llvm-project/clang-tools-extra/clangd/index/SymbolCollector.cpp

802 lines
30 KiB
C++

//===--- SymbolCollector.cpp -------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SymbolCollector.h"
#include "AST.h"
#include "CanonicalIncludes.h"
#include "CodeComplete.h"
#include "CodeCompletionStrings.h"
#include "ExpectedTypes.h"
#include "Logger.h"
#include "SourceCode.h"
#include "SymbolLocation.h"
#include "URI.h"
#include "index/SymbolID.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Index/IndexSymbol.h"
#include "clang/Index/IndexingAction.h"
#include "clang/Index/USRGeneration.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
namespace clang {
namespace clangd {
namespace {
/// If \p ND is a template specialization, returns the described template.
/// Otherwise, returns \p ND.
const NamedDecl &getTemplateOrThis(const NamedDecl &ND) {
if (auto T = ND.getDescribedTemplate())
return *T;
return ND;
}
// Returns a URI of \p Path. Firstly, this makes the \p Path absolute using the
// current working directory of the given SourceManager if the Path is not an
// absolute path. If failed, this resolves relative paths against \p FallbackDir
// to get an absolute path. Then, this tries creating an URI for the absolute
// path with schemes specified in \p Opts. This returns an URI with the first
// working scheme, if there is any; otherwise, this returns None.
//
// The Path can be a path relative to the build directory, or retrieved from
// the SourceManager.
std::string toURI(const SourceManager &SM, llvm::StringRef Path,
const SymbolCollector::Options &Opts) {
llvm::SmallString<128> AbsolutePath(Path);
if (auto File = SM.getFileManager().getFile(Path)) {
if (auto CanonPath = getCanonicalPath(*File, SM)) {
AbsolutePath = *CanonPath;
}
}
// We don't perform is_absolute check in an else branch because makeAbsolute
// might return a relative path on some InMemoryFileSystems.
if (!llvm::sys::path::is_absolute(AbsolutePath) && !Opts.FallbackDir.empty())
llvm::sys::fs::make_absolute(Opts.FallbackDir, AbsolutePath);
llvm::sys::path::remove_dots(AbsolutePath, /*remove_dot_dot=*/true);
return URI::create(AbsolutePath).toString();
}
// Checks whether the decl is a private symbol in a header generated by
// protobuf compiler.
// FIXME: make filtering extensible when there are more use cases for symbol
// filters.
bool isPrivateProtoDecl(const NamedDecl &ND) {
const auto &SM = ND.getASTContext().getSourceManager();
if (!isProtoFile(nameLocation(ND, SM), SM))
return false;
// ND without identifier can be operators.
if (ND.getIdentifier() == nullptr)
return false;
auto Name = ND.getIdentifier()->getName();
if (!Name.contains('_'))
return false;
// Nested proto entities (e.g. Message::Nested) have top-level decls
// that shouldn't be used (Message_Nested). Ignore them completely.
// The nested entities are dangling type aliases, we may want to reconsider
// including them in the future.
// For enum constants, SOME_ENUM_CONSTANT is not private and should be
// indexed. Outer_INNER is private. This heuristic relies on naming style, it
// will include OUTER_INNER and exclude some_enum_constant.
// FIXME: the heuristic relies on naming style (i.e. no underscore in
// user-defined names) and can be improved.
return (ND.getKind() != Decl::EnumConstant) || llvm::any_of(Name, islower);
}
// We only collect #include paths for symbols that are suitable for global code
// completion, except for namespaces since #include path for a namespace is hard
// to define.
bool shouldCollectIncludePath(index::SymbolKind Kind) {
using SK = index::SymbolKind;
switch (Kind) {
case SK::Macro:
case SK::Enum:
case SK::Struct:
case SK::Class:
case SK::Union:
case SK::TypeAlias:
case SK::Using:
case SK::Function:
case SK::Variable:
case SK::EnumConstant:
return true;
default:
return false;
}
}
// Return the symbol range of the token at \p TokLoc.
