit a diagnostic.
if (TT.getArch() == llvm::Triple::UnknownArch)
Diag(clang::diag::err_drv_invalid_omp_target) << Val;
else {
const ToolChain *TC;
// Device toolchains have to be selected differently. They pair host
// and device in their implementation.
if (TT.isNVPTX() || TT.isAMDGCN()) {
const ToolChain *HostTC =
C.getSingleOffloadToolChain<Action::OFK_Host>();
assert(HostTC && "Host toolchain should be always defined.");
auto &DeviceTC =
ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
if (!DeviceTC) {
if (TT.isNVPTX())
DeviceTC = std::make_unique<toolchains::CudaToolChain>(
*this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
else if (TT.isAMDGCN())
DeviceTC =
std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
*this, TT, *HostTC, C.getInputArgs());
else
assert(DeviceTC && "Device toolchain not defined.");
}
TC = DeviceTC.get();
} else
TC = &getToolChain(C.getInputArgs(), TT);
C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
}
}
} else
Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
} else
Diag(clang::diag::warn_drv_empty_joined_argument)
<< OpenMPTargets->getAsString(C.getInputArgs());
}
//
// TODO: Add support for other offloading programming models here.
//
}
/// Looks the given directories for the specified file.
///
/// \param[out] FilePath File path, if the file was found.
/// \param[in] Dirs Directories used for the search.
/// \param[in] FileName Name of the file to search for.
/// \return True if file was found.
///
/// Looks for file specified by FileName sequentially in directories specified
/// by Dirs.
///
static bool searchForFile(SmallVectorImpl<char> &FilePath,
ArrayRef<StringRef> Dirs, StringRef FileName) {
SmallString<128> WPath;
for (const StringRef &Dir : Dirs) {
if (Dir.empty())
continue;
WPath.clear();
llvm::sys::path::append(WPath, Dir, FileName);
llvm::sys::path::native(WPath);
if (llvm::sys::fs::is_regular_file(WPath)) {
FilePath = std::move(WPath);
return true;
}
}
return false;
}
bool Driver::readConfigFile(StringRef FileName) {
// Try reading the given file.
SmallVector<const char *, 32> NewCfgArgs;
if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
Diag(diag::err_drv_cannot_read_config_file) << FileName;
return true;
}
// Read options from config file.
llvm::SmallString<128> CfgFileName(FileName);
llvm::sys::path::native(CfgFileName);
ConfigFile = std::string(CfgFileName);
bool ContainErrors;
CfgOptions = std::make_unique<InputArgList>(
ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
if (ContainErrors) {
CfgOptions.reset();
return true;
}
if (CfgOptions->hasArg(options::OPT_config)) {
CfgOptions.reset();
Diag(diag::err_drv_nested_config_file);
return true;
}
// Claim all arguments that come from a configuration file so that the driver
// does not warn on any that is unused.
for (Arg *A : *CfgOptions)
A->claim();
return false;
}
bool Driver::loadConfigFile() {
std::string CfgFileName;
bool FileSpecifiedExplicitly = false;
// Process options that change search path for config files.
if (CLOptions) {
if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
SmallString<128> CfgDir;
CfgDir.append(
CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
if (!CfgDir.empty()) {
if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
SystemConfigDir.clear();
else
SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
}
}
if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
SmallString<128> CfgDir;
CfgDir.append(
CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
if (!CfgDir.empty()) {
if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
UserConfigDir.clear();
else
UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
}
}
}
// First try to find config file specified in command line.
if (CLOptions) {
std::vector<std::string> ConfigFiles =
CLOptions->getAllArgValues(options::OPT_config);
if (ConfigFiles.size() > 1) {
if (!llvm::all_of(ConfigFiles, [ConfigFiles](const std::string &s) {
return s == ConfigFiles[0];
})) {
Diag(diag::err_drv_duplicate_config);
return true;
}
}
if (!ConfigFiles.empty()) {
CfgFileName = ConfigFiles.front();
assert(!CfgFileName.empty());
// If argument contains directory separator, treat it as a path to
// configuration file.
if (llvm::sys::path::has_parent_path(CfgFileName)) {
SmallString<128> CfgFilePath;
if (llvm::sys::path::is_relative(CfgFileName))
llvm::sys::fs::current_path(CfgFilePath);
llvm::sys::path::append(CfgFilePath, CfgFileName);
if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
return true;
}
return readConfigFile(CfgFilePath);
}
FileSpecifiedExplicitly = true;
}
}
// If config file is not specified explicitly, try to deduce configuration
// from executable name. For instance, an executable 'armv7l-clang' will
// search for config file 'armv7l-clang.cfg'.
if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
if (CfgFileName.empty())
return false;
// Determine architecture part of the file name, if it is present.
StringRef CfgFileArch = CfgFileName;
size_t ArchPrefixLen = CfgFileArch.find('-');
if (ArchPrefixLen == StringRef::npos)
ArchPrefixLen = CfgFileArch.size();
llvm::Triple CfgTriple;
CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
ArchPrefixLen = 0;
if (!StringRef(CfgFileName).endswith(".cfg"))
CfgFileName += ".cfg";
// If config file starts with architecture name and command line options
// redefine architecture (with options like -m32 -LE etc), try finding new
// config file with that architecture.
SmallString<128> FixedConfigFile;
size_t FixedArchPrefixLen = 0;
if (ArchPrefixLen) {
// Get architecture name from config file name like 'i386.cfg' or
// 'armv7l-clang.cfg'.
// Check if command line options changes effective triple.
llvm::Triple EffectiveTriple = computeTargetTriple(*this,
CfgTriple.getTriple(), *CLOptions);
if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
FixedConfigFile = EffectiveTriple.getArchName();
FixedArchPrefixLen = FixedConfigFile.size();
// Append the rest of original file name so that file name transforms
// like: i386-clang.cfg -> x86_64-clang.cfg.
if (ArchPrefixLen < CfgFileName.size())
FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
}
}
// Prepare list of directories where config file is searched for.
StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
// Try to find config file. First try file with corrected architecture.
llvm::SmallString<128> CfgFilePath;
if (!FixedConfigFile.empty()) {
if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
return readConfigFile(CfgFilePath);
// If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
FixedConfigFile.resize(FixedArchPrefixLen);
FixedConfigFile.append(".cfg");
if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
return readConfigFile(CfgFilePath);
}
// Then try original file name.
if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
return readConfigFile(CfgFilePath);
// Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
if (!ClangNameParts.ModeSuffix.empty() &&
!ClangNameParts.TargetPrefix.empty()) {
CfgFileName.assign(ClangNameParts.TargetPrefix);
CfgFileName.append(".cfg");
if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
return readConfigFile(CfgFilePath);
}
// Report error but only if config file was specified explicitly, by option
// --config. If it was deduced from executable name, it is not an error.
if (FileSpecifiedExplicitly) {
Diag(diag::err_drv_config_file_not_found) << CfgFileName;
for (const StringRef &SearchDir : CfgFileSearchDirs)
if (!SearchDir.empty())
Diag(diag::note_drv_config_file_searched_in) << SearchDir;
return true;
}
return false;
}
Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
llvm::PrettyStackTraceString CrashInfo("Compilation construction");
// FIXME: Handle environment options which affect driver behavior, somewhere
// (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
// We look for the driver mode option early, because the mode can affect
// how other options are parsed.
auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1));
if (!DriverMode.empty())
setDriverMode(DriverMode);
// FIXME: What are we going to do with -V and -b?
// Arguments specified in command line.
bool ContainsError;
CLOptions = std::make_unique<InputArgList>(
ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
// Try parsing configuration file.
if (!ContainsError)
ContainsError = loadConfigFile();
bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
// All arguments, from both config file and command line.
InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
: std::move(*CLOptions));
// The args for config files or /clang: flags belong to different InputArgList
// objects than Args. This copies an Arg from one of those other InputArgLists
// to the ownership of Args.
auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
unsigned Index = Args.MakeIndex(Opt->getSpelling());
Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
Index, BaseArg);
Copy->getValues() = Opt->getValues();
if (Opt->isClaimed())
Copy->claim();
Copy->setOwnsValues(Opt->getOwnsValues());
Opt->setOwnsValues(false);
Args.append(Copy);
};
if (HasConfigFile)
for (auto *Opt : *CLOptions) {
if (Opt->getOption().matches(options::OPT_config))
continue;
const Arg *BaseArg = &Opt->getBaseArg();
if (BaseArg == Opt)
BaseArg = nullptr;
appendOneArg(Opt, BaseArg);
}
// In CL mode, look for any pass-through arguments
if (IsCLMode() && !ContainsError) {
SmallVector<const char *, 16> CLModePassThroughArgList;
for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
A->claim();
CLModePassThroughArgList.push_back(A->getValue());
}
if (!CLModePassThroughArgList.empty()) {
// Parse any pass through args using default clang processing rather
// than clang-cl processing.
auto CLModePassThroughOptions = std::make_unique<InputArgList>(
ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
if (!ContainsError)
for (auto *Opt : *CLModePassThroughOptions) {
appendOneArg(Opt, nullptr);
}
}
}
// Check for working directory option before accessing any files
if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
if (VFS->setCurrentWorkingDirectory(WD->getValue()))
Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
// FIXME: This stuff needs to go into the Compilation, not the driver.
bool CCCPrintPhases;
// Silence driver warnings if requested
Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
// -canonical-prefixes, -no-canonical-prefixes are used very early in main.
Args.ClaimAllArgs(options::OPT_canonical_prefixes);
Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
// f(no-)integated-cc1 is also used very early in main.
Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
// Ignore -pipe.
Args.ClaimAllArgs(options::OPT_pipe);
// Extract -ccc args.
//
// FIXME: We need to figure out where this behavior should live. Most of it
// should be outside in the client; the parts that aren't should have proper
// options, either by introducing new ones or by overloading gcc ones like -V
// or -b.
CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
CCCGenericGCCName = A->getValue();
GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
options::OPT_fno_crash_diagnostics,
!!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
// Process -fproc-stat-report options.
if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
CCPrintProcessStats = true;
CCPrintStatReportFilename = A->getValue();
}
if (Args.hasArg(options::OPT_fproc_stat_report))
CCPrintProcessStats = true;
// FIXME: TargetTriple is used by the target-prefixed calls to as/ld
// and getToolChain is const.
if (IsCLMode()) {
// clang-cl targets MSVC-style Win32.
llvm::Triple T(TargetTriple);
T.setOS(llvm::Triple::Win32);
T.setVendor(llvm::Triple::PC);
T.setEnvironment(llvm::Triple::MSVC);
T.setObjectFormat(llvm::Triple::COFF);
TargetTriple = T.str();
}
if (const Arg *A = Args.getLastArg(options::OPT_target))
TargetTriple = A->getValue();
if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
Dir = InstalledDir = A->getValue();
for (const Arg *A : Args.filtered(options::OPT_B)) {
A->claim();
PrefixDirs.push_back(A->getValue(0));
}
if (Optional<std::string> CompilerPathValue =
llvm::sys::Process::GetEnv("COMPILER_PATH")) {
StringRef CompilerPath = *CompilerPathValue;
while (!CompilerPath.empty()) {
std::pair<StringRef, StringRef> Split =
CompilerPath.split(llvm::sys::EnvPathSeparator);
PrefixDirs.push_back(std::string(Split.first));
CompilerPath = Split.second;
}
}
if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
SysRoot = A->getValue();
if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
DyldPrefix = A->getValue();
if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
ResourceDir = A->getValue();
if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
.Case("cwd", SaveTempsCwd)
.Case("obj", SaveTempsObj)
.Default(SaveTempsCwd);
}
setLTOMode(Args);
// Process -fembed-bitcode= flags.
if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
StringRef Name = A->getValue();
unsigned Model = llvm::StringSwitch<unsigned>(Name)
.Case("off", EmbedNone)
.Case("all", EmbedBitcode)
.Case("bitcode", EmbedBitcode)
.Case("marker", EmbedMarker)
.Default(~0U);
if (Model == ~0U) {
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
<< Name;
} else
BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
}
std::unique_ptr<llvm::opt::InputArgList> UArgs =
std::make_unique<InputArgList>(std::move(Args));
// Perform the default argument translations.
DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
// Owned by the host.
const ToolChain &TC = getToolChain(
*UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
// The compilation takes ownership of Args.
Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
ContainsError);
if (!HandleImmediateArgs(*C))
return C;
// Construct the list of inputs.
InputList Inputs;
BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
// Populate the tool chains for the offloading devices, if any.
CreateOffloadingDeviceToolChains(*C, Inputs);
// Construct the list of abstract actions to perform for this compilation. On
// MachO targets this uses the driver-driver and universal actions.
if (TC.getTriple().isOSBinFormatMachO())
BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
else
BuildActions(*C, C->getArgs(), Inputs, C->getActions());
if (CCCPrintPhases) {
PrintActions(*C);
return C;
}
BuildJobs(*C);
return C;
}
static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
llvm::opt::ArgStringList ASL;
for (const auto *A : Args) {
// Use user's original spelling of flags. For example, use
// `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user
// wrote the former.
while (A->getAlias())
A = A->getAlias();
A->render(Args, ASL);
}
for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
if (I != ASL.begin())
OS << ' ';
llvm::sys::printArg(OS, *I, true);
}
OS << '\n';
}
bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
SmallString<128> &CrashDiagDir) {
using namespace llvm::sys;
assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
"Only knows about .crash files on Darwin");
// The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
// (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
// clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
path::home_directory(CrashDiagDir);
if (CrashDiagDir.startswith("/var/root"))
CrashDiagDir = "/";
path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
int PID =
#if LLVM_ON_UNIX
getpid();
#else
0;
#endif
std::error_code EC;
fs::file_status FileStatus;
TimePoint<> LastAccessTime;
SmallString<128> CrashFilePath;
// Lookup the .crash files and get the one generated by a subprocess spawned
// by this driver invocation.
for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
File != FileEnd && !EC; File.increment(EC)) {
StringRef FileName = path::filename(File->path());
if (!FileName.startswith(Name))
continue;
if (fs::status(File->path(), FileStatus))
continue;
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
llvm::MemoryBuffer::getFile(File->path());
if (!CrashFile)
continue;
// The first line should start with "Process:", otherwise this isn't a real
// .crash file.
StringRef Data = CrashFile.get()->getBuffer();
if (!Data.startswith("Process:"))
continue;
// Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
size_t ParentProcPos = Data.find("Parent Process:");
if (ParentProcPos == StringRef::npos)
continue;
size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
if (LineEnd == StringRef::npos)
continue;
StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
int OpenBracket = -1, CloseBracket = -1;
for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
if (ParentProcess[i] == '[')
OpenBracket = i;
if (ParentProcess[i] == ']')
CloseBracket = i;
}
// Extract the parent process PID from the .crash file and check whether
// it matches this driver invocation pid.
int CrashPID;
if (OpenBracket < 0 || CloseBracket < 0 ||
ParentProcess.slice(OpenBracket + 1, CloseBracket)
.getAsInteger(10, CrashPID) || CrashPID != PID) {
continue;
}
// Found a .crash file matching the driver pid. To avoid getting an older
// and misleading crash file, continue looking for the most recent.
// FIXME: the driver can dispatch multiple cc1 invocations, leading to
// multiple crashes poiting to the same parent process. Since the driver
// does not collect pid information for the dispatched invocation there's
// currently no way to distinguish among them.
const auto FileAccessTime = FileStatus.getLastModificationTime();
if (FileAccessTime > LastAccessTime) {
CrashFilePath.assign(File->path());
LastAccessTime = FileAccessTime;
}
}
// If found, copy it over to the location of other reproducer files.
if (!CrashFilePath.empty()) {
EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
if (EC)
return false;
return true;
}
return false;
}
// When clang crashes, produce diagnostic information including the fully
// preprocessed source file(s). Request that the developer attach the
// diagnostic information to a bug report.
void Driver::generateCompilationDiagnostics(
Compilation &C, const Command &FailingCommand,
StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
return;
// Don't try to generate diagnostics for link or dsymutil jobs.
if (FailingCommand.getCreator().isLinkJob() ||
FailingCommand.getCreator().isDsymutilJob())
return;
// Print the version of the compiler.
PrintVersion(C, llvm::errs());
// Suppress driver output and emit preprocessor output to temp file.
CCGenDiagnostics = true;
// Save the original job command(s).
Command Cmd = FailingCommand;
// Keep track of whether we produce any errors while trying to produce
// preprocessed sources.
DiagnosticErrorTrap Trap(Diags);
// Suppress tool output.
C.initCompilationForDiagnostics();
// Construct the list of inputs.
InputList Inputs;
BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
bool IgnoreInput = false;
// Ignore input from stdin or any inputs that cannot be preprocessed.
// Check type first as not all linker inputs have a value.
if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
IgnoreInput = true;
} else if (!strcmp(it->second->getValue(), "-")) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s) - "
"ignoring input from stdin.";
IgnoreInput = true;
}
if (IgnoreInput) {
it = Inputs.erase(it);
ie = Inputs.end();
} else {
++it;
}
}
if (Inputs.empty()) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s) - "
"no preprocessable inputs.";
return;
}
// Don't attempt to generate preprocessed files if multiple -arch options are
// used, unless they're all duplicates.
llvm::StringSet<> ArchNames;
for (const Arg *A : C.getArgs()) {
if (A->getOption().matches(options::OPT_arch)) {
StringRef ArchName = A->getValue();
ArchNames.insert(ArchName);
}
}
if (ArchNames.size() > 1) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s) - cannot generate "
"preprocessed source with multiple -arch options.";
return;
}
// Construct the list of abstract actions to perform for this compilation. On
// Darwin OSes this uses the driver-driver and builds universal actions.
const ToolChain &TC = C.getDefaultToolChain();
if (TC.getTriple().isOSBinFormatMachO())
BuildUniversalActions(C, TC, Inputs);
else
BuildActions(C, C.getArgs(), Inputs, C.getActions());
BuildJobs(C);
// If there were errors building the compilation, quit now.
if (Trap.hasErrorOccurred()) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s).";
return;
}
// Generate preprocessed output.
SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
C.ExecuteJobs(C.getJobs(), FailingCommands);
// If any of the preprocessing commands failed, clean up and exit.
if (!FailingCommands.empty()) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s).";
return;
}
const ArgStringList &TempFiles = C.getTempFiles();
if (TempFiles.empty()) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s).";
return;
}
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "\n********************\n\n"
"PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
"Preprocessed source(s) and associated run script(s) are located at:";
SmallString<128> VFS;
SmallString<128> ReproCrashFilename;
for (const char *TempFile : TempFiles) {
Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
if (Report)
Report->TemporaryFiles.push_back(TempFile);
if (ReproCrashFilename.empty()) {
ReproCrashFilename = TempFile;
llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
}
if (StringRef(TempFile).endswith(".cache")) {
// In some cases (modules) we'll dump extra data to help with reproducing
// the crash into a directory next to the output.
VFS = llvm::sys::path::filename(TempFile);
llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
}
}
// Assume associated files are based off of the first temporary file.
CrashReportInfo CrashInfo(TempFiles[0], VFS);
llvm::SmallString<128> Script(CrashInfo.Filename);
llvm::sys::path::replace_extension(Script, "sh");
std::error_code EC;
llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
llvm::sys::fs::FA_Write,
llvm::sys::fs::OF_Text);
if (EC) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating run script: " << Script << " " << EC.message();
} else {
ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
<< "# Driver args: ";
printArgList(ScriptOS, C.getInputArgs());
ScriptOS << "# Original command: ";
Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
if (!AdditionalInformation.empty())
ScriptOS << "\n# Additional information: " << AdditionalInformation
<< "\n";
if (Report)
Report->TemporaryFiles.push_back(std::string(Script.str()));
Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
}
// On darwin, provide information about the .crash diagnostic report.
if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
SmallString<128> CrashDiagDir;
if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< ReproCrashFilename.str();
} else { // Suggest a directory for the user to look for .crash files.
llvm::sys::path::append(CrashDiagDir, Name);
CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Crash backtrace is located in";
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< CrashDiagDir.str();
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "(choose the .crash file that corresponds to your crash)";
}
}
for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file_EQ))
Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "\n\n********************";
}
void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
// Since commandLineFitsWithinSystemLimits() may underestimate system's
// capacity if the tool does not support response files, there is a chance/
// that things will just work without a response file, so we silently just
// skip it.
if (Cmd.getResponseFileSupport().ResponseKind ==
ResponseFileSupport::RF_None ||
llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
Cmd.getArguments()))
return;
std::string TmpName = GetTemporaryPath("response", "txt");
Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
}
int Driver::ExecuteCompilation(
Compilation &C,
SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
// Just print if -### was present.
if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
C.getJobs().Print(llvm::errs(), "\n", true);
return 0;
}
// If there were errors building the compilation, quit now.
if (Diags.hasErrorOccurred())
return 1;
// Set up response file names for each command, if necessary.
for (auto &Job : C.getJobs())
setUpResponseFiles(C, Job);
C.ExecuteJobs(C.getJobs(), FailingCommands);
// If the command succeeded, we are done.
if (FailingCommands.empty())
return 0;
// Otherwise, remove result files and print extra information about abnormal
// failures.
int Res = 0;
for (const auto &CmdPair : FailingCommands) {
int CommandRes = CmdPair.first;
const Command *FailingCommand = CmdPair.second;
// Remove result files if we're not saving temps.
if (!isSaveTempsEnabled()) {
const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
C.CleanupFileMap(C.getResultFiles(), JA, true);
// Failure result files are valid unless we crashed.
if (CommandRes < 0)
C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
}
#if LLVM_ON_UNIX
// llvm/lib/Support/Unix/Signals.inc will exit with a special return code
// for SIGPIPE. Do not print diagnostics for this case.
if (CommandRes == EX_IOERR) {
Res = CommandRes;
continue;
}
#endif
// Print extra information about abnormal failures, if possible.
//
// This is ad-hoc, but we don't want to be excessively noisy. If the result
// status was 1, assume the command failed normally. In particular, if it
// was the compiler then assume it gave a reasonable error code. Failures
// in other tools are less common, and they generally have worse
// diagnostics, so always print the diagnostic there.
const Tool &FailingTool = FailingCommand->getCreator();
if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
// FIXME: See FIXME above regarding result code interpretation.
if (CommandRes < 0)
Diag(clang::diag::err_drv_command_signalled)
<< FailingTool.getShortName();
else
Diag(clang::diag::err_drv_command_failed)
<< FailingTool.getShortName() << CommandRes;
}
}
return Res;
}
void Driver::PrintHelp(bool ShowHidden) const {
unsigned IncludedFlagsBitmask;
unsigned ExcludedFlagsBitmask;
std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
getIncludeExcludeOptionFlagMasks(IsCLMode());
ExcludedFlagsBitmask |= options::NoDriverOption;
if (!ShowHidden)
ExcludedFlagsBitmask |= HelpHidden;
if (IsFlangMode())
IncludedFlagsBitmask |= options::FlangOption;
else
ExcludedFlagsBitmask |= options::FlangOnlyOption;
std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
IncludedFlagsBitmask, ExcludedFlagsBitmask,
/*ShowAllAliases=*/false);
}
void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
if (IsFlangMode()) {
OS << getClangToolFullVersion("flang-new") << '\n';
} else {
// FIXME: The following handlers should use a callback mechanism, we don't
// know what the client would like to do.
OS << getClangFullVersion() << '\n';
}
const ToolChain &TC = C.getDefaultToolChain();
OS << "Target: " << TC.getTripleString() << '\n';
// Print the threading model.
if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
// Don't print if the ToolChain would have barfed on it already
if (TC.isThreadModelSupported(A->getValue()))
OS << "Thread model: " << A->getValue();
} else
OS << "Thread model: " << TC.getThreadModel();
OS << '\n';
// Print out the install directory.
OS << "InstalledDir: " << InstalledDir << '\n';
// If configuration file was used, print its path.
if (!ConfigFile.empty())
OS << "Configuration file: " << ConfigFile << '\n';
}
/// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
/// option.
static void PrintDiagnosticCategories(raw_ostream &OS) {
// Skip the empty category.
for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
++i)
OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
}
void Driver::HandleAutocompletions(StringRef PassedFlags) const {
if (PassedFlags == "")
return;
// Print out all options that start with a given argument. This is used for
// shell autocompletion.
std::vector<std::string> SuggestedCompletions;
std::vector<std::string> Flags;
unsigned int DisableFlags =
options::NoDriverOption | options::Unsupported | options::Ignored;
// Make sure that Flang-only options don't pollute the Clang output
// TODO: Make sure that Clang-only options don't pollute Flang output
if (!IsFlangMode())
DisableFlags |= options::FlangOnlyOption;
// Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
// because the latter indicates that the user put space before pushing tab
// which should end up in a file completion.
const bool HasSpace = PassedFlags.endswith(",");
// Parse PassedFlags by "," as all the command-line flags are passed to this
// function separated by ","
StringRef TargetFlags = PassedFlags;
while (TargetFlags != "") {
StringRef CurFlag;
std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
Flags.push_back(std::string(CurFlag));
}
// We want to show cc1-only options only when clang is invoked with -cc1 or
// -Xclang.
if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
DisableFlags &= ~options::NoDriverOption;
const llvm::opt::OptTable &Opts = getOpts();
StringRef Cur;
Cur = Flags.at(Flags.size() - 1);
StringRef Prev;
if (Flags.size() >= 2) {
Prev = Flags.at(Flags.size() - 2);
SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
}
if (SuggestedCompletions.empty())
SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
// If Flags were empty, it means the user typed `clang [tab]` where we should
// list all possible flags. If there was no value completion and the user
// pressed tab after a space, we should fall back to a file completion.
// We're printing a newline to be consistent with what we print at the end of
// this function.
if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
llvm::outs() << '\n';
return;
}
// When flag ends with '=' and there was no value completion, return empty
// string and fall back to the file autocompletion.
if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
// If the flag is in the form of "--autocomplete=-foo",
// we were requested to print out all option names that start with "-foo".
// For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
// We have to query the -W flags manually as they're not in the OptTable.
// TODO: Find a good way to add them to OptTable instead and them remove
// this code.
for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
if (S.startswith(Cur))
SuggestedCompletions.push_back(std::string(S));
}
// Sort the autocomplete candidates so that shells print them out in a
// deterministic order. We could sort in any way, but we chose
// case-insensitive sorting for consistency with the -help option
// which prints out options in the case-insensitive alphabetical order.
llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
if (int X = A.compare_insensitive(B))
return X < 0;
return A.compare(B) > 0;
});
llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
}
bool Driver::HandleImmediateArgs(const Compilation &C) {
// The order these options are handled in gcc is all over the place, but we
// don't expect inconsistencies w.r.t. that to matter in practice.
if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
return false;
}
if (C.getArgs().hasArg(options::OPT_dumpversion)) {
// Since -dumpversion is only implemented for pedantic GCC compatibility, we
// return an answer which matches our definition of __VERSION__.
llvm::outs() << CLANG_VERSION_STRING << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
PrintDiagnosticCategories(llvm::outs());
return false;
}
if (C.getArgs().hasArg(options::OPT_help) ||
C.getArgs().hasArg(options::OPT__help_hidden)) {
PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
return false;
}
if (C.getArgs().hasArg(options::OPT__version)) {
// Follow gcc behavior and use stdout for --version and stderr for -v.
PrintVersion(C, llvm::outs());
return false;
}
if (C.getArgs().hasArg(options::OPT_v) ||
C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
PrintVersion(C, llvm::errs());
SuppressMissingInputWarning = true;
}
if (C.getArgs().hasArg(options::OPT_v)) {
if (!SystemConfigDir.empty())
llvm::errs() << "System configuration file directory: "
<< SystemConfigDir << "\n";
if (!UserConfigDir.empty())
llvm::errs() << "User configuration file directory: "
<< UserConfigDir << "\n";
}
const ToolChain &TC = C.getDefaultToolChain();
if (C.getArgs().hasArg(options::OPT_v))
TC.printVerboseInfo(llvm::errs());
if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
llvm::outs() << ResourceDir << '\n';
return false;
}
if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
llvm::outs() << "programs: =";
bool separator = false;
// Print -B and COMPILER_PATH.
for (const std::string &Path : PrefixDirs) {
if (separator)
llvm::outs() << llvm::sys::EnvPathSeparator;
llvm::outs() << Path;
separator = true;
}
for (const std::string &Path : TC.getProgramPaths()) {
if (separator)
llvm::outs() << llvm::sys::EnvPathSeparator;
llvm::outs() << Path;
separator = true;
}
llvm::outs() << "\n";
llvm::outs() << "libraries: =" << ResourceDir;
StringRef sysroot = C.getSysRoot();
for (const std::string &Path : TC.getFilePaths()) {
// Always print a separator. ResourceDir was the first item shown.
llvm::outs() << llvm::sys::EnvPathSeparator;
// Interpretation of leading '=' is needed only for NetBSD.
if (Path[0] == '=')
llvm::outs() << sysroot << Path.substr(1);
else
llvm::outs() << Path;
}
llvm::outs() << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
std::string RuntimePath;
// Get the first existing path, if any.
for (auto Path : TC.getRuntimePaths()) {
if (getVFS().exists(Path)) {
RuntimePath = Path;
break;
}
}
if (!RuntimePath.empty())
llvm::outs() << RuntimePath << '\n';
else
llvm::outs() << TC.getCompilerRTPath() << '\n';
return false;
}
// FIXME: The following handlers should use a callback mechanism, we don't
// know what the client would like to do.
if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
return false;
}
if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
StringRef ProgName = A->getValue();
// Null program name cannot have a path.
if (! ProgName.empty())
llvm::outs() << GetProgramPath(ProgName, TC);
llvm::outs() << "\n";
return false;
}
if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
StringRef PassedFlags = A->getValue();
HandleAutocompletions(PassedFlags);
return false;
}
if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
RegisterEffectiveTriple TripleRAII(TC, Triple);
switch (RLT) {
case ToolChain::RLT_CompilerRT:
llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
break;
case ToolChain::RLT_Libgcc:
llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
break;
}
return false;
}
if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
for (const Multilib &Multilib : TC.getMultilibs())
llvm::outs() << Multilib << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
const Multilib &Multilib = TC.getMultilib();
if (Multilib.gccSuffix().empty())
llvm::outs() << ".\n";
else {
StringRef Suffix(Multilib.gccSuffix());
assert(Suffix.front() == '/');
llvm::outs() << Suffix.substr(1) << "\n";
}
return false;
}
if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
llvm::outs() << TC.getTripleString() << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
llvm::outs() << Triple.getTriple() << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_multiarch)) {
llvm::outs() << TC.getMultiarchTriple(*this, TC.getTriple(), SysRoot)
<< "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_targets)) {
llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
return false;
}
return true;
}
enum {
TopLevelAction = 0,
HeadSibAction = 1,
OtherSibAction = 2,
};
// Display an action graph human-readably. Action A is the "sink" node
// and latest-occuring action. Traversal is in pre-order, visiting the
// inputs to each action before printing the action itself.
static unsigned PrintActions1(const Compilation &C, Action *A,
std::map<Action *, unsigned> &Ids,
Twine Indent = {}, int Kind = TopLevelAction) {
if (Ids.count(A)) // A was already visited.
return Ids[A];
std::string str;
llvm::raw_string_ostream os(str);
auto getSibIndent = [](int K) -> Twine {
return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : "";
};
Twine SibIndent = Indent + getSibIndent(Kind);
int SibKind = HeadSibAction;
os << Action::getClassName(A->getKind()) << ", ";
if (InputAction *IA = dyn_cast<InputAction>(A)) {
os << "\"" << IA->getInputArg().getValue() << "\"";
} else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
os << '"' << BIA->getArchName() << '"' << ", {"
<< PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
} else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
bool IsFirst = true;
OA->doOnEachDependence(
[&](Action *A, const ToolChain *TC, const char *BoundArch) {
assert(TC && "Unknown host toolchain");
// E.g. for two CUDA device dependences whose bound arch is sm_20 and
// sm_35 this will generate:
// "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
// (nvptx64-nvidia-cuda:sm_35) {#ID}
if (!IsFirst)
os << ", ";
os << '"';
os << A->getOffloadingKindPrefix();
os << " (";
os << TC->getTriple().normalize();
if (BoundArch)
os << ":" << BoundArch;
os << ")";
os << '"';
os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
IsFirst = false;
SibKind = OtherSibAction;
});
} else {
const ActionList *AL = &A->getInputs();
if (AL->size()) {
const char *Prefix = "{";
for (Action *PreRequisite : *AL) {
os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
Prefix = ", ";
SibKind = OtherSibAction;
}
os << "}";
} else
os << "{}";
}
// Append offload info for all options other than the offloading action
// itself (e.g. (cuda-device, sm_20) or (cuda-host)).
std::string offload_str;
llvm::raw_string_ostream offload_os(offload_str);
if (!isa<OffloadAction>(A)) {
auto S = A->getOffloadingKindPrefix();
if (!S.empty()) {
offload_os << ", (" << S;
if (A->getOffloadingArch())
offload_os << ", " << A->getOffloadingArch();
offload_os << ")";
}
}
auto getSelfIndent = [](int K) -> Twine {
return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
};
unsigned Id = Ids.size();
Ids[A] = Id;
llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
<< types::getTypeName(A->getType()) << offload_os.str() << "\n";
return Id;
}
// Print the action graphs in a compilation C.
// For example "clang -c file1.c file2.c" is composed of two subgraphs.
void Driver::PrintActions(const Compilation &C) const {
std::map<Action *, unsigned> Ids;
for (Action *A : C.getActions())
PrintActions1(C, A, Ids);
}
/// Check whether the given input tree contains any compilation or
/// assembly actions.
static bool ContainsCompileOrAssembleAction(const Action *A) {
if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
isa<AssembleJobAction>(A))
return true;
return llvm::any_of(A->inputs(), ContainsCompileOrAssembleAction);
}
void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
const InputList &BAInputs) const {
DerivedArgList &Args = C.getArgs();
ActionList &Actions = C.getActions();
llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
// Collect the list of architectures. Duplicates are allowed, but should only
// be handled once (in the order seen).
llvm::StringSet<> ArchNames;
SmallVector<const char *, 4> Archs;
for (Arg *A : Args) {
if (A->getOption().matches(options::OPT_arch)) {
// Validate the option here; we don't save the type here because its
// particular spelling may participate in other driver choices.
llvm::Triple::ArchType Arch =
tools::darwin::getArchTypeForMachOArchName(A->getValue());
if (Arch == llvm::Triple::UnknownArch) {
Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
continue;
}
A->claim();
if (ArchNames.insert(A->getValue()).second)
Archs.push_back(A->getValue());
}
}
// When there is no explicit arch for this platform, make sure we still bind
// the architecture (to the default) so that -Xarch_ is handled correctly.
if (!Archs.size())
Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
ActionList SingleActions;
BuildActions(C, Args, BAInputs, SingleActions);
// Add in arch bindings for every top level action, as well as lipo and
// dsymutil steps if needed.
for (Action* Act : SingleActions) {
// Make sure we can lipo this kind of output. If not (and it is an actual
// output) then we disallow, since we can't create an output file with the
// right name without overwriting it. We could remove this oddity by just
// changing the output names to include the arch, which would also fix
// -save-temps. Compatibility wins for now.
if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
<< types::getTypeName(Act->getType());
ActionList Inputs;
for (unsigned i = 0, e = Archs.size(); i != e; ++i)
Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
// Lipo if necessary, we do it this way because we need to set the arch flag
// so that -Xarch_ gets overwritten.
if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
Actions.append(Inputs.begin(), Inputs.end());
else
Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
// Handle debug info queries.