std::pair<SymbolLocation::Position, SymbolLocation::Position>
getTokenRange(SourceLocation TokLoc, const SourceManager &SM,
const LangOptions &LangOpts) {
auto CreatePosition = [&SM](SourceLocation Loc) {
auto LSPLoc = sourceLocToPosition(SM, Loc);
SymbolLocation::Position Pos;
Pos.setLine(LSPLoc.line);
Pos.setColumn(LSPLoc.character);
return Pos;
};
auto TokenLength = clang::Lexer::MeasureTokenLength(TokLoc, SM, LangOpts);
return {CreatePosition(TokLoc),
CreatePosition(TokLoc.getLocWithOffset(TokenLength))};
}
// Return the symbol location of the token at \p TokLoc.
llvm::Optional<SymbolLocation>
getTokenLocation(SourceLocation TokLoc, const SourceManager &SM,
const SymbolCollector::Options &Opts,
const clang::LangOptions &LangOpts,
std::string &FileURIStorage) {
auto Path = SM.getFilename(TokLoc);
if (Path.empty())
return None;
FileURIStorage = toURI(SM, Path, Opts);
SymbolLocation Result;
Result.FileURI = FileURIStorage.c_str();
auto Range = getTokenRange(TokLoc, SM, LangOpts);
Result.Start = Range.first;
Result.End = Range.second;
return Result;
}
// Checks whether \p ND is a definition of a TagDecl (class/struct/enum/union)
// in a header file, in which case clangd would prefer to use ND as a canonical
// declaration.
// FIXME: handle symbol types that are not TagDecl (e.g. functions), if using
// the first seen declaration as canonical declaration is not a good enough
// heuristic.
bool isPreferredDeclaration(const NamedDecl &ND, index::SymbolRoleSet Roles) {
const auto &SM = ND.getASTContext().getSourceManager();
return (Roles & static_cast<unsigned>(index::SymbolRole::Definition)) &&
isa<TagDecl>(&ND) && !isInsideMainFile(ND.getLocation(), SM);
}
RefKind toRefKind(index::SymbolRoleSet Roles, bool Spelled = false) {
RefKind Result = RefKind::Unknown;
if (Roles & static_cast<unsigned>(index::SymbolRole::Declaration))
Result |= RefKind::Declaration;
if (Roles & static_cast<unsigned>(index::SymbolRole::Definition))
Result |= RefKind::Definition;
if (Roles & static_cast<unsigned>(index::SymbolRole::Reference))
Result |= RefKind::Reference;
if (Spelled)
Result |= RefKind::Spelled;
return Result;
}
bool shouldIndexRelation(const index::SymbolRelation &R) {
// We currently only index BaseOf relations, for type hierarchy subtypes.
return R.Roles & static_cast<unsigned>(index::SymbolRole::RelationBaseOf);
}
} // namespace
SymbolCollector::SymbolCollector(Options Opts) : Opts(std::move(Opts)) {}
void SymbolCollector::initialize(ASTContext &Ctx) {
ASTCtx = &Ctx;
CompletionAllocator = std::make_shared<GlobalCodeCompletionAllocator>();
CompletionTUInfo =
std::make_unique<CodeCompletionTUInfo>(CompletionAllocator);
}
bool SymbolCollector::shouldCollectSymbol(const NamedDecl &ND,
const ASTContext &ASTCtx,
const Options &Opts,
bool IsMainFileOnly) {
// Skip anonymous declarations, e.g (anonymous enum/class/struct).
if (ND.getDeclName().isEmpty())
return false;
// Skip main-file symbols if we are not collecting them.
if (IsMainFileOnly && !Opts.CollectMainFileSymbols)
return false;
// Skip symbols in anonymous namespaces in header files.
if (!IsMainFileOnly && ND.isInAnonymousNamespace())
return false;
// We want most things but not "local" symbols such as symbols inside
// FunctionDecl, BlockDecl, ObjCMethodDecl and OMPDeclareReductionDecl.
// FIXME: Need a matcher for ExportDecl in order to include symbols declared
// within an export.
const auto *DeclCtx = ND.getDeclContext();
switch (DeclCtx->getDeclKind()) {
case Decl::TranslationUnit:
case Decl::Namespace:
case Decl::LinkageSpec:
case Decl::Enum:
case Decl::ObjCProtocol:
case Decl::ObjCInterface:
case Decl::ObjCCategory:
case Decl::ObjCCategoryImpl:
case Decl::ObjCImplementation:
break;
default:
// Record has a few derivations (e.g. CXXRecord, Class specialization), it's
// easier to cast.
if (!isa<RecordDecl>(DeclCtx))
return false;
}
// Avoid indexing internal symbols in protobuf generated headers.
if (isPrivateProtoDecl(ND))
return false;
return true;
}
// Always return true to continue indexing.
bool SymbolCollector::handleDeclOccurrence(
const Decl *D, index::SymbolRoleSet Roles,
llvm::ArrayRef<index::SymbolRelation> Relations, SourceLocation Loc,
index::IndexDataConsumer::ASTNodeInfo ASTNode) {
assert(ASTCtx && PP.get() && "ASTContext and Preprocessor must be set.");
assert(CompletionAllocator && CompletionTUInfo);
assert(ASTNode.OrigD);
// Indexing API puts canonical decl into D, which might not have a valid
// source location for implicit/built-in decls. Fallback to original decl in
// such cases.
if (D->getLocation().isInvalid())
D = ASTNode.OrigD;
// If OrigD is an declaration associated with a friend declaration and it's
// not a definition, skip it. Note that OrigD is the occurrence that the
// collector is currently visiting.
if ((ASTNode.OrigD->getFriendObjectKind() !=
Decl::FriendObjectKind::FOK_None) &&
!(Roles & static_cast<unsigned>(index::SymbolRole::Definition)))
return true;
// A declaration created for a friend declaration should not be used as the
// canonical declaration in the index. Use OrigD instead, unless we've already
// picked a replacement for D
if (D->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None)
D = CanonicalDecls.try_emplace(D, ASTNode.OrigD).first->second;
const NamedDecl *ND = dyn_cast<NamedDecl>(D);
if (!ND)
return true;
// Mark D as referenced if this is a reference coming from the main file.
// D may not be an interesting symbol, but it's cheaper to check at the end.
auto &SM = ASTCtx->getSourceManager();
if (Opts.CountReferences &&
(Roles & static_cast<unsigned>(index::SymbolRole::Reference)) &&
SM.getFileID(SM.getSpellingLoc(Loc)) == SM.getMainFileID())
ReferencedDecls.insert(ND);
auto ID = getSymbolID(ND);
if (!ID)
return true;
// Note: we need to process relations for all decl occurrences, including
// refs, because the indexing code only populates relations for specific
// occurrences. For example, RelationBaseOf is only populated for the
// occurrence inside the base-specifier.
processRelations(*ND, *ID, Relations);
bool CollectRef = static_cast<bool>(Opts.RefFilter & toRefKind(Roles));
bool IsOnlyRef =
!(Roles & (static_cast<unsigned>(index::SymbolRole::Declaration) |
static_cast<unsigned>(index::SymbolRole::Definition)));
if (IsOnlyRef && !CollectRef)
return true;
// ND is the canonical (i.e. first) declaration. If it's in the main file
// (which is not a header), then no public declaration was visible, so assume
// it's main-file only.
bool IsMainFileOnly =
SM.isWrittenInMainFile(SM.getExpansionLoc(ND->getBeginLoc())) &&
!isHeaderFile(SM.getFileEntryForID(SM.getMainFileID())->getName(),
ASTCtx->getLangOpts());
// In C, printf is a redecl of an implicit builtin! So check OrigD instead.
if (ASTNode.OrigD->isImplicit() ||
!shouldCollectSymbol(*ND, *ASTCtx, Opts, IsMainFileOnly))
return true;
// Do not store references to main-file symbols.
// Unlike other fields, e.g. Symbols (which use spelling locations), we use
// file locations for references (as it aligns the behavior of clangd's
// AST-based xref).