Arg *A = Args.getLastArg(options::OPT_g_Group);
bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
!A->getOption().matches(options::OPT_gstabs);
if ((enablesDebugInfo || willEmitRemarks(Args)) &&
ContainsCompileOrAssembleAction(Actions.back())) {
// Add a 'dsymutil' step if necessary, when debug info is enabled and we
// have a compile input. We need to run 'dsymutil' ourselves in such cases
// because the debug info will refer to a temporary object file which
// will be removed at the end of the compilation process.
if (Act->getType() == types::TY_Image) {
ActionList Inputs;
Inputs.push_back(Actions.back());
Actions.pop_back();
Actions.push_back(
C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
}
// Verify the debug info output.
if (Args.hasArg(options::OPT_verify_debug_info)) {
Action* LastAction = Actions.back();
Actions.pop_back();
Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
LastAction, types::TY_Nothing));
}
}
}
}
bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
types::ID Ty, bool TypoCorrect) const {
if (!getCheckInputsExist())
return true;
// stdin always exists.
if (Value == "-")
return true;
if (getVFS().exists(Value))
return true;
if (TypoCorrect) {
// Check if the filename is a typo for an option flag. OptTable thinks
// that all args that are not known options and that start with / are
// filenames, but e.g. `/diagnostic:caret` is more likely a typo for
// the option `/diagnostics:caret` than a reference to a file in the root
// directory.
unsigned IncludedFlagsBitmask;
unsigned ExcludedFlagsBitmask;
std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
getIncludeExcludeOptionFlagMasks(IsCLMode());
std::string Nearest;
if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
ExcludedFlagsBitmask) <= 1) {
Diag(clang::diag::err_drv_no_such_file_with_suggestion)
<< Value << Nearest;
return false;
}
}
// In CL mode, don't error on apparently non-existent linker inputs, because
// they can be influenced by linker flags the clang driver might not
// understand.
// Examples:
// - `clang-cl main.cc ole32.lib` in a a non-MSVC shell will make the driver
// module look for an MSVC installation in the registry. (We could ask
// the MSVCToolChain object if it can find `ole32.lib`, but the logic to
// look in the registry might move into lld-link in the future so that
// lld-link invocations in non-MSVC shells just work too.)
// - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
// including /libpath:, which is used to find .lib and .obj files.
// So do not diagnose this on the driver level. Rely on the linker diagnosing
// it. (If we don't end up invoking the linker, this means we'll emit a
// "'linker' input unused [-Wunused-command-line-argument]" warning instead
// of an error.)
//
// Only do this skip after the typo correction step above. `/Brepo` is treated
// as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
// an error if we have a flag that's within an edit distance of 1 from a
// flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
// driver in the unlikely case they run into this.)
//
// Don't do this for inputs that start with a '/', else we'd pass options
// like /libpath: through to the linker silently.
//
// Emitting an error for linker inputs can also cause incorrect diagnostics
// with the gcc driver. The command
// clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o
// will make lld look for some/dir/file.o, while we will diagnose here that
// `/file.o` does not exist. However, configure scripts check if
// `clang /GR-` compiles without error to see if the compiler is cl.exe,
// so we can't downgrade diagnostics for `/GR-` from an error to a warning
// in cc mode. (We can in cl mode because cl.exe itself only warns on
// unknown flags.)
if (IsCLMode() && Ty == types::TY_Object && !Value.startswith("/"))
return true;
Diag(clang::diag::err_drv_no_such_file) << Value;
return false;
}
// Construct a the list of inputs and their types.
void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
InputList &Inputs) const {
const llvm::opt::OptTable &Opts = getOpts();
// Track the current user specified (-x) input. We also explicitly track the
// argument used to set the type; we only want to claim the type when we
// actually use it, so we warn about unused -x arguments.
types::ID InputType = types::TY_Nothing;
Arg *InputTypeArg = nullptr;
// The last /TC or /TP option sets the input type to C or C++ globally.
if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
options::OPT__SLASH_TP)) {
InputTypeArg = TCTP;
InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
? types::TY_C
: types::TY_CXX;
Arg *Previous = nullptr;
bool ShowNote = false;
for (Arg *A :
Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
if (Previous) {
Diag(clang::diag::warn_drv_overriding_flag_option)
<< Previous->getSpelling() << A->getSpelling();
ShowNote = true;
}
Previous = A;
}
if (ShowNote)
Diag(clang::diag::note_drv_t_option_is_global);
// No driver mode exposes -x and /TC or /TP; we don't support mixing them.
assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
}
for (Arg *A : Args) {
if (A->getOption().getKind() == Option::InputClass) {
const char *Value = A->getValue();
types::ID Ty = types::TY_INVALID;
// Infer the input type if necessary.
if (InputType == types::TY_Nothing) {
// If there was an explicit arg for this, claim it.
if (InputTypeArg)
InputTypeArg->claim();
// stdin must be handled specially.
if (memcmp(Value, "-", 2) == 0) {
if (IsFlangMode()) {
Ty = types::TY_Fortran;
} else {
// If running with -E, treat as a C input (this changes the
// builtin macros, for example). This may be overridden by -ObjC
// below.
//
// Otherwise emit an error but still use a valid type to avoid
// spurious errors (e.g., no inputs).
assert(!CCGenDiagnostics && "stdin produces no crash reproducer");
if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
: clang::diag::err_drv_unknown_stdin_type);
Ty = types::TY_C;
}
} else {
// Otherwise lookup by extension.
// Fallback is C if invoked as C preprocessor, C++ if invoked with
// clang-cl /E, or Object otherwise.
// We use a host hook here because Darwin at least has its own
// idea of what .s is.
if (const char *Ext = strrchr(Value, '.'))
Ty = TC.LookupTypeForExtension(Ext + 1);
if (Ty == types::TY_INVALID) {
if (IsCLMode() && (Args.hasArgNoClaim(options::OPT_E) || CCGenDiagnostics))
Ty = types::TY_CXX;
else if (CCCIsCPP() || CCGenDiagnostics)
Ty = types::TY_C;
else
Ty = types::TY_Object;
}
// If the driver is invoked as C++ compiler (like clang++ or c++) it
// should autodetect some input files as C++ for g++ compatibility.
if (CCCIsCXX()) {
types::ID OldTy = Ty;
Ty = types::lookupCXXTypeForCType(Ty);
if (Ty != OldTy)
Diag(clang::diag::warn_drv_treating_input_as_cxx)
<< getTypeName(OldTy) << getTypeName(Ty);
}
// If running with -fthinlto-index=, extensions that normally identify
// native object files actually identify LLVM bitcode files.
if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
Ty == types::TY_Object)
Ty = types::TY_LLVM_BC;
}
// -ObjC and -ObjC++ override the default language, but only for "source
// files". We just treat everything that isn't a linker input as a
// source file.
//
// FIXME: Clean this up if we move the phase sequence into the type.
if (Ty != types::TY_Object) {
if (Args.hasArg(options::OPT_ObjC))
Ty = types::TY_ObjC;
else if (Args.hasArg(options::OPT_ObjCXX))
Ty = types::TY_ObjCXX;
}
} else {
assert(InputTypeArg && "InputType set w/o InputTypeArg");
if (!InputTypeArg->getOption().matches(options::OPT_x)) {
// If emulating cl.exe, make sure that /TC and /TP don't affect input
// object files.
const char *Ext = strrchr(Value, '.');
if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
Ty = types::TY_Object;
}
if (Ty == types::TY_INVALID) {
Ty = InputType;
InputTypeArg->claim();
}
}
if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
Inputs.push_back(std::make_pair(Ty, A));
} else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
StringRef Value = A->getValue();
if (DiagnoseInputExistence(Args, Value, types::TY_C,
/*TypoCorrect=*/false)) {
Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
Inputs.push_back(std::make_pair(types::TY_C, InputArg));
}
A->claim();
} else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
StringRef Value = A->getValue();
if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
/*TypoCorrect=*/false)) {
Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
}
A->claim();
} else if (A->getOption().hasFlag(options::LinkerInput)) {
// Just treat as object type, we could make a special type for this if
// necessary.
Inputs.push_back(std::make_pair(types::TY_Object, A));
} else if (A->getOption().matches(options::OPT_x)) {
InputTypeArg = A;
InputType = types::lookupTypeForTypeSpecifier(A->getValue());
A->claim();
// Follow gcc behavior and treat as linker input for invalid -x
// options. Its not clear why we shouldn't just revert to unknown; but
// this isn't very important, we might as well be bug compatible.
if (!InputType) {
Diag(clang::diag::err_drv_unknown_language) << A->getValue();
InputType = types::TY_Object;
}
} else if (A->getOption().getID() == options::OPT_U) {
assert(A->getNumValues() == 1 && "The /U option has one value.");
StringRef Val = A->getValue(0);
if (Val.find_first_of("/\\") != StringRef::npos) {
// Warn about e.g. "/Users/me/myfile.c".
Diag(diag::warn_slash_u_filename) << Val;
Diag(diag::note_use_dashdash);
}
}
}
if (CCCIsCPP() && Inputs.empty()) {
// If called as standalone preprocessor, stdin is processed
// if no other input is present.
Arg *A = MakeInputArg(Args, Opts, "-");
Inputs.push_back(std::make_pair(types::TY_C, A));
}
}
namespace {
/// Provides a convenient interface for different programming models to generate
/// the required device actions.
class OffloadingActionBuilder final {
/// Flag used to trace errors in the builder.
bool IsValid = false;
/// The compilation that is using this builder.
Compilation &C;
/// Map between an input argument and the offload kinds used to process it.
std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
/// Map between a host action and its originating input argument.
std::map<Action *, const Arg *> HostActionToInputArgMap;
/// Builder interface. It doesn't build anything or keep any state.
class DeviceActionBuilder {
public:
typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
enum ActionBuilderReturnCode {
// The builder acted successfully on the current action.
ABRT_Success,
// The builder didn't have to act on the current action.
ABRT_Inactive,
// The builder was successful and requested the host action to not be
// generated.
ABRT_Ignore_Host,
};
protected:
/// Compilation associated with this builder.
Compilation &C;
/// Tool chains associated with this builder. The same programming
/// model may have associated one or more tool chains.
SmallVector<const ToolChain *, 2> ToolChains;
/// The derived arguments associated with this builder.
DerivedArgList &Args;
/// The inputs associated with this builder.
const Driver::InputList &Inputs;
/// The associated offload kind.
Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
public:
DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
const Driver::InputList &Inputs,
Action::OffloadKind AssociatedOffloadKind)
: C(C), Args(Args), Inputs(Inputs),
AssociatedOffloadKind(AssociatedOffloadKind) {}
virtual ~DeviceActionBuilder() {}
/// Fill up the array \a DA with all the device dependences that should be
/// added to the provided host action \a HostAction. By default it is
/// inactive.
virtual ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences &DA,
phases::ID CurPhase, phases::ID FinalPhase,
PhasesTy &Phases) {
return ABRT_Inactive;
}
/// Update the state to include the provided host action \a HostAction as a
/// dependency of the current device action. By default it is inactive.
virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
return ABRT_Inactive;
}
/// Append top level actions generated by the builder.
virtual void appendTopLevelActions(ActionList &AL) {}
/// Append linker device actions generated by the builder.
virtual void appendLinkDeviceActions(ActionList &AL) {}
/// Append linker host action generated by the builder.
virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
/// Append linker actions generated by the builder.
virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
/// Initialize the builder. Return true if any initialization errors are
/// found.
virtual bool initialize() { return false; }
/// Return true if the builder can use bundling/unbundling.
virtual bool canUseBundlerUnbundler() const { return false; }
/// Return true if this builder is valid. We have a valid builder if we have
/// associated device tool chains.
bool isValid() { return !ToolChains.empty(); }
/// Return the associated offload kind.
Action::OffloadKind getAssociatedOffloadKind() {
return AssociatedOffloadKind;
}
};
/// Base class for CUDA/HIP action builder. It injects device code in
/// the host backend action.
class CudaActionBuilderBase : public DeviceActionBuilder {
protected:
/// Flags to signal if the user requested host-only or device-only
/// compilation.
bool CompileHostOnly = false;
bool CompileDeviceOnly = false;
bool EmitLLVM = false;
bool EmitAsm = false;
/// ID to identify each device compilation. For CUDA it is simply the
/// GPU arch string. For HIP it is either the GPU arch string or GPU
/// arch string plus feature strings delimited by a plus sign, e.g.
/// gfx906+xnack.
struct TargetID {
/// Target ID string which is persistent throughout the compilation.
const char *ID;
TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); }
TargetID(const char *ID) : ID(ID) {}
operator const char *() { return ID; }
operator StringRef() { return StringRef(ID); }
};
/// List of GPU architectures to use in this compilation.
SmallVector<TargetID, 4> GpuArchList;
/// The CUDA actions for the current input.
ActionList CudaDeviceActions;
/// The CUDA fat binary if it was generated for the current input.
Action *CudaFatBinary = nullptr;
/// Flag that is set to true if this builder acted on the current input.
bool IsActive = false;
/// Flag for -fgpu-rdc.
bool Relocatable = false;
/// Default GPU architecture if there's no one specified.
CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
/// Method to generate compilation unit ID specified by option
/// '-fuse-cuid='.
enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
UseCUIDKind UseCUID = CUID_Hash;
/// Compilation unit ID specified by option '-cuid='.
StringRef FixedCUID;
public:
CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
const Driver::InputList &Inputs,
Action::OffloadKind OFKind)
: DeviceActionBuilder(C, Args, Inputs, OFKind) {}
ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
// While generating code for CUDA, we only depend on the host input action
// to trigger the creation of all the CUDA device actions.
// If we are dealing with an input action, replicate it for each GPU
// architecture. If we are in host-only mode we return 'success' so that
// the host uses the CUDA offload kind.
if (auto *IA = dyn_cast<InputAction>(HostAction)) {
assert(!GpuArchList.empty() &&
"We should have at least one GPU architecture.");
// If the host input is not CUDA or HIP, we don't need to bother about
// this input.
if (!(IA->getType() == types::TY_CUDA ||
IA->getType() == types::TY_HIP ||
IA->getType() == types::TY_PP_HIP)) {
// The builder will ignore this input.
IsActive = false;
return ABRT_Inactive;
}
// Set the flag to true, so that the builder acts on the current input.
IsActive = true;
if (CompileHostOnly)
return ABRT_Success;
// Replicate inputs for each GPU architecture.
auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
: types::TY_CUDA_DEVICE;
std::string CUID = FixedCUID.str();
if (CUID.empty()) {
if (UseCUID == CUID_Random)
CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
/*LowerCase=*/true);
else if (UseCUID == CUID_Hash) {
llvm::MD5 Hasher;
llvm::MD5::MD5Result Hash;
SmallString<256> RealPath;
llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
/*expand_tilde=*/true);
Hasher.update(RealPath);
for (auto *A : Args) {
if (A->getOption().matches(options::OPT_INPUT))
continue;
Hasher.update(A->getAsString(Args));
}
Hasher.final(Hash);
CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
}
}
IA->setId(CUID);
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
CudaDeviceActions.push_back(
C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
}
return ABRT_Success;
}
// If this is an unbundling action use it as is for each CUDA toolchain.
if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
// If -fgpu-rdc is disabled, should not unbundle since there is no
// device code to link.
if (UA->getType() == types::TY_Object && !Relocatable)
return ABRT_Inactive;
CudaDeviceActions.clear();
auto *IA = cast<InputAction>(UA->getInputs().back());
std::string FileName = IA->getInputArg().getAsString(Args);
// Check if the type of the file is the same as the action. Do not
// unbundle it if it is not. Do not unbundle .so files, for example,
// which are not object files.
if (IA->getType() == types::TY_Object &&
(!llvm::sys::path::has_extension(FileName) ||
types::lookupTypeForExtension(
llvm::sys::path::extension(FileName).drop_front()) !=
types::TY_Object))
return ABRT_Inactive;
for (auto Arch : GpuArchList) {
CudaDeviceActions.push_back(UA);
UA->registerDependentActionInfo(ToolChains[0], Arch,
AssociatedOffloadKind);
}
IsActive = true;
return ABRT_Success;
}
return IsActive ? ABRT_Success : ABRT_Inactive;
}
void appendTopLevelActions(ActionList &AL) override {
// Utility to append actions to the top level list.
auto AddTopLevel = [&](Action *A, TargetID TargetID) {
OffloadAction::DeviceDependences Dep;
Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
};
// If we have a fat binary, add it to the list.
if (CudaFatBinary) {
AddTopLevel(CudaFatBinary, CudaArch::UNUSED);
CudaDeviceActions.clear();
CudaFatBinary = nullptr;
return;
}
if (CudaDeviceActions.empty())
return;
// If we have CUDA actions at this point, that's because we have a have
// partial compilation, so we should have an action for each GPU
// architecture.
assert(CudaDeviceActions.size() == GpuArchList.size() &&
"Expecting one action per GPU architecture.");
assert(ToolChains.size() == 1 &&
"Expecting to have a single CUDA toolchain.");
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
CudaDeviceActions.clear();
}
/// Get canonicalized offload arch option. \returns empty StringRef if the
/// option is invalid.
virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
virtual llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
bool initialize() override {
assert(AssociatedOffloadKind == Action::OFK_Cuda ||
AssociatedOffloadKind == Action::OFK_HIP);
// We don't need to support CUDA.
if (AssociatedOffloadKind == Action::OFK_Cuda &&
!C.hasOffloadToolChain<Action::OFK_Cuda>())
return false;
// We don't need to support HIP.
if (AssociatedOffloadKind == Action::OFK_HIP &&
!C.hasOffloadToolChain<Action::OFK_HIP>())
return false;
Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
options::OPT_fno_gpu_rdc, /*Default=*/false);
const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
assert(HostTC && "No toolchain for host compilation.");
if (HostTC->getTriple().isNVPTX() ||
HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
// We do not support targeting NVPTX/AMDGCN for host compilation. Throw
// an error and abort pipeline construction early so we don't trip
// asserts that assume device-side compilation.