// FIXME: we should try to use the file locations for other fields.
if (CollectRef && !IsMainFileOnly && !isa<NamespaceDecl>(ND) &&
(Opts.RefsInHeaders ||
SM.getFileID(SM.getFileLoc(Loc)) == SM.getMainFileID()))
DeclRefs[ND].emplace_back(SM.getFileLoc(Loc), Roles);
// Don't continue indexing if this is a mere reference.
if (IsOnlyRef)
return true;
// FIXME: ObjCPropertyDecl are not properly indexed here:
// - ObjCPropertyDecl may have an OrigD of ObjCPropertyImplDecl, which is
// not a NamedDecl.
auto *OriginalDecl = dyn_cast<NamedDecl>(ASTNode.OrigD);
if (!OriginalDecl)
return true;
const Symbol *BasicSymbol = Symbols.find(*ID);
if (!BasicSymbol) // Regardless of role, ND is the canonical declaration.
BasicSymbol = addDeclaration(*ND, std::move(*ID), IsMainFileOnly);
else if (isPreferredDeclaration(*OriginalDecl, Roles))
// If OriginalDecl is preferred, replace the existing canonical
// declaration (e.g. a class forward declaration). There should be at most
// one duplicate as we expect to see only one preferred declaration per
// TU, because in practice they are definitions.
BasicSymbol = addDeclaration(*OriginalDecl, std::move(*ID), IsMainFileOnly);
if (Roles & static_cast<unsigned>(index::SymbolRole::Definition))
addDefinition(*OriginalDecl, *BasicSymbol);
return true;
}
void SymbolCollector::handleMacros(const MainFileMacros &MacroRefsToIndex) {
assert(PP.get());
const auto &SM = PP->getSourceManager();
const auto *MainFileEntry = SM.getFileEntryForID(SM.getMainFileID());
assert(MainFileEntry);
const auto MainFileURI = toURI(SM, MainFileEntry->getName(), Opts);
// Add macro references.
for (const auto &IDToRefs : MacroRefsToIndex.MacroRefs) {
for (const auto &Range : IDToRefs.second) {
Ref R;
R.Location.Start.setLine(Range.start.line);
R.Location.Start.setColumn(Range.start.character);
R.Location.End.setLine(Range.end.line);
R.Location.End.setColumn(Range.end.character);
R.Location.FileURI = MainFileURI.c_str();
// FIXME: Add correct RefKind information to MainFileMacros.
R.Kind = RefKind::Reference;
Refs.insert(IDToRefs.first, R);
}
}
}
bool SymbolCollector::handleMacroOccurrence(const IdentifierInfo *Name,
const MacroInfo *MI,
index::SymbolRoleSet Roles,
SourceLocation Loc) {
assert(PP.get());
const auto &SM = PP->getSourceManager();
auto DefLoc = MI->getDefinitionLoc();
auto SpellingLoc = SM.getSpellingLoc(Loc);
bool IsMainFileSymbol = SM.isInMainFile(SM.getExpansionLoc(DefLoc));
// Builtin macros don't have useful locations and aren't needed in completion.
if (MI->isBuiltinMacro())
return true;
// Also avoid storing predefined macros like __DBL_MIN__.
if (SM.isWrittenInBuiltinFile(DefLoc))
return true;
auto ID = getSymbolID(Name->getName(), MI, SM);
if (!ID)
return true;
// Do not store references to main-file macros.
if ((static_cast<unsigned>(Opts.RefFilter) & Roles) && !IsMainFileSymbol &&
(Opts.RefsInHeaders || SM.getFileID(SpellingLoc) == SM.getMainFileID()))
MacroRefs[*ID].push_back({Loc, Roles});
// Collect symbols.
if (!Opts.CollectMacro)
return true;
// Skip main-file macros if we are not collecting them.
if (IsMainFileSymbol && !Opts.CollectMainFileSymbols)
return false;
// Mark the macro as referenced if this is a reference coming from the main
// file. The macro may not be an interesting symbol, but it's cheaper to check
// at the end.
if (Opts.CountReferences &&
(Roles & static_cast<unsigned>(index::SymbolRole::Reference)) &&
SM.getFileID(SpellingLoc) == SM.getMainFileID())
ReferencedMacros.insert(Name);
// Don't continue indexing if this is a mere reference.
// FIXME: remove macro with ID if it is undefined.
if (!(Roles & static_cast<unsigned>(index::SymbolRole::Declaration) ||
Roles & static_cast<unsigned>(index::SymbolRole::Definition)))
return true;
// Only collect one instance in case there are multiple.
if (Symbols.find(*ID) != nullptr)
return true;
Symbol S;
S.ID = std::move(*ID);
S.Name = Name->getName();
if (!IsMainFileSymbol) {
S.Flags |= Symbol::IndexedForCodeCompletion;
S.Flags |= Symbol::VisibleOutsideFile;
}
S.SymInfo = index::getSymbolInfoForMacro(*MI);
std::string FileURI;
// FIXME: use the result to filter out symbols.
shouldIndexFile(SM.getFileID(Loc));
if (auto DeclLoc =
getTokenLocation(DefLoc, SM, Opts, PP->getLangOpts(), FileURI))
S.CanonicalDeclaration = *DeclLoc;
CodeCompletionResult SymbolCompletion(Name);
const auto *CCS = SymbolCompletion.CreateCodeCompletionStringForMacro(
*PP, *CompletionAllocator, *CompletionTUInfo);
std::string Signature;
std::string SnippetSuffix;
getSignature(*CCS, &Signature, &SnippetSuffix);
S.Signature = Signature;
S.CompletionSnippetSuffix = SnippetSuffix;
IndexedMacros.insert(Name);
setIncludeLocation(S, DefLoc);
Symbols.insert(S);
return true;
}
void SymbolCollector::processRelations(
const NamedDecl &ND, const SymbolID &ID,
ArrayRef<index::SymbolRelation> Relations) {
// Store subtype relations.
if (!dyn_cast<TagDecl>(&ND))
return;
for (const auto &R : Relations) {
if (!shouldIndexRelation(R))
continue;
const Decl *Object = R.RelatedSymbol;
auto ObjectID = getSymbolID(Object);
if (!ObjectID)
continue;
// Record the relation.
// TODO: There may be cases where the object decl is not indexed for some
// reason. Those cases should probably be removed in due course, but for
// now there are two possible ways to handle it:
// (A) Avoid storing the relation in such cases.
// (B) Store it anyways. Clients will likely lookup() the SymbolID
// in the index and find nothing, but that's a situation they
// probably need to handle for other reasons anyways.
// We currently do (B) because it's simpler.
this->Relations.insert(Relation{ID, RelationKind::BaseOf, *ObjectID});
}
}
void SymbolCollector::setIncludeLocation(const Symbol &S, SourceLocation Loc) {
if (Opts.CollectIncludePath)
if (shouldCollectIncludePath(S.SymInfo.Kind))
// Use the expansion location to get the #include header since this is
// where the symbol is exposed.
IncludeFiles[S.ID] =
PP->getSourceManager().getDecomposedExpansionLoc(Loc).first;
}
void SymbolCollector::finish() {
// At the end of the TU, add 1 to the refcount of all referenced symbols.
auto IncRef = [this](const SymbolID &ID) {
if (const auto *S = Symbols.find(ID)) {
Symbol Inc = *S;
++Inc.References;
Symbols.insert(Inc);
}
};
for (const NamedDecl *ND : ReferencedDecls) {
if (auto ID = getSymbolID(ND)) {
IncRef(*ID);
}
}
if (Opts.CollectMacro) {
assert(PP);
// First, drop header guards. We can't identify these until EOF.
for (const IdentifierInfo *II : IndexedMacros) {
if (const auto *MI = PP->getMacroDefinition(II).getMacroInfo())
if (auto ID = getSymbolID(II->getName(), MI, PP->getSourceManager()))
if (MI->isUsedForHeaderGuard())
Symbols.erase(*ID);
}
// Now increment refcounts.
for (const IdentifierInfo *II : ReferencedMacros) {
if (const auto *MI = PP->getMacroDefinition(II).getMacroInfo())
if (auto ID = getSymbolID(II->getName(), MI, PP->getSourceManager()))
IncRef(*ID);
}
}
// Fill in IncludeHeaders.