C.getDriver().Diag(diag::err_drv_cuda_host_arch)
<< HostTC->getTriple().getArchName();
return true;
}
ToolChains.push_back(
AssociatedOffloadKind == Action::OFK_Cuda
? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
: C.getSingleOffloadToolChain<Action::OFK_HIP>());
Arg *PartialCompilationArg = Args.getLastArg(
options::OPT_cuda_host_only, options::OPT_cuda_device_only,
options::OPT_cuda_compile_host_device);
CompileHostOnly = PartialCompilationArg &&
PartialCompilationArg->getOption().matches(
options::OPT_cuda_host_only);
CompileDeviceOnly = PartialCompilationArg &&
PartialCompilationArg->getOption().matches(
options::OPT_cuda_device_only);
EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
EmitAsm = Args.getLastArg(options::OPT_S);
FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
StringRef UseCUIDStr = A->getValue();
UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
.Case("hash", CUID_Hash)
.Case("random", CUID_Random)
.Case("none", CUID_None)
.Default(CUID_Invalid);
if (UseCUID == CUID_Invalid) {
C.getDriver().Diag(diag::err_drv_invalid_value)
<< A->getAsString(Args) << UseCUIDStr;
C.setContainsError();
return true;
}
}
// --offload and --offload-arch options are mutually exclusive.
if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
options::OPT_no_offload_arch_EQ)) {
C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "--offload-arch"
<< "--offload";
}
// Collect all cuda_gpu_arch parameters, removing duplicates.
std::set<StringRef> GpuArchs;
bool Error = false;
for (Arg *A : Args) {
if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
A->getOption().matches(options::OPT_no_offload_arch_EQ)))
continue;
A->claim();
StringRef ArchStr = A->getValue();
if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
ArchStr == "all") {
GpuArchs.clear();
continue;
}
ArchStr = getCanonicalOffloadArch(ArchStr);
if (ArchStr.empty()) {
Error = true;
} else if (A->getOption().matches(options::OPT_offload_arch_EQ))
GpuArchs.insert(ArchStr);
else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
GpuArchs.erase(ArchStr);
else
llvm_unreachable("Unexpected option.");
}
auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
if (ConflictingArchs) {
C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
<< ConflictingArchs.getValue().first
<< ConflictingArchs.getValue().second;
C.setContainsError();
return true;
}
// Collect list of GPUs remaining in the set.
for (auto Arch : GpuArchs)
GpuArchList.push_back(Arch.data());
// Default to sm_20 which is the lowest common denominator for
// supported GPUs. sm_20 code should work correctly, if
// suboptimally, on all newer GPUs.
if (GpuArchList.empty()) {
if (ToolChains.front()->getTriple().isSPIRV())
GpuArchList.push_back(CudaArch::Generic);
else
GpuArchList.push_back(DefaultCudaArch);
}
return Error;
}
};
/// \brief CUDA action builder. It injects device code in the host backend
/// action.
class CudaActionBuilder final : public CudaActionBuilderBase {
public:
CudaActionBuilder(Compilation &C, DerivedArgList &Args,
const Driver::InputList &Inputs)
: CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
DefaultCudaArch = CudaArch::SM_35;
}
StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
CudaArch Arch = StringToCudaArch(ArchStr);
if (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch)) {
C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
return StringRef();
}
return CudaArchToString(Arch);
}
llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
getConflictOffloadArchCombination(
const std::set<StringRef> &GpuArchs) override {
return llvm::None;
}
ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences &DA,
phases::ID CurPhase, phases::ID FinalPhase,
PhasesTy &Phases) override {
if (!IsActive)
return ABRT_Inactive;
// If we don't have more CUDA actions, we don't have any dependences to
// create for the host.
if (CudaDeviceActions.empty())
return ABRT_Success;
assert(CudaDeviceActions.size() == GpuArchList.size() &&
"Expecting one action per GPU architecture.");
assert(!CompileHostOnly &&
"Not expecting CUDA actions in host-only compilation.");
// If we are generating code for the device or we are in a backend phase,
// we attempt to generate the fat binary. We compile each arch to ptx and
// assemble to cubin, then feed the cubin *and* the ptx into a device
// "link" action, which uses fatbinary to combine these cubins into one
// fatbin. The fatbin is then an input to the host action if not in
// device-only mode.
if (CompileDeviceOnly || CurPhase == phases::Backend) {
ActionList DeviceActions;
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
// Produce the device action from the current phase up to the assemble
// phase.
for (auto Ph : Phases) {
// Skip the phases that were already dealt with.
if (Ph < CurPhase)
continue;
// We have to be consistent with the host final phase.
if (Ph > FinalPhase)
break;
CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
if (Ph == phases::Assemble)
break;
}
// If we didn't reach the assemble phase, we can't generate the fat
// binary. We don't need to generate the fat binary if we are not in
// device-only mode.
if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
CompileDeviceOnly)
continue;
Action *AssembleAction = CudaDeviceActions[I];
assert(AssembleAction->getType() == types::TY_Object);
assert(AssembleAction->getInputs().size() == 1);
Action *BackendAction = AssembleAction->getInputs()[0];
assert(BackendAction->getType() == types::TY_PP_Asm);
for (auto &A : {AssembleAction, BackendAction}) {
OffloadAction::DeviceDependences DDep;
DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
DeviceActions.push_back(
C.MakeAction<OffloadAction>(DDep, A->getType()));
}
}
// We generate the fat binary if we have device input actions.
if (!DeviceActions.empty()) {
CudaFatBinary =
C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
if (!CompileDeviceOnly) {
DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
Action::OFK_Cuda);
// Clear the fat binary, it is already a dependence to an host
// action.
CudaFatBinary = nullptr;
}
// Remove the CUDA actions as they are already connected to an host
// action or fat binary.
CudaDeviceActions.clear();
}
// We avoid creating host action in device-only mode.
return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
} else if (CurPhase > phases::Backend) {
// If we are past the backend phase and still have a device action, we
// don't have to do anything as this action is already a device
// top-level action.
return ABRT_Success;
}
assert(CurPhase < phases::Backend && "Generating single CUDA "
"instructions should only occur "
"before the backend phase!");
// By default, we produce an action for each device arch.
for (Action *&A : CudaDeviceActions)
A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
return ABRT_Success;
}
};
/// \brief HIP action builder. It injects device code in the host backend
/// action.
class HIPActionBuilder final : public CudaActionBuilderBase {
/// The linker inputs obtained for each device arch.
SmallVector<ActionList, 8> DeviceLinkerInputs;
// The default bundling behavior depends on the type of output, therefore
// BundleOutput needs to be tri-value: None, true, or false.
// Bundle code objects except --no-gpu-output is specified for device
// only compilation. Bundle other type of output files only if
// --gpu-bundle-output is specified for device only compilation.
Optional<bool> BundleOutput;
public:
HIPActionBuilder(Compilation &C, DerivedArgList &Args,
const Driver::InputList &Inputs)
: CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
DefaultCudaArch = CudaArch::GFX803;
if (Args.hasArg(options::OPT_gpu_bundle_output,
options::OPT_no_gpu_bundle_output))
BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output,
options::OPT_no_gpu_bundle_output);
}
bool canUseBundlerUnbundler() const override { return true; }
StringRef getCanonicalOffloadArch(StringRef IdStr) override {
llvm::StringMap<bool> Features;
// getHIPOffloadTargetTriple() is known to return valid value as it has
// been called successfully in the CreateOffloadingDeviceToolChains().
auto ArchStr = parseTargetID(
*getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()), IdStr,
&Features);
if (!ArchStr) {
C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
C.setContainsError();
return StringRef();
}
auto CanId = getCanonicalTargetID(ArchStr.getValue(), Features);
return Args.MakeArgStringRef(CanId);
};
llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
getConflictOffloadArchCombination(
const std::set<StringRef> &GpuArchs) override {
return getConflictTargetIDCombination(GpuArchs);
}
ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences &DA,
phases::ID CurPhase, phases::ID FinalPhase,
PhasesTy &Phases) override {
if (!IsActive)
return ABRT_Inactive;
// amdgcn does not support linking of object files, therefore we skip
// backend and assemble phases to output LLVM IR. Except for generating
// non-relocatable device coee, where we generate fat binary for device
// code and pass to host in Backend phase.
if (CudaDeviceActions.empty())
return ABRT_Success;
assert(((CurPhase == phases::Link && Relocatable) ||
CudaDeviceActions.size() == GpuArchList.size()) &&
"Expecting one action per GPU architecture.");
assert(!CompileHostOnly &&
"Not expecting CUDA actions in host-only compilation.");
if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
!EmitAsm) {
// If we are in backend phase, we attempt to generate the fat binary.
// We compile each arch to IR and use a link action to generate code
// object containing ISA. Then we use a special "link" action to create
// a fat binary containing all the code objects for different GPU's.
// The fat binary is then an input to the host action.
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
if (C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
// When LTO is enabled, skip the backend and assemble phases and
// use lld to link the bitcode.
ActionList AL;
AL.push_back(CudaDeviceActions[I]);
// Create a link action to link device IR with device library
// and generate ISA.
CudaDeviceActions[I] =
C.MakeAction<LinkJobAction>(AL, types::TY_Image);
} else {
// When LTO is not enabled, we follow the conventional
// compiler phases, including backend and assemble phases.
ActionList AL;
Action *BackendAction = nullptr;
if (ToolChains.front()->getTriple().isSPIRV()) {
// Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain
// (HIPSPVToolChain) runs post-link LLVM IR passes.
types::ID Output = Args.hasArg(options::OPT_S)
? types::TY_LLVM_IR
: types::TY_LLVM_BC;
BackendAction =
C.MakeAction<BackendJobAction>(CudaDeviceActions[I], Output);
} else
BackendAction = C.getDriver().ConstructPhaseAction(
C, Args, phases::Backend, CudaDeviceActions[I],
AssociatedOffloadKind);
auto AssembleAction = C.getDriver().ConstructPhaseAction(
C, Args, phases::Assemble, BackendAction,
AssociatedOffloadKind);
AL.push_back(AssembleAction);
// Create a link action to link device IR with device library
// and generate ISA.
CudaDeviceActions[I] =
C.MakeAction<LinkJobAction>(AL, types::TY_Image);
}
// OffloadingActionBuilder propagates device arch until an offload
// action. Since the next action for creating fatbin does
// not have device arch, whereas the above link action and its input
// have device arch, an offload action is needed to stop the null
// device arch of the next action being propagated to the above link
// action.
OffloadAction::DeviceDependences DDep;
DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
AssociatedOffloadKind);
CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
DDep, CudaDeviceActions[I]->getType());
}
if (!CompileDeviceOnly || !BundleOutput.hasValue() ||
BundleOutput.getValue()) {
// Create HIP fat binary with a special "link" action.
CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions,
types::TY_HIP_FATBIN);
if (!CompileDeviceOnly) {
DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
AssociatedOffloadKind);
// Clear the fat binary, it is already a dependence to an host
// action.
CudaFatBinary = nullptr;
}
// Remove the CUDA actions as they are already connected to an host
// action or fat binary.
CudaDeviceActions.clear();
}
return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
} else if (CurPhase == phases::Link) {
// Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
// This happens to each device action originated from each input file.
// Later on, device actions in DeviceLinkerInputs are used to create
// device link actions in appendLinkDependences and the created device
// link actions are passed to the offload action as device dependence.
DeviceLinkerInputs.resize(CudaDeviceActions.size());
auto LI = DeviceLinkerInputs.begin();
for (auto *A : CudaDeviceActions) {
LI->push_back(A);
++LI;
}
// We will pass the device action as a host dependence, so we don't
// need to do anything else with them.
CudaDeviceActions.clear();
return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
}
// By default, we produce an action for each device arch.
for (Action *&A : CudaDeviceActions)
A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
AssociatedOffloadKind);
if (CompileDeviceOnly && CurPhase == FinalPhase &&
BundleOutput.hasValue() && BundleOutput.getValue()) {
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
OffloadAction::DeviceDependences DDep;
DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
AssociatedOffloadKind);
CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
DDep, CudaDeviceActions[I]->getType());
}
CudaFatBinary =
C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions);
CudaDeviceActions.clear();
}
return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host
: ABRT_Success;
}
void appendLinkDeviceActions(ActionList &AL) override {
if (DeviceLinkerInputs.size() == 0)
return;
assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
"Linker inputs and GPU arch list sizes do not match.");
ActionList Actions;
// Append a new link action for each device.
unsigned I = 0;
for (auto &LI : DeviceLinkerInputs) {
// Each entry in DeviceLinkerInputs corresponds to a GPU arch.
auto *DeviceLinkAction =
C.MakeAction<LinkJobAction>(LI, types::TY_Image);
// Linking all inputs for the current GPU arch.
// LI contains all the inputs for the linker.
OffloadAction::DeviceDependences DeviceLinkDeps;
DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
GpuArchList[I], AssociatedOffloadKind);
Actions.push_back(C.MakeAction<OffloadAction>(
DeviceLinkDeps, DeviceLinkAction->getType()));
++I;
}
DeviceLinkerInputs.clear();
// Create a host object from all the device images by embedding them
// in a fat binary for mixed host-device compilation. For device-only
// compilation, creates a fat binary.
OffloadAction::DeviceDependences DDeps;
if (!CompileDeviceOnly || !BundleOutput.hasValue() ||
BundleOutput.getValue()) {
auto *TopDeviceLinkAction = C.MakeAction<LinkJobAction>(
Actions,
CompileDeviceOnly ? types::TY_HIP_FATBIN : types::TY_Object);
DDeps.add(*TopDeviceLinkAction, *ToolChains[0], nullptr,
AssociatedOffloadKind);
// Offload the host object to the host linker.
AL.push_back(
C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
} else {
AL.append(Actions);
}
}
Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
};
/// OpenMP action builder. The host bitcode is passed to the device frontend
/// and all the device linked images are passed to the host link phase.
class OpenMPActionBuilder final : public DeviceActionBuilder {
/// The OpenMP actions for the current input.
ActionList OpenMPDeviceActions;
/// The linker inputs obtained for each toolchain.
SmallVector<ActionList, 8> DeviceLinkerInputs;
public:
OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
const Driver::InputList &Inputs)
: DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences &DA,
phases::ID CurPhase, phases::ID FinalPhase,
PhasesTy &Phases) override {
if (OpenMPDeviceActions.empty())
return ABRT_Inactive;
// We should always have an action for each input.
assert(OpenMPDeviceActions.size() == ToolChains.size() &&
"Number of OpenMP actions and toolchains do not match.");
// The host only depends on device action in the linking phase, when all
// the device images have to be embedded in the host image.
if (CurPhase == phases::Link) {
assert(ToolChains.size() == DeviceLinkerInputs.size() &&
"Toolchains and linker inputs sizes do not match.");
auto LI = DeviceLinkerInputs.begin();
for (auto *A : OpenMPDeviceActions) {
LI->push_back(A);
++LI;
}
// We passed the device action as a host dependence, so we don't need to
// do anything else with them.
OpenMPDeviceActions.clear();
return ABRT_Success;
}
// By default, we produce an action for each device arch.
for (Action *&A : OpenMPDeviceActions)
A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
return ABRT_Success;
}
ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
// If this is an input action replicate it for each OpenMP toolchain.
if (auto *IA = dyn_cast<InputAction>(HostAction)) {
OpenMPDeviceActions.clear();
for (unsigned I = 0; I < ToolChains.size(); ++I)
OpenMPDeviceActions.push_back(
C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
return ABRT_Success;
}
// If this is an unbundling action use it as is for each OpenMP toolchain.
if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
OpenMPDeviceActions.clear();
auto *IA = cast<InputAction>(UA->getInputs().back());
std::string FileName = IA->getInputArg().getAsString(Args);
// Check if the type of the file is the same as the action. Do not
// unbundle it if it is not. Do not unbundle .so files, for example,
// which are not object files.
if (IA->getType() == types::TY_Object &&
(!llvm::sys::path::has_extension(FileName) ||
types::lookupTypeForExtension(
llvm::sys::path::extension(FileName).drop_front()) !=
types::TY_Object))
return ABRT_Inactive;
for (unsigned I = 0; I < ToolChains.size(); ++I) {
OpenMPDeviceActions.push_back(UA);
UA->registerDependentActionInfo(
ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
}
return ABRT_Success;
}
// When generating code for OpenMP we use the host compile phase result as
// a dependence to the device compile phase so that it can learn what
// declarations should be emitted. However, this is not the only use for
// the host action, so we prevent it from being collapsed.
if (isa<CompileJobAction>(HostAction)) {
HostAction->setCannotBeCollapsedWithNextDependentAction();
assert(ToolChains.size() == OpenMPDeviceActions.size() &&
"Toolchains and device action sizes do not match.");
OffloadAction::HostDependence HDep(
*HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
/*BoundArch=*/nullptr, Action::OFK_OpenMP);
auto TC = ToolChains.begin();
for (Action *&A : OpenMPDeviceActions) {
assert(isa<CompileJobAction>(A));
OffloadAction::DeviceDependences DDep;
DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
A = C.MakeAction<OffloadAction>(HDep, DDep);
++TC;
}
}
return ABRT_Success;
}
void appendTopLevelActions(ActionList &AL) override {
if (OpenMPDeviceActions.empty())
return;
// We should always have an action for each input.
assert(OpenMPDeviceActions.size() == ToolChains.size() &&
"Number of OpenMP actions and toolchains do not match.");
// Append all device actions followed by the proper offload action.
auto TI = ToolChains.begin();
for (auto *A : OpenMPDeviceActions) {
OffloadAction::DeviceDependences Dep;
Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
++TI;
}
// We no longer need the action stored in this builder.
OpenMPDeviceActions.clear();
}
void appendLinkDeviceActions(ActionList &AL) override {
assert(ToolChains.size() == DeviceLinkerInputs.size() &&
"Toolchains and linker inputs sizes do not match.");
// Append a new link action for each device.
auto TC = ToolChains.begin();
for (auto &LI : DeviceLinkerInputs) {
auto *DeviceLinkAction =
C.MakeAction<LinkJobAction>(LI, types::TY_Image);
OffloadAction::DeviceDependences DeviceLinkDeps;
DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
Action::OFK_OpenMP);
AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
DeviceLinkAction->getType()));
++TC;
}
DeviceLinkerInputs.clear();
}
Action* appendLinkHostActions(ActionList &AL) override {
// Create wrapper bitcode from the result of device link actions and compile
// it to an object which will be added to the host link command.
auto *BC = C.MakeAction<OffloadWrapperJobAction>(AL, types::TY_LLVM_BC);
auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm);
return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object);
}
void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
bool initialize() override {
// Get the OpenMP toolchains. If we don't get any, the action builder will
// know there is nothing to do related to OpenMP offloading.
auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
++TI)
ToolChains.push_back(TI->second);
DeviceLinkerInputs.resize(ToolChains.size());
return false;
}
bool canUseBundlerUnbundler() const override {
// OpenMP should use bundled files whenever possible.
return true;
}
};
///
/// TODO: Add the implementation for other specialized builders here.
///
/// Specialized builders being used by this offloading action builder.
SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
/// Flag set to true if all valid builders allow file bundling/unbundling.
bool CanUseBundler;
public:
OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
const Driver::InputList &Inputs)
: C(C) {
// Create a specialized builder for each device toolchain.
IsValid = true;
// Create a specialized builder for CUDA.
SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
// Create a specialized builder for HIP.
SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
// Create a specialized builder for OpenMP.
SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
//
// TODO: Build other specialized builders here.
//
// Initialize all the builders, keeping track of errors. If all valid
// builders agree that we can use bundling, set the flag to true.
unsigned ValidBuilders = 0u;
unsigned ValidBuildersSupportingBundling = 0u;
for (auto *SB : SpecializedBuilders) {
IsValid = IsValid && !SB->initialize();
// Update the counters if the builder is valid.
if (SB->isValid()) {
++ValidBuilders;
if (SB->canUseBundlerUnbundler())
++ValidBuildersSupportingBundling;
}
}
CanUseBundler =
ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
}
~OffloadingActionBuilder() {
for (auto *SB : SpecializedBuilders)
delete SB;
}
/// Record a host action and its originating input argument.
void recordHostAction(Action *HostAction, const Arg *InputArg) {
assert(HostAction && "Invalid host action");
assert(InputArg && "Invalid input argument");
auto Loc = HostActionToInputArgMap.find(HostAction);
if (Loc == HostActionToInputArgMap.end())
HostActionToInputArgMap[HostAction] = InputArg;
assert(HostActionToInputArgMap[HostAction] == InputArg &&
"host action mapped to multiple input arguments");
}
/// Generate an action that adds device dependences (if any) to a host action.
/// If no device dependence actions exist, just return the host action \a
/// HostAction. If an error is found or if no builder requires the host action
/// to be generated, return nullptr.
Action *
addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
phases::ID CurPhase, phases::ID FinalPhase,
DeviceActionBuilder::PhasesTy &Phases) {
if (!IsValid)
return nullptr;
if (SpecializedBuilders.empty())
return HostAction;
assert(HostAction && "Invalid host action!");
recordHostAction(HostAction, InputArg);
OffloadAction::DeviceDependences DDeps;
// Check if all the programming models agree we should not emit the host
// action. Also, keep track of the offloading kinds employed.
auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
unsigned InactiveBuilders = 0u;
unsigned IgnoringBuilders = 0u;
for (auto *SB : SpecializedBuilders) {
if (!SB->isValid()) {
++InactiveBuilders;
continue;
}
auto RetCode =
SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
// If the builder explicitly says the host action should be ignored,
// we need to increment the variable that tracks the builders that request
// the host object to be ignored.
if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
++IgnoringBuilders;
// Unless the builder was inactive for this action, we have to record the
// offload kind because the host will have to use it.
if (RetCode != DeviceActionBuilder::ABRT_Inactive)
OffloadKind |= SB->getAssociatedOffloadKind();
}
// If all builders agree that the host object should be ignored, just return
// nullptr.
if (IgnoringBuilders &&
SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
return nullptr;
if (DDeps.getActions().empty())
return HostAction;
// We have dependences we need to bundle together. We use an offload action
// for that.
OffloadAction::HostDependence HDep(
*HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
/*BoundArch=*/nullptr, DDeps);
return C.MakeAction<OffloadAction>(HDep, DDeps);
}
/// Generate an action that adds a host dependence to a device action. The
/// results will be kept in this action builder. Return true if an error was
/// found.
bool addHostDependenceToDeviceActions(Action *&HostAction,
const Arg *InputArg) {
if (!IsValid)
return true;
recordHostAction(HostAction, InputArg);
// If we are supporting bundling/unbundling and the current action is an
// input action of non-source file, we replace the host action by the
// unbundling action. The bundler tool has the logic to detect if an input
// is a bundle or not and if the input is not a bundle it assumes it is a
// host file. Therefore it is safe to create an unbundling action even if
// the input is not a bundle.
if (CanUseBundler && isa<InputAction>(HostAction) &&
InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
(!types::isSrcFile(HostAction->getType()) ||
HostAction->getType() == types::TY_PP_HIP)) {
auto UnbundlingHostAction =
C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
UnbundlingHostAction->registerDependentActionInfo(
C.getSingleOffloadToolChain<Action::OFK_Host>(),
/*BoundArch=*/StringRef(), Action::OFK_Host);
HostAction = UnbundlingHostAction;
recordHostAction(HostAction, InputArg);
}
assert(HostAction && "Invalid host action!");
// Register the offload kinds that are used.
auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
for (auto *SB : SpecializedBuilders) {
if (!SB->isValid())
continue;
auto RetCode = SB->addDeviceDepences(HostAction);
// Host dependences for device actions are not compatible with that same
// action being ignored.
assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
"Host dependence not expected to be ignored.!");
// Unless the builder was inactive for this action, we have to record the
// offload kind because the host will have to use it.
if (RetCode != DeviceActionBuilder::ABRT_Inactive)
OffloadKind |= SB->getAssociatedOffloadKind();
}
// Do not use unbundler if the Host does not depend on device action.
if (OffloadKind == Action::OFK_None && CanUseBundler)
if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
HostAction = UA->getInputs().back();
return false;
}
/// Add the offloading top level actions to the provided action list. This
/// function can replace the host action by a bundling action if the
/// programming models allow it.
bool appendTopLevelActions(ActionList &AL, Action *HostAction,
const Arg *InputArg) {
if (HostAction)
recordHostAction(HostAction, InputArg);
// Get the device actions to be appended.
ActionList OffloadAL;
for (auto *SB : SpecializedBuilders) {
if (!SB->isValid())
continue;
SB->appendTopLevelActions(OffloadAL);
}
// If we can use the bundler, replace the host action by the bundling one in
// the resulting list. Otherwise, just append the device actions. For
// device only compilation, HostAction is a null pointer, therefore only do
// this when HostAction is not a null pointer.
if (CanUseBundler && HostAction &&
HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
// Add the host action to the list in order to create the bundling action.
OffloadAL.push_back(HostAction);
// We expect that the host action was just appended to the action list
// before this method was called.
assert(HostAction == AL.back() && "Host action not in the list??");
HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
recordHostAction(HostAction, InputArg);
AL.back() = HostAction;
} else
AL.append(OffloadAL.begin(), OffloadAL.end());
// Propagate to the current host action (if any) the offload information
// associated with the current input.
if (HostAction)
HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
/*BoundArch=*/nullptr);
return false;
}
void appendDeviceLinkActions(ActionList &AL) {
for (DeviceActionBuilder *SB : SpecializedBuilders) {
if (!SB->isValid())
continue;
SB->appendLinkDeviceActions(AL);
}
}
Action *makeHostLinkAction() {
// Build a list of device linking actions.
ActionList DeviceAL;
appendDeviceLinkActions(DeviceAL);
if (DeviceAL.empty())
return nullptr;
// Let builders add host linking actions.
Action* HA = nullptr;
for (DeviceActionBuilder *SB : SpecializedBuilders) {
if (!SB->isValid())
continue;
HA = SB->appendLinkHostActions(DeviceAL);
// This created host action has no originating input argument, therefore
// needs to set its offloading kind directly.
if (HA)
HA->propagateHostOffloadInfo(SB->getAssociatedOffloadKind(),
/*BoundArch=*/nullptr);
}
return HA;
}
/// Processes the host linker action. This currently consists of replacing it
/// with an offload action if there are device link objects and propagate to
/// the host action all the offload kinds used in the current compilation. The
/// resulting action is returned.
Action *processHostLinkAction(Action *HostAction) {
// Add all the dependences from the device linking actions.
OffloadAction::DeviceDependences DDeps;
for (auto *SB : SpecializedBuilders) {
if (!SB->isValid())
continue;
SB->appendLinkDependences(DDeps);
}
// Calculate all the offload kinds used in the current compilation.
unsigned ActiveOffloadKinds = 0u;
for (auto &I : InputArgToOffloadKindMap)
ActiveOffloadKinds |= I.second;
// If we don't have device dependencies, we don't have to create an offload
// action.
if (DDeps.getActions().empty()) {
// Set all the active offloading kinds to the link action. Given that it
// is a link action it is assumed to depend on all actions generated so
// far.
HostAction->setHostOffloadInfo(ActiveOffloadKinds,
/*BoundArch=*/nullptr);
// Propagate active offloading kinds for each input to the link action.
// Each input may have different active offloading kind.
for (auto A : HostAction->inputs()) {
auto ArgLoc = HostActionToInputArgMap.find(A);
if (ArgLoc == HostActionToInputArgMap.end())
continue;
auto OFKLoc = InputArgToOffloadKindMap.find(ArgLoc->second);
if (OFKLoc == InputArgToOffloadKindMap.end())
continue;
A->propagateHostOffloadInfo(OFKLoc->second, /*BoundArch=*/nullptr);
}
return HostAction;
}
// Create the offload action with all dependences. When an offload action
// is created the kinds are propagated to the host action, so we don't have
// to do that explicitly here.
OffloadAction::HostDependence HDep(
*HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
/*BoundArch*/ nullptr, ActiveOffloadKinds);
return C.MakeAction<OffloadAction>(HDep, DDeps);
}
};
} // anonymous namespace.
void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
const InputList &Inputs,
ActionList &Actions) const {
// Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
Args.eraseArg(options::OPT__SLASH_Yc);
Args.eraseArg(options::OPT__SLASH_Yu);
YcArg = YuArg = nullptr;
}
if (YcArg && Inputs.size() > 1) {
Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
Args.eraseArg(options::OPT__SLASH_Yc);
YcArg = nullptr;
}
Arg *FinalPhaseArg;
phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
if (FinalPhase == phases::Link) {
if (Args.hasArg(options::OPT_emit_llvm))
Diag(clang::diag::err_drv_emit_llvm_link);
if (IsCLMode() && LTOMode != LTOK_None &&
!Args.getLastArgValue(options::OPT_fuse_ld_EQ)
.equals_insensitive("lld"))
Diag(clang::diag::err_drv_lto_without_lld);
}
if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
// If only preprocessing or /Y- is used, all pch handling is disabled.
// Rather than check for it everywhere, just remove clang-cl pch-related
// flags here.
Args.eraseArg(options::OPT__SLASH_Fp);
Args.eraseArg(options::OPT__SLASH_Yc);
Args.eraseArg(options::OPT__SLASH_Yu);
YcArg = YuArg = nullptr;
}
unsigned LastPLSize = 0;
for (auto &I : Inputs) {
types::ID InputType = I.first;
const Arg *InputArg = I.second;
auto PL = types::getCompilationPhases(InputType);
LastPLSize = PL.size();
// If the first step comes after the final phase we are doing as part of
// this compilation, warn the user about it.
phases::ID InitialPhase = PL[0];
if (InitialPhase > FinalPhase) {
if (InputArg->isClaimed())
continue;
// Claim here to avoid the more general unused warning.
InputArg->claim();
// Suppress all unused style warnings with -Qunused-arguments
if (Args.hasArg(options::OPT_Qunused_arguments))
continue;
// Special case when final phase determined by binary name, rather than
// by a command-line argument with a corresponding Arg.
if (CCCIsCPP())
Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
<< InputArg->getAsString(Args) << getPhaseName(InitialPhase);
// Special case '-E' warning on a previously preprocessed file to make
// more sense.
else if (InitialPhase == phases::Compile &&
(Args.getLastArg(options::OPT__SLASH_EP,
options::OPT__SLASH_P) ||
Args.getLastArg(options::OPT_E) ||
Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
getPreprocessedType(InputType) == types::TY_INVALID)
Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
<< InputArg->getAsString(Args) << !!FinalPhaseArg
<< (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
else
Diag(clang::diag::warn_drv_input_file_unused)
<< InputArg->getAsString(Args) << getPhaseName(InitialPhase)
<< !!FinalPhaseArg
<< (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
continue;
}
if (YcArg) {
// Add a separate precompile phase for the compile phase.
if (FinalPhase >= phases::Compile) {
const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
// Build the pipeline for the pch file.
Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
for (phases::ID Phase : types::getCompilationPhases(HeaderType))
ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
assert(ClangClPch);
Actions.push_back(ClangClPch);
// The driver currently exits after the first failed command. This
// relies on that behavior, to make sure if the pch generation fails,
// the main compilation won't run.
// FIXME: If the main compilation fails, the PCH generation should
// probably not be considered successful either.
}
}
}
// If we are linking, claim any options which are obviously only used for
// compilation.
// FIXME: Understand why the last Phase List length is used here.
if (FinalPhase == phases::Link && LastPLSize == 1) {
Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
Args.ClaimAllArgs(options::OPT_cl_compile_Group);
}
}
void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
const InputList &Inputs, ActionList &Actions) const {
llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
if (!SuppressMissingInputWarning && Inputs.empty()) {
Diag(clang::diag::err_drv_no_input_files);
return;
}
// Reject -Z* at the top level, these options should never have been exposed
// by gcc.
if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
// Diagnose misuse of /Fo.
if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
StringRef V = A->getValue();
if (Inputs.size() > 1 && !V.empty() &&
!llvm::sys::path::is_separator(V.back())) {
// Check whether /Fo tries to name an output file for multiple inputs.
Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
<< A->getSpelling() << V;
Args.eraseArg(options::OPT__SLASH_Fo);
}
}
// Diagnose misuse of /Fa.
if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
StringRef V = A->getValue();
if (Inputs.size() > 1 && !V.empty() &&
!llvm::sys::path::is_separator(V.back())) {
// Check whether /Fa tries to name an asm file for multiple inputs.
Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
<< A->getSpelling() << V;
Args.eraseArg(options::OPT__SLASH_Fa);
}
}
// Diagnose misuse of /o.
if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
if (A->getValue()[0] == '\0') {
// It has to have a value.
Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
Args.eraseArg(options::OPT__SLASH_o);
}
}
handleArguments(C, Args, Inputs, Actions);
// Builder to be used to build offloading actions.
OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
// Offload kinds active for this compilation.
unsigned OffloadKinds = Action::OFK_None;
if (C.hasOffloadToolChain<Action::OFK_OpenMP>())
OffloadKinds |= Action::OFK_OpenMP;
// Construct the actions to perform.
HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
ActionList LinkerInputs;
ActionList MergerInputs;
for (auto &I : Inputs) {
types::ID InputType = I.first;
const Arg *InputArg = I.second;
auto PL = types::getCompilationPhases(*this, Args, InputType);
if (PL.empty())
continue;
auto FullPL = types::getCompilationPhases(InputType);
// Build the pipeline for this file.
Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
// Use the current host action in any of the offloading actions, if
// required.
if (!Args.hasArg(options::OPT_fopenmp_new_driver))
if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
break;
for (phases::ID Phase : PL) {
// Add any offload action the host action depends on.
if (!Args.hasArg(options::OPT_fopenmp_new_driver))
Current = OffloadBuilder.addDeviceDependencesToHostAction(
Current, InputArg, Phase, PL.back(), FullPL);
if (!Current)
break;
// Queue linker inputs.
if (Phase == phases::Link) {
assert(Phase == PL.back() && "linking must be final compilation step.");
LinkerInputs.push_back(Current);
Current = nullptr;
break;
}
// TODO: Consider removing this because the merged may not end up being
// the final Phase in the pipeline. Perhaps the merged could just merge
// and then pass an artifact of some sort to the Link Phase.
// Queue merger inputs.
if (Phase == phases::IfsMerge) {
assert(Phase == PL.back() && "merging must be final compilation step.");
MergerInputs.push_back(Current);
Current = nullptr;
break;
}
// Each precompiled header file after a module file action is a module
// header of that same module file, rather than being compiled to a
// separate PCH.
if (Phase == phases::Precompile && HeaderModuleAction &&
getPrecompiledType(InputType) == types::TY_PCH) {
HeaderModuleAction->addModuleHeaderInput(Current);
Current = nullptr;
break;
}
// Try to build the offloading actions and add the result as a dependency
// to the host.
if (Args.hasArg(options::OPT_fopenmp_new_driver))
Current = BuildOffloadingActions(C, Args, I, Current);
// FIXME: Should we include any prior module file outputs as inputs of
// later actions in the same command line?
// Otherwise construct the appropriate action.
Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
// We didn't create a new action, so we will just move to the next phase.
if (NewCurrent == Current)
continue;
if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
HeaderModuleAction = HMA;
Current = NewCurrent;
// Use the current host action in any of the offloading actions, if
// required.
if (!Args.hasArg(options::OPT_fopenmp_new_driver))
if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
break;
if (Current->getType() == types::TY_Nothing)
break;
}
// If we ended with something, add to the output list.
if (Current)
Actions.push_back(Current);
// Add any top level actions generated for offloading.
if (!Args.hasArg(options::OPT_fopenmp_new_driver))
OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
else if (Current)
Current->propagateHostOffloadInfo(OffloadKinds,
/*BoundArch=*/nullptr);
}
// Add a link action if necessary.
if (LinkerInputs.empty()) {
Arg *FinalPhaseArg;
if (getFinalPhase(Args, &FinalPhaseArg) == phases::Link)
OffloadBuilder.appendDeviceLinkActions(Actions);
}
if (!LinkerInputs.empty()) {
if (!Args.hasArg(options::OPT_fopenmp_new_driver))
if (Action *Wrapper = OffloadBuilder.makeHostLinkAction())
LinkerInputs.push_back(Wrapper);
Action *LA;
// Check if this Linker Job should emit a static library.
if (ShouldEmitStaticLibrary(Args)) {
LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
} else if (Args.hasArg(options::OPT_fopenmp_new_driver) &&
OffloadKinds != Action::OFK_None) {
LA = C.MakeAction<LinkerWrapperJobAction>(LinkerInputs, types::TY_Image);
LA->propagateHostOffloadInfo(OffloadKinds,
/*BoundArch=*/nullptr);
} else {
LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
}
if (!Args.hasArg(options::OPT_fopenmp_new_driver))
LA = OffloadBuilder.processHostLinkAction(LA);
Actions.push_back(LA);
}
// Add an interface stubs merge action if necessary.
if (!MergerInputs.empty())
Actions.push_back(
C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
if (Args.hasArg(options::OPT_emit_interface_stubs)) {
auto PhaseList = types::getCompilationPhases(
types::TY_IFS_CPP,
Args.hasArg(options::OPT_c) ? phases::Compile : phases::IfsMerge);
ActionList MergerInputs;
for (auto &I : Inputs) {
types::ID InputType = I.first;
const Arg *InputArg = I.second;
// Currently clang and the llvm assembler do not support generating symbol
// stubs from assembly, so we skip the input on asm files. For ifs files
// we rely on the normal pipeline setup in the pipeline setup code above.
if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
InputType == types::TY_Asm)
continue;
Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
for (auto Phase : PhaseList) {
switch (Phase) {
default:
llvm_unreachable(
"IFS Pipeline can only consist of Compile followed by IfsMerge.");
case phases::Compile: {
// Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
// files where the .o file is located. The compile action can not
// handle this.
if (InputType == types::TY_Object)
break;
Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
break;
}
case phases::IfsMerge: {
assert(Phase == PhaseList.back() &&
"merging must be final compilation step.");
MergerInputs.push_back(Current);
Current = nullptr;
break;
}
}
}
// If we ended with something, add to the output list.
if (Current)
Actions.push_back(Current);
}
// Add an interface stubs merge action if necessary.
if (!MergerInputs.empty())
Actions.push_back(
C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
}
// If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
// Compile phase that prints out supported cpu models and quits.
if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
// Use the -mcpu=? flag as the dummy input to cc1.
Actions.clear();
Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
Actions.push_back(
C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
for (auto &I : Inputs)
I.second->claim();
}
// Claim ignored clang-cl options.
Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
// Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
// to non-CUDA compilations and should not trigger warnings there.
Args.ClaimAllArgs(options::OPT_cuda_host_only);
Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
}
Action *Driver::BuildOffloadingActions(Compilation &C,
llvm::opt::DerivedArgList &Args,
const InputTy &Input,
Action *HostAction) const {
if (!isa<CompileJobAction>(HostAction))
return HostAction;
SmallVector<const ToolChain *, 2> ToolChains;
ActionList DeviceActions;
types::ID InputType = Input.first;
const Arg *InputArg = Input.second;
auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE; ++TI)
ToolChains.push_back(TI->second);
for (unsigned I = 0; I < ToolChains.size(); ++I)
DeviceActions.push_back(C.MakeAction<InputAction>(*InputArg, InputType));
if (DeviceActions.empty())
return HostAction;
auto PL = types::getCompilationPhases(*this, Args, InputType);
for (phases::ID Phase : PL) {
if (Phase == phases::Link) {
assert(Phase == PL.back() && "linking must be final compilation step.");
break;
}
auto TC = ToolChains.begin();
for (Action *&A : DeviceActions) {
A = ConstructPhaseAction(C, Args, Phase, A, Action::OFK_OpenMP);
if (isa<CompileJobAction>(A)) {
HostAction->setCannotBeCollapsedWithNextDependentAction();
OffloadAction::HostDependence HDep(
*HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
/*BourdArch=*/nullptr, Action::OFK_OpenMP);
OffloadAction::DeviceDependences DDep;
DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
A = C.MakeAction<OffloadAction>(HDep, DDep);
}
++TC;
}
}
OffloadAction::DeviceDependences DDeps;
auto TC = ToolChains.begin();
for (Action *A : DeviceActions) {
DDeps.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
TC++;
}
OffloadAction::HostDependence HDep(
*HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
/*BoundArch=*/nullptr, DDeps);
return C.MakeAction<OffloadAction>(HDep, DDeps);
}
Action *Driver::ConstructPhaseAction(
Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
Action::OffloadKind TargetDeviceOffloadKind) const {
llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
// Some types skip the assembler phase (e.g., llvm-bc), but we can't
// encode this in the steps because the intermediate type depends on
// arguments. Just special case here.
if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
return Input;
// Build the appropriate action.
switch (Phase) {
case phases::Link:
llvm_unreachable("link action invalid here.");
case phases::IfsMerge:
llvm_unreachable("ifsmerge action invalid here.");
case phases::Preprocess: {
types::ID OutputTy;
// -M and -MM specify the dependency file name by altering the output type,
// -if -MD and -MMD are not specified.
if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
!Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
OutputTy = types::TY_Dependencies;
} else {
OutputTy = Input->getType();
if (!Args.hasFlag(options::OPT_frewrite_includes,
options::OPT_fno_rewrite_includes, false) &&
!Args.hasFlag(options::OPT_frewrite_imports,
options::OPT_fno_rewrite_imports, false) &&
!CCGenDiagnostics)
OutputTy = types::getPreprocessedType(OutputTy);
assert(OutputTy != types::TY_INVALID &&
"Cannot preprocess this input type!");
}
return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
}
case phases::Precompile: {
types::ID OutputTy = getPrecompiledType(Input->getType());
assert(OutputTy != types::TY_INVALID &&
"Cannot precompile this input type!");
// If we're given a module name, precompile header file inputs as a
// module, not as a precompiled header.
const char *ModName = nullptr;
if (OutputTy == types::TY_PCH) {
if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
ModName = A->getValue();
if (ModName)
OutputTy = types::TY_ModuleFile;
}
if (Args.hasArg(options::OPT_fsyntax_only) ||
Args.hasArg(options::OPT_extract_api)) {
// Syntax checks should not emit a PCH file
OutputTy = types::TY_Nothing;
}
if (ModName)
return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
ModName);
return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
}
case phases::Compile: {
if (Args.hasArg(options::OPT_fsyntax_only))
return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
if (Args.hasArg(options::OPT_rewrite_objc))
return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
if (Args.hasArg(options::OPT_rewrite_legacy_objc))
return C.MakeAction<CompileJobAction>(Input,
types::TY_RewrittenLegacyObjC);
if (Args.hasArg(options::OPT__analyze))
return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
if (Args.hasArg(options::OPT__migrate))
return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
if (Args.hasArg(options::OPT_emit_ast))
return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
if (Args.hasArg(options::OPT_module_file_info))
return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
if (Args.hasArg(options::OPT_verify_pch))
return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
if (Args.hasArg(options::OPT_extract_api))
return C.MakeAction<CompileJobAction>(Input, types::TY_API_INFO);
return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
}
case phases::Backend: {
if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
types::ID Output =
Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
return C.MakeAction<BackendJobAction>(Input, Output);
}
if (isUsingLTO(/* IsOffload */ true) &&
TargetDeviceOffloadKind == Action::OFK_OpenMP) {
types::ID Output =
Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
return C.MakeAction<BackendJobAction>(Input, Output);
}
if (Args.hasArg(options::OPT_emit_llvm) ||
(TargetDeviceOffloadKind == Action::OFK_HIP &&
Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
false))) {
types::ID Output =
Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
return C.MakeAction<BackendJobAction>(Input, Output);
}
return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
}
case phases::Assemble:
return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
}
llvm_unreachable("invalid phase in ConstructPhaseAction");
}
void Driver::BuildJobs(Compilation &C) const {
llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
// It is an error to provide a -o option if we are making multiple output
// files. There are exceptions:
//
// IfsMergeJob: when generating interface stubs enabled we want to be able to
// generate the stub file at the same time that we generate the real
// library/a.out. So when a .o, .so, etc are the output, with clang interface
// stubs there will also be a .ifs and .ifso at the same location.
//
// CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
// and -c is passed, we still want to be able to generate a .ifs file while
// we are also generating .o files. So we allow more than one output file in
// this case as well.
//
if (FinalOutput) {
unsigned NumOutputs = 0;
unsigned NumIfsOutputs = 0;
for (const Action *A : C.getActions())
if (A->getType() != types::TY_Nothing &&
!(A->getKind() == Action::IfsMergeJobClass ||
(A->getType() == clang::driver::types::TY_IFS_CPP &&
A->getKind() == clang::driver::Action::CompileJobClass &&
0 == NumIfsOutputs++) ||
(A->getKind() == Action::BindArchClass && A->getInputs().size() &&
A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
++NumOutputs;
if (NumOutputs > 1) {
Diag(clang::diag::err_drv_output_argument_with_multiple_files);
FinalOutput = nullptr;
}
}
const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
if (RawTriple.isOSAIX()) {
if (Arg *A = C.getArgs().getLastArg(options::OPT_G))
Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getSpelling() << RawTriple.str();
if (LTOMode == LTOK_Thin)
Diag(diag::err_drv_clang_unsupported) << "thinLTO on AIX";
}
// Collect the list of architectures.
llvm::StringSet<> ArchNames;
if (RawTriple.isOSBinFormatMachO())
for (const Arg *A : C.getArgs())
if (A->getOption().matches(options::OPT_arch))
ArchNames.insert(A->getValue());
// Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
std::map<std::pair<const Action *, std::string>, InputInfoList> CachedResults;
for (Action *A : C.getActions()) {
// If we are linking an image for multiple archs then the linker wants
// -arch_multiple and -final_output <final image name>. Unfortunately, this
// doesn't fit in cleanly because we have to pass this information down.
//
// FIXME: This is a hack; find a cleaner way to integrate this into the
// process.
const char *LinkingOutput = nullptr;
if (isa<LipoJobAction>(A)) {
if (FinalOutput)
LinkingOutput = FinalOutput->getValue();
else
LinkingOutput = getDefaultImageName();
}
BuildJobsForAction(C, A, &C.getDefaultToolChain(),
/*BoundArch*/ StringRef(),
/*AtTopLevel*/ true,
/*MultipleArchs*/ ArchNames.size() > 1,
/*LinkingOutput*/ LinkingOutput, CachedResults,
/*TargetDeviceOffloadKind*/ Action::OFK_None);
}
// If we have more than one job, then disable integrated-cc1 for now. Do this
// also when we need to report process execution statistics.
if (C.getJobs().size() > 1 || CCPrintProcessStats)
for (auto &J : C.getJobs())
J.InProcess = false;
if (CCPrintProcessStats) {
C.setPostCallback([=](const Command &Cmd, int Res) {
Optional<llvm::sys::ProcessStatistics> ProcStat =
Cmd.getProcessStatistics();
if (!ProcStat)
return;
const char *LinkingOutput = nullptr;
if (FinalOutput)
LinkingOutput = FinalOutput->getValue();
else if (!Cmd.getOutputFilenames().empty())
LinkingOutput = Cmd.getOutputFilenames().front().c_str();
else
LinkingOutput = getDefaultImageName();
if (CCPrintStatReportFilename.empty()) {
using namespace llvm;
// Human readable output.
outs() << sys::path::filename(Cmd.getExecutable()) << ": "
<< "output=" << LinkingOutput;
outs() << ", total="
<< format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
<< ", user="
<< format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
<< ", mem=" << ProcStat->PeakMemory << " Kb\n";
} else {
// CSV format.
std::string Buffer;
llvm::raw_string_ostream Out(Buffer);
llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
/*Quote*/ true);
Out << ',';
llvm::sys::printArg(Out, LinkingOutput, true);
Out << ',' << ProcStat->TotalTime.count() << ','
<< ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
<< '\n';
Out.flush();
std::error_code EC;
llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC,
llvm::sys::fs::OF_Append |
llvm::sys::fs::OF_Text);
if (EC)
return;
auto L = OS.lock();
if (!L) {
llvm::errs() << "ERROR: Cannot lock file "
<< CCPrintStatReportFilename << ": "
<< toString(L.takeError()) << "\n";
return;
}
OS << Buffer;
OS.flush();
}
});
}
// If the user passed -Qunused-arguments or there were errors, don't warn
// about any unused arguments.
if (Diags.hasErrorOccurred() ||
C.getArgs().hasArg(options::OPT_Qunused_arguments))
return;
// Claim -### here.
(void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
// Claim --driver-mode, --rsp-quoting, it was handled earlier.
(void)C.getArgs().hasArg(options::OPT_driver_mode);
(void)C.getArgs().hasArg(options::OPT_rsp_quoting);
for (Arg *A : C.getArgs()) {
// FIXME: It would be nice to be able to send the argument to the
// DiagnosticsEngine, so that extra values, position, and so on could be
// printed.
if (!A->isClaimed()) {
if (A->getOption().hasFlag(options::NoArgumentUnused))
continue;
// Suppress the warning automatically if this is just a flag, and it is an
// instance of an argument we already claimed.
const Option &Opt = A->getOption();
if (Opt.getKind() == Option::FlagClass) {
bool DuplicateClaimed = false;
for (const Arg *AA : C.getArgs().filtered(&Opt)) {
if (AA->isClaimed()) {
DuplicateClaimed = true;
break;
}
}
if (DuplicateClaimed)
continue;
}
// In clang-cl, don't mention unknown arguments here since they have
// already been warned about.
if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
Diag(clang::diag::warn_drv_unused_argument)
<< A->getAsString(C.getArgs());
}
}
}
namespace {
/// Utility class to control the collapse of dependent actions and select the
/// tools accordingly.
class ToolSelector final {
/// The tool chain this selector refers to.
const ToolChain &TC;
/// The compilation this selector refers to.
const Compilation &C;
/// The base action this selector refers to.
const JobAction *BaseAction;
/// Set to true if the current toolchain refers to host actions.
bool IsHostSelector;
/// Set to true if save-temps and embed-bitcode functionalities are active.
bool SaveTemps;
bool EmbedBitcode;
/// Get previous dependent action or null if that does not exist. If
/// \a CanBeCollapsed is false, that action must be legal to collapse or
/// null will be returned.
const JobAction *getPrevDependentAction(const ActionList &Inputs,
ActionList &SavedOffloadAction,
bool CanBeCollapsed = true) {
// An option can be collapsed only if it has a single input.
if (Inputs.size() != 1)
return nullptr;
Action *CurAction = *Inputs.begin();
if (CanBeCollapsed &&
!CurAction->isCollapsingWithNextDependentActionLegal())
return nullptr;
// If the input action is an offload action. Look through it and save any
// offload action that can be dropped in the event of a collapse.
if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
// If the dependent action is a device action, we will attempt to collapse
// only with other device actions. Otherwise, we would do the same but
// with host actions only.
if (!IsHostSelector) {
if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
CurAction =
OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
if (CanBeCollapsed &&
!CurAction->isCollapsingWithNextDependentActionLegal())
return nullptr;
SavedOffloadAction.push_back(OA);
return dyn_cast<JobAction>(CurAction);
}
} else if (OA->hasHostDependence()) {
CurAction = OA->getHostDependence();
if (CanBeCollapsed &&
!CurAction->isCollapsingWithNextDependentActionLegal())
return nullptr;
SavedOffloadAction.push_back(OA);
return dyn_cast<JobAction>(CurAction);
}
return nullptr;
}
return dyn_cast<JobAction>(CurAction);
}
/// Return true if an assemble action can be collapsed.
bool canCollapseAssembleAction() const {
return TC.useIntegratedAs() && !SaveTemps &&
!C.getArgs().hasArg(options::OPT_via_file_asm) &&
!C.getArgs().hasArg(options::OPT__SLASH_FA) &&
!C.getArgs().hasArg(options::OPT__SLASH_Fa);
}
/// Return true if a preprocessor action can be collapsed.
bool canCollapsePreprocessorAction() const {
return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
!C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
!C.getArgs().hasArg(options::OPT_rewrite_objc);
}
/// Struct that relates an action with the offload actions that would be
/// collapsed with it.
struct JobActionInfo final {
/// The action this info refers to.
const JobAction *JA = nullptr;
/// The offload actions we need to take care off if this action is
/// collapsed.
ActionList SavedOffloadAction;
};
/// Append collapsed offload actions from the give nnumber of elements in the
/// action info array.
static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
ArrayRef<JobActionInfo> &ActionInfo,
unsigned ElementNum) {
assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
for (unsigned I = 0; I < ElementNum; ++I)
CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
ActionInfo[I].SavedOffloadAction.end());
}
/// Functions that attempt to perform the combining. They detect if that is
/// legal, and if so they update the inputs \a Inputs and the offload action
/// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
/// the combined action is returned. If the combining is not legal or if the
/// tool does not exist, null is returned.