// We delay this until end of TU so header guards are all resolved.
// Symbols in slabs aren' mutable, so insert() has to walk all the strings
// :-(
llvm::SmallString<256> QName;
for (const auto &Entry : IncludeFiles)
if (const Symbol *S = Symbols.find(Entry.first)) {
QName = S->Scope;
QName.append(S->Name);
if (auto Header = getIncludeHeader(QName, Entry.second)) {
Symbol NewSym = *S;
NewSym.IncludeHeaders.push_back({*Header, 1});
Symbols.insert(NewSym);
}
}
const auto &SM = ASTCtx->getSourceManager();
llvm::DenseMap<FileID, std::string> URICache;
auto GetURI = [&](FileID FID) -> llvm::Optional<std::string> {
auto Found = URICache.find(FID);
if (Found == URICache.end()) {
if (auto *FileEntry = SM.getFileEntryForID(FID)) {
auto FileURI = toURI(SM, FileEntry->getName(), Opts);
Found = URICache.insert({FID, FileURI}).first;
} else {
// Ignore cases where we can not find a corresponding file entry for
// given location, e.g. symbols formed via macro concatenation.
return None;
}
}
return Found->second;
};
auto CollectRef =
[&](SymbolID ID,
const std::pair<SourceLocation, index::SymbolRoleSet> &LocAndRole,
bool Spelled = false) {
auto FileID = SM.getFileID(LocAndRole.first);
// FIXME: use the result to filter out references.
shouldIndexFile(FileID);
if (auto FileURI = GetURI(FileID)) {
auto Range =
getTokenRange(LocAndRole.first, SM, ASTCtx->getLangOpts());
Ref R;
R.Location.Start = Range.first;
R.Location.End = Range.second;
R.Location.FileURI = FileURI->c_str();
R.Kind = toRefKind(LocAndRole.second, Spelled);
Refs.insert(ID, R);
}
};
// Populate Refs slab from MacroRefs.
// FIXME: All MacroRefs are marked as Spelled now, but this should be checked.
for (const auto &IDAndRefs : MacroRefs)
for (const auto &LocAndRole : IDAndRefs.second)
CollectRef(IDAndRefs.first, LocAndRole, /*Spelled=*/true);
// Populate Refs slab from DeclRefs.
llvm::DenseMap<FileID, std::vector<syntax::Token>> FilesToTokensCache;
for (auto &DeclAndRef : DeclRefs) {
if (auto ID = getSymbolID(DeclAndRef.first)) {
for (auto &LocAndRole : DeclAndRef.second) {
const auto FileID = SM.getFileID(LocAndRole.first);
// FIXME: It's better to use TokenBuffer by passing spelled tokens from
// the caller of SymbolCollector.
if (!FilesToTokensCache.count(FileID))
FilesToTokensCache[FileID] =
syntax::tokenize(FileID, SM, ASTCtx->getLangOpts());
llvm::ArrayRef<syntax::Token> Tokens = FilesToTokensCache[FileID];
// Check if the referenced symbol is spelled exactly the same way the
// corresponding NamedDecl is. If it is, mark this reference as spelled.
const auto *IdentifierToken =
spelledIdentifierTouching(LocAndRole.first, Tokens);
DeclarationName Name = DeclAndRef.first->getDeclName();
const auto NameKind = Name.getNameKind();
bool IsTargetKind = NameKind == DeclarationName::Identifier ||
NameKind == DeclarationName::CXXConstructorName;
bool Spelled = IdentifierToken && IsTargetKind &&
Name.getAsString() == IdentifierToken->text(SM);
CollectRef(*ID, LocAndRole, Spelled);
}
}
}
ReferencedDecls.clear();
ReferencedMacros.clear();
DeclRefs.clear();
FilesToIndexCache.clear();
HeaderIsSelfContainedCache.clear();
IncludeFiles.clear();
}
const Symbol *SymbolCollector::addDeclaration(const NamedDecl &ND, SymbolID ID,
bool IsMainFileOnly) {
auto &Ctx = ND.getASTContext();
auto &SM = Ctx.getSourceManager();
Symbol S;
S.ID = std::move(ID);
std::string QName = printQualifiedName(ND);
// FIXME: this returns foo:bar: for objective-C methods, we prefer only foo:
// for consistency with CodeCompletionString and a clean name/signature split.
std::tie(S.Scope, S.Name) = splitQualifiedName(QName);
std::string TemplateSpecializationArgs = printTemplateSpecializationArgs(ND);
S.TemplateSpecializationArgs = TemplateSpecializationArgs;
// We collect main-file symbols, but do not use them for code completion.
if (!IsMainFileOnly && isIndexedForCodeCompletion(ND, Ctx))
S.Flags |= Symbol::IndexedForCodeCompletion;
if (isImplementationDetail(&ND))
S.Flags |= Symbol::ImplementationDetail;
if (!IsMainFileOnly)
S.Flags |= Symbol::VisibleOutsideFile;
S.SymInfo = index::getSymbolInfo(&ND);
std::string FileURI;
auto Loc = nameLocation(ND, SM);
assert(Loc.isValid() && "Invalid source location for NamedDecl");
// FIXME: use the result to filter out symbols.
shouldIndexFile(SM.getFileID(Loc));
if (auto DeclLoc =
getTokenLocation(Loc, SM, Opts, ASTCtx->getLangOpts(), FileURI))
S.CanonicalDeclaration = *DeclLoc;
S.Origin = Opts.Origin;
if (ND.getAvailability() == AR_Deprecated)
S.Flags |= Symbol::Deprecated;
// Add completion info.
// FIXME: we may want to choose a different redecl, or combine from several.
assert(ASTCtx && PP.get() && "ASTContext and Preprocessor must be set.");
// We use the primary template, as clang does during code completion.
CodeCompletionResult SymbolCompletion(&getTemplateOrThis(ND), 0);
const auto *CCS = SymbolCompletion.CreateCodeCompletionString(
*ASTCtx, *PP, CodeCompletionContext::CCC_Symbol, *CompletionAllocator,
*CompletionTUInfo,
/*IncludeBriefComments*/ false);
std::string Documentation =
formatDocumentation(*CCS, getDocComment(Ctx, SymbolCompletion,
/*CommentsFromHeaders=*/true));
if (!(S.Flags & Symbol::IndexedForCodeCompletion)) {
if (Opts.StoreAllDocumentation)
S.Documentation = Documentation;
Symbols.insert(S);
return Symbols.find(S.ID);
}
S.Documentation = Documentation;
std::string Signature;
std::string SnippetSuffix;
getSignature(*CCS, &Signature, &SnippetSuffix);
S.Signature = Signature;
S.CompletionSnippetSuffix = SnippetSuffix;
std::string ReturnType = getReturnType(*CCS);
S.ReturnType = ReturnType;
llvm::Optional<OpaqueType> TypeStorage;
if (S.Flags & Symbol::IndexedForCodeCompletion) {
TypeStorage = OpaqueType::fromCompletionResult(*ASTCtx, SymbolCompletion);
if (TypeStorage)
S.Type = TypeStorage->raw();
}
Symbols.insert(S);
setIncludeLocation(S, ND.getLocation());
return Symbols.find(S.ID);
}
void SymbolCollector::addDefinition(const NamedDecl &ND,
const Symbol &DeclSym) {
if (DeclSym.Definition)
return;
// If we saw some forward declaration, we end up copying the symbol.
// This is not ideal, but avoids duplicating the "is this a definition" check
// in clang::index. We should only see one definition.