/// Currently three kinds of collapsing are supported:
/// - Assemble + Backend + Compile;
/// - Assemble + Backend ;
/// - Backend + Compile.
const Tool *
combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
ActionList &Inputs,
ActionList &CollapsedOffloadAction) {
if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
return nullptr;
auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
if (!AJ || !BJ || !CJ)
return nullptr;
// Get compiler tool.
const Tool *T = TC.SelectTool(*CJ);
if (!T)
return nullptr;
// Can't collapse if we don't have codegen support unless we are
// emitting LLVM IR.
bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
return nullptr;
// When using -fembed-bitcode, it is required to have the same tool (clang)
// for both CompilerJA and BackendJA. Otherwise, combine two stages.
if (EmbedBitcode) {
const Tool *BT = TC.SelectTool(*BJ);
if (BT == T)
return nullptr;
}
if (!T->hasIntegratedAssembler())
return nullptr;
Inputs = CJ->getInputs();
AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
/*NumElements=*/3);
return T;
}
const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
ActionList &Inputs,
ActionList &CollapsedOffloadAction) {
if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
return nullptr;
auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
if (!AJ || !BJ)
return nullptr;
// Get backend tool.
const Tool *T = TC.SelectTool(*BJ);
if (!T)
return nullptr;
if (!T->hasIntegratedAssembler())
return nullptr;
Inputs = BJ->getInputs();
AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
/*NumElements=*/2);
return T;
}
const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
ActionList &Inputs,
ActionList &CollapsedOffloadAction) {
if (ActionInfo.size() < 2)
return nullptr;
auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
if (!BJ || !CJ)
return nullptr;
// Check if the initial input (to the compile job or its predessor if one
// exists) is LLVM bitcode. In that case, no preprocessor step is required
// and we can still collapse the compile and backend jobs when we have
// -save-temps. I.e. there is no need for a separate compile job just to
// emit unoptimized bitcode.
bool InputIsBitcode = true;
for (size_t i = 1; i < ActionInfo.size(); i++)
if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
InputIsBitcode = false;
break;
}
if (!InputIsBitcode && !canCollapsePreprocessorAction())
return nullptr;
// Get compiler tool.
const Tool *T = TC.SelectTool(*CJ);
if (!T)
return nullptr;
// Can't collapse if we don't have codegen support unless we are
// emitting LLVM IR.
bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
return nullptr;
if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
return nullptr;
Inputs = CJ->getInputs();
AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
/*NumElements=*/2);
return T;
}
/// Updates the inputs if the obtained tool supports combining with
/// preprocessor action, and the current input is indeed a preprocessor
/// action. If combining results in the collapse of offloading actions, those
/// are appended to \a CollapsedOffloadAction.
void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
ActionList &CollapsedOffloadAction) {
if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
return;
// Attempt to get a preprocessor action dependence.
ActionList PreprocessJobOffloadActions;
ActionList NewInputs;
for (Action *A : Inputs) {
auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
if (!PJ || !isa<PreprocessJobAction>(PJ)) {
NewInputs.push_back(A);
continue;
}
// This is legal to combine. Append any offload action we found and add the
// current input to preprocessor inputs.
CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
PreprocessJobOffloadActions.end());
NewInputs.append(PJ->input_begin(), PJ->input_end());
}
Inputs = NewInputs;
}
public:
ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
const Compilation &C, bool SaveTemps, bool EmbedBitcode)
: TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
EmbedBitcode(EmbedBitcode) {
assert(BaseAction && "Invalid base action.");
IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
}
/// Check if a chain of actions can be combined and return the tool that can
/// handle the combination of actions. The pointer to the current inputs \a
/// Inputs and the list of offload actions \a CollapsedOffloadActions
/// connected to collapsed actions are updated accordingly. The latter enables
/// the caller of the selector to process them afterwards instead of just
/// dropping them. If no suitable tool is found, null will be returned.
const Tool *getTool(ActionList &Inputs,
ActionList &CollapsedOffloadAction) {
//
// Get the largest chain of actions that we could combine.
//
SmallVector<JobActionInfo, 5> ActionChain(1);
ActionChain.back().JA = BaseAction;
while (ActionChain.back().JA) {
const Action *CurAction = ActionChain.back().JA;
// Grow the chain by one element.
ActionChain.resize(ActionChain.size() + 1);
JobActionInfo &AI = ActionChain.back();
// Attempt to fill it with the
AI.JA =
getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
}
// Pop the last action info as it could not be filled.
ActionChain.pop_back();
//
// Attempt to combine actions. If all combining attempts failed, just return
// the tool of the provided action. At the end we attempt to combine the
// action with any preprocessor action it may depend on.
//
const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
CollapsedOffloadAction);
if (!T)
T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
if (!T)
T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
if (!T) {
Inputs = BaseAction->getInputs();
T = TC.SelectTool(*BaseAction);
}
combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
return T;
}
};
}
/// Return a string that uniquely identifies the result of a job. The bound arch
/// is not necessarily represented in the toolchain's triple -- for example,
/// armv7 and armv7s both map to the same triple -- so we need both in our map.
/// Also, we need to add the offloading device kind, as the same tool chain can
/// be used for host and device for some programming models, e.g. OpenMP.
static std::string GetTriplePlusArchString(const ToolChain *TC,
StringRef BoundArch,
Action::OffloadKind OffloadKind) {
std::string TriplePlusArch = TC->getTriple().normalize();
if (!BoundArch.empty()) {
TriplePlusArch += "-";
TriplePlusArch += BoundArch;
}
TriplePlusArch += "-";
TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
return TriplePlusArch;
}
InputInfoList Driver::BuildJobsForAction(
Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
std::map<std::pair<const Action *, std::string>, InputInfoList>
&CachedResults,
Action::OffloadKind TargetDeviceOffloadKind) const {
std::pair<const Action *, std::string> ActionTC = {
A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
auto CachedResult = CachedResults.find(ActionTC);
if (CachedResult != CachedResults.end()) {
return CachedResult->second;
}
InputInfoList Result = BuildJobsForActionNoCache(
C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
CachedResults, TargetDeviceOffloadKind);
CachedResults[ActionTC] = Result;
return Result;
}
InputInfoList Driver::BuildJobsForActionNoCache(
Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
std::map<std::pair<const Action *, std::string>, InputInfoList>
&CachedResults,
Action::OffloadKind TargetDeviceOffloadKind) const {
llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
InputInfoList OffloadDependencesInputInfo;
bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
// The 'Darwin' toolchain is initialized only when its arguments are
// computed. Get the default arguments for OFK_None to ensure that
// initialization is performed before processing the offload action.
// FIXME: Remove when darwin's toolchain is initialized during construction.
C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
// The offload action is expected to be used in four different situations.
//
// a) Set a toolchain/architecture/kind for a host action:
// Host Action 1 -> OffloadAction -> Host Action 2
//
// b) Set a toolchain/architecture/kind for a device action;
// Device Action 1 -> OffloadAction -> Device Action 2
//
// c) Specify a device dependence to a host action;
// Device Action 1 _
// \
// Host Action 1 ---> OffloadAction -> Host Action 2
//
// d) Specify a host dependence to a device action.
// Host Action 1 _
// \
// Device Action 1 ---> OffloadAction -> Device Action 2
//
// For a) and b), we just return the job generated for the dependence. For
// c) and d) we override the current action with the host/device dependence
// if the current toolchain is host/device and set the offload dependences
// info with the jobs obtained from the device/host dependence(s).
// If there is a single device option, just generate the job for it.
if (OA->hasSingleDeviceDependence()) {
InputInfoList DevA;
OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
const char *DepBoundArch) {
DevA =
BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
/*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
CachedResults, DepA->getOffloadingDeviceKind());
});
return DevA;
}
// If 'Action 2' is host, we generate jobs for the device dependences and
// override the current action with the host dependence. Otherwise, we
// generate the host dependences and override the action with the device
// dependence. The dependences can't therefore be a top-level action.
OA->doOnEachDependence(
/*IsHostDependence=*/BuildingForOffloadDevice,
[&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
OffloadDependencesInputInfo.append(BuildJobsForAction(
C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
/*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
DepA->getOffloadingDeviceKind()));
});
A = BuildingForOffloadDevice
? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
: OA->getHostDependence();
// We may have already built this action as a part of the offloading
// toolchain, return the cached input if so.
std::pair<const Action *, std::string> ActionTC = {
OA->getHostDependence(),
GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
if (CachedResults.find(ActionTC) != CachedResults.end()) {
InputInfoList Inputs = CachedResults[ActionTC];
Inputs.append(OffloadDependencesInputInfo);
return Inputs;
}
}
if (const InputAction *IA = dyn_cast<InputAction>(A)) {
// FIXME: It would be nice to not claim this here; maybe the old scheme of
// just using Args was better?
const Arg &Input = IA->getInputArg();
Input.claim();
if (Input.getOption().matches(options::OPT_INPUT)) {
const char *Name = Input.getValue();
return {InputInfo(A, Name, /* _BaseInput = */ Name)};
}
return {InputInfo(A, &Input, /* _BaseInput = */ "")};
}
if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
const ToolChain *TC;
StringRef ArchName = BAA->getArchName();
if (!ArchName.empty())
TC = &getToolChain(C.getArgs(),
computeTargetTriple(*this, TargetTriple,
C.getArgs(), ArchName));
else
TC = &C.getDefaultToolChain();
return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
MultipleArchs, LinkingOutput, CachedResults,
TargetDeviceOffloadKind);
}
ActionList Inputs = A->getInputs();
const JobAction *JA = cast<JobAction>(A);
ActionList CollapsedOffloadActions;
ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
embedBitcodeInObject() && !isUsingLTO());
const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
if (!T)
return {InputInfo()};
if (BuildingForOffloadDevice &&
A->getOffloadingDeviceKind() == Action::OFK_OpenMP) {
if (TC->getTriple().isAMDGCN()) {
// AMDGCN treats backend and assemble actions as no-op because
// linker does not support object files.
if (const BackendJobAction *BA = dyn_cast<BackendJobAction>(A)) {
return BuildJobsForAction(C, *BA->input_begin(), TC, BoundArch,
AtTopLevel, MultipleArchs, LinkingOutput,
CachedResults, TargetDeviceOffloadKind);
}
if (const AssembleJobAction *AA = dyn_cast<AssembleJobAction>(A)) {
return BuildJobsForAction(C, *AA->input_begin(), TC, BoundArch,
AtTopLevel, MultipleArchs, LinkingOutput,
CachedResults, TargetDeviceOffloadKind);
}
}
}
// If we've collapsed action list that contained OffloadAction we
// need to build jobs for host/device-side inputs it may have held.
for (const auto *OA : CollapsedOffloadActions)
cast<OffloadAction>(OA)->doOnEachDependence(
/*IsHostDependence=*/BuildingForOffloadDevice,
[&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
OffloadDependencesInputInfo.append(BuildJobsForAction(
C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
/*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
DepA->getOffloadingDeviceKind()));
});
// Only use pipes when there is exactly one input.
InputInfoList InputInfos;
for (const Action *Input : Inputs) {
// Treat dsymutil and verify sub-jobs as being at the top-level too, they
// shouldn't get temporary output names.
// FIXME: Clean this up.
bool SubJobAtTopLevel =
AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
InputInfos.append(BuildJobsForAction(
C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
CachedResults, A->getOffloadingDeviceKind()));
}
// Always use the first file input as the base input.
const char *BaseInput = InputInfos[0].getBaseInput();
for (auto &Info : InputInfos) {
if (Info.isFilename()) {
BaseInput = Info.getBaseInput();
break;
}
}
// ... except dsymutil actions, which use their actual input as the base
// input.
if (JA->getType() == types::TY_dSYM)
BaseInput = InputInfos[0].getFilename();
// ... and in header module compilations, which use the module name.
if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
BaseInput = ModuleJA->getModuleName();
// Append outputs of offload device jobs to the input list
if (!OffloadDependencesInputInfo.empty())
InputInfos.append(OffloadDependencesInputInfo.begin(),
OffloadDependencesInputInfo.end());
// Set the effective triple of the toolchain for the duration of this job.
llvm::Triple EffectiveTriple;
const ToolChain &ToolTC = T->getToolChain();
const ArgList &Args =
C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
if (InputInfos.size() != 1) {
EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
} else {
// Pass along the input type if it can be unambiguously determined.
EffectiveTriple = llvm::Triple(
ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
}
RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
// Determine the place to write output to, if any.
InputInfo Result;
InputInfoList UnbundlingResults;
if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
// If we have an unbundling job, we need to create results for all the
// outputs. We also update the results cache so that other actions using
// this unbundling action can get the right results.
for (auto &UI : UA->getDependentActionsInfo()) {
assert(UI.DependentOffloadKind != Action::OFK_None &&
"Unbundling with no offloading??");
// Unbundling actions are never at the top level. When we generate the
// offloading prefix, we also do that for the host file because the
// unbundling action does not change the type of the output which can
// cause a overwrite.
std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
UI.DependentOffloadKind,
UI.DependentToolChain->getTriple().normalize(),
/*CreatePrefixForHost=*/true);
auto CurI = InputInfo(
UA,
GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
/*AtTopLevel=*/false,
MultipleArchs ||
UI.DependentOffloadKind == Action::OFK_HIP,
OffloadingPrefix),
BaseInput);
// Save the unbundling result.
UnbundlingResults.push_back(CurI);
// Get the unique string identifier for this dependence and cache the
// result.
StringRef Arch;
if (TargetDeviceOffloadKind == Action::OFK_HIP) {
if (UI.DependentOffloadKind == Action::OFK_Host)
Arch = StringRef();
else
Arch = UI.DependentBoundArch;
} else
Arch = BoundArch;
CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
UI.DependentOffloadKind)}] = {
CurI};
}
// Now that we have all the results generated, select the one that should be
// returned for the current depending action.
std::pair<const Action *, std::string> ActionTC = {
A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
assert(CachedResults.find(ActionTC) != CachedResults.end() &&
"Result does not exist??");
Result = CachedResults[ActionTC].front();
} else if (JA->getType() == types::TY_Nothing)
Result = {InputInfo(A, BaseInput)};
else {
// We only have to generate a prefix for the host if this is not a top-level
// action.
std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
/*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
!AtTopLevel);
if (isa<OffloadWrapperJobAction>(JA)) {
if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
BaseInput = FinalOutput->getValue();
else
BaseInput = getDefaultImageName();
BaseInput =
C.getArgs().MakeArgString(std::string(BaseInput) + "-wrapper");
}
Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
AtTopLevel, MultipleArchs,
OffloadingPrefix),
BaseInput);
}
if (CCCPrintBindings && !CCGenDiagnostics) {
llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
<< " - \"" << T->getName() << "\", inputs: [";
for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
llvm::errs() << InputInfos[i].getAsString();
if (i + 1 != e)
llvm::errs() << ", ";
}
if (UnbundlingResults.empty())
llvm::errs() << "], output: " << Result.getAsString() << "\n";
else {
llvm::errs() << "], outputs: [";
for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
llvm::errs() << UnbundlingResults[i].getAsString();
if (i + 1 != e)
llvm::errs() << ", ";
}
llvm::errs() << "] \n";
}
} else {
if (UnbundlingResults.empty())
T->ConstructJob(
C, *JA, Result, InputInfos,
C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
LinkingOutput);
else
T->ConstructJobMultipleOutputs(
C, *JA, UnbundlingResults, InputInfos,
C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
LinkingOutput);
}
return {Result};
}
const char *Driver::getDefaultImageName() const {
llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
return Target.isOSWindows() ? "a.exe" : "a.out";
}
/// Create output filename based on ArgValue, which could either be a
/// full filename, filename without extension, or a directory. If ArgValue
/// does not provide a filename, then use BaseName, and use the extension
/// suitable for FileType.
static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
StringRef BaseName,
types::ID FileType) {
SmallString<128> Filename = ArgValue;
if (ArgValue.empty()) {
// If the argument is empty, output to BaseName in the current dir.
Filename = BaseName;
} else if (llvm::sys::path::is_separator(Filename.back())) {
// If the argument is a directory, output to BaseName in that dir.
llvm::sys::path::append(Filename, BaseName);
}
if (!llvm::sys::path::has_extension(ArgValue)) {
// If the argument didn't provide an extension, then set it.
const char *Extension = types::getTypeTempSuffix(FileType, true);
if (FileType == types::TY_Image &&
Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
// The output file is a dll.
Extension = "dll";
}
llvm::sys::path::replace_extension(Filename, Extension);
}
return Args.MakeArgString(Filename.c_str());
}
static bool HasPreprocessOutput(const Action &JA) {
if (isa<PreprocessJobAction>(JA))
return true;
if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
return true;
if (isa<OffloadBundlingJobAction>(JA) &&
HasPreprocessOutput(*(JA.getInputs()[0])))
return true;
return false;
}
const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
const char *BaseInput,
StringRef OrigBoundArch, bool AtTopLevel,
bool MultipleArchs,
StringRef OffloadingPrefix) const {
std::string BoundArch = OrigBoundArch.str();
if (is_style_windows(llvm::sys::path::Style::native)) {
// BoundArch may contains ':', which is invalid in file names on Windows,
// therefore replace it with '%'.
std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
}
llvm::PrettyStackTraceString CrashInfo("Computing output path");
// Output to a user requested destination?
if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
return C.addResultFile(FinalOutput->getValue(), &JA);
}
// For /P, preprocess to file named after BaseInput.
if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
assert(AtTopLevel && isa<PreprocessJobAction>(JA));
StringRef BaseName = llvm::sys::path::filename(BaseInput);
StringRef NameArg;
if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
NameArg = A->getValue();
return C.addResultFile(
MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
&JA);
}
// Default to writing to stdout?
if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
return "-";
}
if (JA.getType() == types::TY_ModuleFile &&
C.getArgs().getLastArg(options::OPT_module_file_info)) {
return "-";
}
// Is this the assembly listing for /FA?
if (JA.getType() == types::TY_PP_Asm &&
(C.getArgs().hasArg(options::OPT__SLASH_FA) ||
C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
// Use /Fa and the input filename to determine the asm file name.