Symbol S = DeclSym;
std::string FileURI;
const auto &SM = ND.getASTContext().getSourceManager();
auto Loc = nameLocation(ND, SM);
// FIXME: use the result to filter out symbols.
shouldIndexFile(SM.getFileID(Loc));
if (auto DefLoc =
getTokenLocation(Loc, SM, Opts, ASTCtx->getLangOpts(), FileURI))
S.Definition = *DefLoc;
Symbols.insert(S);
}
/// Gets a canonical include (URI of the header or <header> or "header") for
/// header of \p FID (which should usually be the *expansion* file).
/// Returns None if includes should not be inserted for this file.
llvm::Optional<std::string>
SymbolCollector::getIncludeHeader(llvm::StringRef QName, FileID FID) {
const SourceManager &SM = ASTCtx->getSourceManager();
const FileEntry *FE = SM.getFileEntryForID(FID);
if (!FE || FE->getName().empty())
return llvm::None;
llvm::StringRef Filename = FE->getName();
// If a file is mapped by canonical headers, use that mapping, regardless
// of whether it's an otherwise-good header (header guards etc).
if (Opts.Includes) {
llvm::StringRef Canonical = Opts.Includes->mapHeader(Filename, QName);
// If we had a mapping, always use it.
if (Canonical.startswith("<") || Canonical.startswith("\""))
return Canonical.str();
if (Canonical != Filename)
return toURI(SM, Canonical, Opts);
}
if (!isSelfContainedHeader(FID)) {
// A .inc or .def file is often included into a real header to define
// symbols (e.g. LLVM tablegen files).
if (Filename.endswith(".inc") || Filename.endswith(".def"))
return getIncludeHeader(QName, SM.getFileID(SM.getIncludeLoc(FID)));
// Conservatively refuse to insert #includes to files without guards.
return llvm::None;
}
// Standard case: just insert the file itself.
return toURI(SM, Filename, Opts);
}
bool SymbolCollector::isSelfContainedHeader(FileID FID) {
// The real computation (which will be memoized).
auto Compute = [&] {
const SourceManager &SM = ASTCtx->getSourceManager();
const FileEntry *FE = SM.getFileEntryForID(FID);
if (!FE)
return false;
if (!PP->getHeaderSearchInfo().isFileMultipleIncludeGuarded(FE))
return false;
// This pattern indicates that a header can't be used without
// particular preprocessor state, usually set up by another header.
if (isDontIncludeMeHeader(SM.getBufferData(FID)))
return false;
return true;
};
auto R = HeaderIsSelfContainedCache.try_emplace(FID, false);
if (R.second)
R.first->second = Compute();
return R.first->second;
}
// Is Line an #if or #ifdef directive?
static bool isIf(llvm::StringRef Line) {
Line = Line.ltrim();
if (!Line.consume_front("#"))
return false;
Line = Line.ltrim();
return Line.startswith("if");
}
// Is Line an #error directive mentioning includes?
static bool isErrorAboutInclude(llvm::StringRef Line) {
Line = Line.ltrim();
if (!Line.consume_front("#"))
return false;
Line = Line.ltrim();
if (!Line.startswith("error"))
return false;
return Line.contains_lower("includ"); // Matches "include" or "including".
}
bool SymbolCollector::isDontIncludeMeHeader(llvm::StringRef Content) {
llvm::StringRef Line;
// Only sniff up to 100 lines or 10KB.
Content = Content.take_front(100 * 100);
for (unsigned I = 0; I < 100 && !Content.empty(); ++I) {
std::tie(Line, Content) = Content.split('\n');
if (isIf(Line) && isErrorAboutInclude(Content.split('\n').first))
return true;
}
return false;
}
bool SymbolCollector::shouldIndexFile(FileID FID) {
if (!Opts.FileFilter)
return true;
auto I = FilesToIndexCache.try_emplace(FID);
if (I.second)
I.first->second = Opts.FileFilter(ASTCtx->getSourceManager(), FID);
return I.first->second;
}
} // namespace clangd
} // namespace clang