StringRef BaseName = llvm::sys::path::filename(BaseInput);
StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
return C.addResultFile(
MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
&JA);
}
// Output to a temporary file?
if ((!AtTopLevel && !isSaveTempsEnabled() &&
!C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
CCGenDiagnostics) {
StringRef Name = llvm::sys::path::filename(BaseInput);
std::pair<StringRef, StringRef> Split = Name.split('.');
SmallString<128> TmpName;
const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
if (CCGenDiagnostics && A) {
SmallString<128> CrashDirectory(A->getValue());
if (!getVFS().exists(CrashDirectory))
llvm::sys::fs::create_directories(CrashDirectory);
llvm::sys::path::append(CrashDirectory, Split.first);
const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
std::error_code EC = llvm::sys::fs::createUniqueFile(
CrashDirectory + Middle + Suffix, TmpName);
if (EC) {
Diag(clang::diag::err_unable_to_make_temp) << EC.message();
return "";
}
} else {
if (MultipleArchs && !BoundArch.empty()) {
TmpName = GetTemporaryDirectory(Split.first);
llvm::sys::path::append(TmpName,
Split.first + "-" + BoundArch + "." + Suffix);
} else {
TmpName = GetTemporaryPath(Split.first, Suffix);
}
}
return C.addTempFile(C.getArgs().MakeArgString(TmpName));
}
SmallString<128> BasePath(BaseInput);
SmallString<128> ExternalPath("");
StringRef BaseName;
// Dsymutil actions should use the full path.
if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
// We use posix style here because the tests (specifically
// darwin-dsymutil.c) demonstrate that posix style paths are acceptable
// even on Windows and if we don't then the similar test covering this
// fails.
llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
llvm::sys::path::filename(BasePath));
BaseName = ExternalPath;
} else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
BaseName = BasePath;
else
BaseName = llvm::sys::path::filename(BasePath);
// Determine what the derived output name should be.
const char *NamedOutput;
if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
// The /Fo or /o flag decides the object filename.
StringRef Val =
C.getArgs()
.getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
->getValue();
NamedOutput =
MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
} else if (JA.getType() == types::TY_Image &&
C.getArgs().hasArg(options::OPT__SLASH_Fe,
options::OPT__SLASH_o)) {
// The /Fe or /o flag names the linked file.
StringRef Val =
C.getArgs()
.getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
->getValue();
NamedOutput =
MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
} else if (JA.getType() == types::TY_Image) {
if (IsCLMode()) {
// clang-cl uses BaseName for the executable name.
NamedOutput =
MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
} else {
SmallString<128> Output(getDefaultImageName());
// HIP image for device compilation with -fno-gpu-rdc is per compilation
// unit.
bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
!C.getArgs().hasFlag(options::OPT_fgpu_rdc,
options::OPT_fno_gpu_rdc, false);
if (IsHIPNoRDC) {
Output = BaseName;
llvm::sys::path::replace_extension(Output, "");
}
Output += OffloadingPrefix;
if (MultipleArchs && !BoundArch.empty()) {
Output += "-";
Output.append(BoundArch);
}
if (IsHIPNoRDC)
Output += ".out";
NamedOutput = C.getArgs().MakeArgString(Output.c_str());
}
} else if (JA.getType() == types::TY_PCH && IsCLMode()) {
NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
} else {
const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
assert(Suffix && "All types used for output should have a suffix.");
std::string::size_type End = std::string::npos;
if (!types::appendSuffixForType(JA.getType()))
End = BaseName.rfind('.');
SmallString<128> Suffixed(BaseName.substr(0, End));
Suffixed += OffloadingPrefix;
if (MultipleArchs && !BoundArch.empty()) {
Suffixed += "-";
Suffixed.append(BoundArch);
}
// When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
// the unoptimized bitcode so that it does not get overwritten by the ".bc"
// optimized bitcode output.
auto IsHIPRDCInCompilePhase = [](const JobAction &JA,
const llvm::opt::DerivedArgList &Args) {
// The relocatable compilation in HIP implies -emit-llvm. Similarly, use a
// ".tmp.bc" suffix for the unoptimized bitcode (generated in the compile
// phase.)
return isa<CompileJobAction>(JA) &&
JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
false);
};
if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
(C.getArgs().hasArg(options::OPT_emit_llvm) ||
IsHIPRDCInCompilePhase(JA, C.getArgs())))
Suffixed += ".tmp";
Suffixed += '.';
Suffixed += Suffix;
NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
}
// Prepend object file path if -save-temps=obj
if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
JA.getType() != types::TY_PCH) {
Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
SmallString<128> TempPath(FinalOutput->getValue());
llvm::sys::path::remove_filename(TempPath);
StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
llvm::sys::path::append(TempPath, OutputFileName);
NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
}
// If we're saving temps and the temp file conflicts with the input file,
// then avoid overwriting input file.
if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
bool SameFile = false;
SmallString<256> Result;
llvm::sys::fs::current_path(Result);
llvm::sys::path::append(Result, BaseName);
llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
// Must share the same path to conflict.
if (SameFile) {
StringRef Name = llvm::sys::path::filename(BaseInput);
std::pair<StringRef, StringRef> Split = Name.split('.');
std::string TmpName = GetTemporaryPath(
Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
return C.addTempFile(C.getArgs().MakeArgString(TmpName));
}
}
// As an annoying special case, PCH generation doesn't strip the pathname.
if (JA.getType() == types::TY_PCH && !IsCLMode()) {
llvm::sys::path::remove_filename(BasePath);
if (BasePath.empty())
BasePath = NamedOutput;
else
llvm::sys::path::append(BasePath, NamedOutput);
return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
} else {
return C.addResultFile(NamedOutput, &JA);
}
}
std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
// Search for Name in a list of paths.
auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
-> llvm::Optional<std::string> {
// Respect a limited subset of the '-Bprefix' functionality in GCC by
// attempting to use this prefix when looking for file paths.
for (const auto &Dir : P) {
if (Dir.empty())
continue;
SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
llvm::sys::path::append(P, Name);
if (llvm::sys::fs::exists(Twine(P)))
return std::string(P);
}
return None;
};
if (auto P = SearchPaths(PrefixDirs))
return *P;
SmallString<128> R(ResourceDir);
llvm::sys::path::append(R, Name);
if (llvm::sys::fs::exists(Twine(R)))
return std::string(R.str());
SmallString<128> P(TC.getCompilerRTPath());
llvm::sys::path::append(P, Name);
if (llvm::sys::fs::exists(Twine(P)))
return std::string(P.str());
SmallString<128> D(Dir);
llvm::sys::path::append(D, "..", Name);
if (llvm::sys::fs::exists(Twine(D)))
return std::string(D.str());
if (auto P = SearchPaths(TC.getLibraryPaths()))
return *P;
if (auto P = SearchPaths(TC.getFilePaths()))
return *P;
return std::string(Name);
}
void Driver::generatePrefixedToolNames(
StringRef Tool, const ToolChain &TC,
SmallVectorImpl<std::string> &Names) const {
// FIXME: Needs a better variable than TargetTriple
Names.emplace_back((TargetTriple + "-" + Tool).str());
Names.emplace_back(Tool);
}
static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
llvm::sys::path::append(Dir, Name);
if (llvm::sys::fs::can_execute(Twine(Dir)))
return true;
llvm::sys::path::remove_filename(Dir);
return false;
}
std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
SmallVector<std::string, 2> TargetSpecificExecutables;
generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
// Respect a limited subset of the '-Bprefix' functionality in GCC by
// attempting to use this prefix when looking for program paths.
for (const auto &PrefixDir : PrefixDirs) {
if (llvm::sys::fs::is_directory(PrefixDir)) {
SmallString<128> P(PrefixDir);
if (ScanDirForExecutable(P, Name))
return std::string(P.str());
} else {
SmallString<128> P((PrefixDir + Name).str());
if (llvm::sys::fs::can_execute(Twine(P)))
return std::string(P.str());
}
}
const ToolChain::path_list &List = TC.getProgramPaths();
for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
// For each possible name of the tool look for it in
// program paths first, then the path.
// Higher priority names will be first, meaning that
// a higher priority name in the path will be found
// instead of a lower priority name in the program path.
// E.g. <triple>-gcc on the path will be found instead
// of gcc in the program path
for (const auto &Path : List) {
SmallString<128> P(Path);
if (ScanDirForExecutable(P, TargetSpecificExecutable))
return std::string(P.str());
}
// Fall back to the path
if (llvm::ErrorOr<std::string> P =
llvm::sys::findProgramByName(TargetSpecificExecutable))
return *P;
}
return std::string(Name);
}
std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
SmallString<128> Path;
std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
if (EC) {
Diag(clang::diag::err_unable_to_make_temp) << EC.message();
return "";
}
return std::string(Path.str());
}
std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
SmallString<128> Path;
std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
if (EC) {
Diag(clang::diag::err_unable_to_make_temp) << EC.message();
return "";
}
return std::string(Path.str());
}
std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
SmallString<128> Output;
if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
// FIXME: If anybody needs it, implement this obscure rule:
// "If you specify a directory without a file name, the default file name
// is VCx0.pch., where x is the major version of Visual C++ in use."
Output = FpArg->getValue();
// "If you do not specify an extension as part of the path name, an
// extension of .pch is assumed. "
if (!llvm::sys::path::has_extension(Output))
Output += ".pch";
} else {
if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
Output = YcArg->getValue();
if (Output.empty())
Output = BaseName;
llvm::sys::path::replace_extension(Output, ".pch");
}
return std::string(Output.str());
}
const ToolChain &Driver::getToolChain(const ArgList &Args,
const llvm::Triple &Target) const {
auto &TC = ToolChains[Target.str()];
if (!TC) {
switch (Target.getOS()) {
case llvm::Triple::AIX:
TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
break;
case llvm::Triple::Haiku:
TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
break;
case llvm::Triple::Ananas:
TC = std::make_unique<toolchains::Ananas>(*this, Target, Args);
break;
case llvm::Triple::CloudABI:
TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args);
break;
case llvm::Triple::Darwin:
case llvm::Triple::MacOSX:
case llvm::Triple::IOS:
case llvm::Triple::TvOS:
case llvm::Triple::WatchOS:
TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
break;
case llvm::Triple::DragonFly:
TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
break;
case llvm::Triple::OpenBSD:
TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
break;
case llvm::Triple::NetBSD:
TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
break;
case llvm::Triple::FreeBSD:
if (Target.isPPC())
TC = std::make_unique<toolchains::PPCFreeBSDToolChain>(*this, Target,
Args);
else
TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
break;
case llvm::Triple::Minix:
TC = std::make_unique<toolchains::Minix>(*this, Target, Args);
break;
case llvm::Triple::Linux:
case llvm::Triple::ELFIAMCU:
if (Target.getArch() == llvm::Triple::hexagon)
TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
Args);
else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
!Target.hasEnvironment())
TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
Args);
else if (Target.isPPC())
TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
Args);
else if (Target.getArch() == llvm::Triple::ve)
TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
else
TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
break;
case llvm::Triple::NaCl:
TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
break;
case llvm::Triple::Fuchsia:
TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
break;
case llvm::Triple::Solaris:
TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
break;
case llvm::Triple::AMDHSA:
TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
break;
case llvm::Triple::AMDPAL:
case llvm::Triple::Mesa3D:
TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
break;
case llvm::Triple::Win32:
switch (Target.getEnvironment()) {
default:
if (Target.isOSBinFormatELF())
TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
else if (Target.isOSBinFormatMachO())
TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
else
TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
break;
case llvm::Triple::GNU:
TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
break;
case llvm::Triple::Itanium:
TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
Args);
break;
case llvm::Triple::MSVC:
case llvm::Triple::UnknownEnvironment:
if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
.startswith_insensitive("bfd"))
TC = std::make_unique<toolchains::CrossWindowsToolChain>(
*this, Target, Args);
else
TC =
std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
break;
}
break;
case llvm::Triple::PS4:
TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
break;
case llvm::Triple::Contiki:
TC = std::make_unique<toolchains::Contiki>(*this, Target, Args);
break;
case llvm::Triple::Hurd:
TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
break;
case llvm::Triple::ZOS:
TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
break;
default:
// Of these targets, Hexagon is the only one that might have
// an OS of Linux, in which case it got handled above already.
switch (Target.getArch()) {
case llvm::Triple::tce:
TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
break;
case llvm::Triple::tcele:
TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
break;
case llvm::Triple::hexagon:
TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
Args);
break;
case llvm::Triple::lanai:
TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
break;
case llvm::Triple::xcore:
TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
break;
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
break;
case llvm::Triple::avr:
TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
break;
case llvm::Triple::msp430:
TC =
std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
break;
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args))
TC =
std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
else
TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
break;
case llvm::Triple::ve:
TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
break;
case llvm::Triple::spirv32:
case llvm::Triple::spirv64:
TC = std::make_unique<toolchains::SPIRVToolChain>(*this, Target, Args);
break;
default:
if (Target.getVendor() == llvm::Triple::Myriad)
TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target,
Args);
else if (toolchains::BareMetal::handlesTarget(Target))
TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
else if (Target.isOSBinFormatELF())
TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
else if (Target.isOSBinFormatMachO())
TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
else
TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
}
}
}
// Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA
// compiles always need two toolchains, the CUDA toolchain and the host
// toolchain. So the only valid way to create a CUDA toolchain is via
// CreateOffloadingDeviceToolChains.
return *TC;
}
const ToolChain &Driver::getOffloadingDeviceToolChain(
const ArgList &Args, const llvm::Triple &Target, const ToolChain &HostTC,
const Action::OffloadKind &TargetDeviceOffloadKind) const {
// Use device / host triples as the key into the ToolChains map because the
// device ToolChain we create depends on both.
auto &TC = ToolChains[Target.str() + "/" + HostTC.getTriple().str()];
if (!TC) {
// Categorized by offload kind > arch rather than OS > arch like
// the normal getToolChain call, as it seems a reasonable way to categorize
// things.
switch (TargetDeviceOffloadKind) {
case Action::OFK_HIP: {
if (Target.getArch() == llvm::Triple::amdgcn &&
Target.getVendor() == llvm::Triple::AMD &&
Target.getOS() == llvm::Triple::AMDHSA)
TC = std::make_unique<toolchains::HIPAMDToolChain>(*this, Target,
HostTC, Args);
else if (Target.getArch() == llvm::Triple::spirv64 &&
Target.getVendor() == llvm::Triple::UnknownVendor &&
Target.getOS() == llvm::Triple::UnknownOS)
TC = std::make_unique<toolchains::HIPSPVToolChain>(*this, Target,
HostTC, Args);
break;
}
default:
break;
}
}
return *TC;
}
bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
// Say "no" if there is not exactly one input of a type clang understands.
if (JA.size() != 1 ||
!types::isAcceptedByClang((*JA.input_begin())->getType()))
return false;
// And say "no" if this is not a kind of action clang understands.
if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
!isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
return false;
return true;
}
bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
// Say "no" if there is not exactly one input of a type flang understands.
if (JA.size() != 1 ||
!types::isFortran((*JA.input_begin())->getType()))
return false;
// And say "no" if this is not a kind of action flang understands.
if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
return false;
return true;
}
bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
// Only emit static library if the flag is set explicitly.
if (Args.hasArg(options::OPT_emit_static_lib))
return true;
return false;
}
/// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
/// grouped values as integers. Numbers which are not provided are set to 0.
///
/// \return True if the entire string was parsed (9.2), or all groups were
/// parsed (10.3.5extrastuff).
bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
unsigned &Micro, bool &HadExtra) {
HadExtra = false;
Major = Minor = Micro = 0;
if (Str.empty())
return false;
if (Str.consumeInteger(10, Major))
return false;
if (Str.empty())
return true;
if (Str[0] != '.')
return false;
Str = Str.drop_front(1);
if (Str.consumeInteger(10, Minor))
return false;
if (Str.empty())
return true;
if (Str[0] != '.')
return false;
Str = Str.drop_front(1);
if (Str.consumeInteger(10, Micro))
return false;
if (!Str.empty())
HadExtra = true;
return true;
}
/// Parse digits from a string \p Str and fulfill \p Digits with
/// the parsed numbers. This method assumes that the max number of
/// digits to look for is equal to Digits.size().
///
/// \return True if the entire string was parsed and there are
/// no extra characters remaining at the end.
bool Driver::GetReleaseVersion(StringRef Str,
MutableArrayRef<unsigned> Digits) {
if (Str.empty())
return false;
unsigned CurDigit = 0;
while (CurDigit < Digits.size()) {
unsigned Digit;
if (Str.consumeInteger(10, Digit))
return false;
Digits[CurDigit] = Digit;
if (Str.empty())
return true;
if (Str[0] != '.')
return false;
Str = Str.drop_front(1);
CurDigit++;
}
// More digits than requested, bail out...
return false;
}
std::pair<unsigned, unsigned>
Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
unsigned IncludedFlagsBitmask = 0;
unsigned ExcludedFlagsBitmask = options::NoDriverOption;
if (IsClCompatMode) {
// Include CL and Core options.
IncludedFlagsBitmask |= options::CLOption;
IncludedFlagsBitmask |= options::CoreOption;
} else {
ExcludedFlagsBitmask |= options::CLOption;
}
return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
}
bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
}
bool clang::driver::willEmitRemarks(const ArgList &Args) {
// -fsave-optimization-record enables it.
if (Args.hasFlag(options::OPT_fsave_optimization_record,
options::OPT_fno_save_optimization_record, false))
return true;
// -fsave-optimization-record=<format> enables it as well.
if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
options::OPT_fno_save_optimization_record, false))
return true;
// -foptimization-record-file alone enables it too.
if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
options::OPT_fno_save_optimization_record, false))
return true;
// -foptimization-record-passes alone enables it too.
if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
options::OPT_fno_save_optimization_record, false))
return true;
return false;
}
llvm::StringRef clang::driver::getDriverMode(StringRef ProgName,
ArrayRef<const char *> Args) {
static const std::string OptName =
getDriverOptTable().getOption(options::OPT_driver_mode).getPrefixedName();
llvm::StringRef Opt;
for (StringRef Arg : Args) {
if (!Arg.startswith(OptName))
continue;
Opt = Arg;
}
if (Opt.empty())
Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode;
return Opt.consume_front(OptName) ? Opt : "";
}
bool driver::IsClangCL(StringRef DriverMode) { return DriverMode.equals("cl"); }