forked from OSchip/llvm-project
350 lines
10 KiB
C++
350 lines
10 KiB
C++
#include "test_helpers.h"
|
|
#include "xray_segmented_array.h"
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
#include <algorithm>
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
namespace __xray {
|
|
namespace {
|
|
|
|
using ::testing::SizeIs;
|
|
|
|
struct TestData {
|
|
s64 First;
|
|
s64 Second;
|
|
|
|
// Need a constructor for emplace operations.
|
|
TestData(s64 F, s64 S) : First(F), Second(S) {}
|
|
};
|
|
|
|
void PrintTo(const TestData &D, std::ostream *OS) {
|
|
*OS << "{ " << D.First << ", " << D.Second << " }";
|
|
}
|
|
|
|
TEST(SegmentedArrayTest, ConstructWithAllocators) {
|
|
using AllocatorType = typename Array<TestData>::AllocatorType;
|
|
AllocatorType A(1 << 4);
|
|
Array<TestData> Data(A);
|
|
(void)Data;
|
|
}
|
|
|
|
TEST(SegmentedArrayTest, ConstructAndPopulate) {
|
|
using AllocatorType = typename Array<TestData>::AllocatorType;
|
|
AllocatorType A(1 << 4);
|
|
Array<TestData> data(A);
|
|
ASSERT_NE(data.Append(TestData{0, 0}), nullptr);
|
|
ASSERT_NE(data.Append(TestData{1, 1}), nullptr);
|
|
ASSERT_EQ(data.size(), 2u);
|
|
}
|
|
|
|
TEST(SegmentedArrayTest, ConstructPopulateAndLookup) {
|
|
using AllocatorType = typename Array<TestData>::AllocatorType;
|
|
AllocatorType A(1 << 4);
|
|
Array<TestData> data(A);
|
|
ASSERT_NE(data.Append(TestData{0, 1}), nullptr);
|
|
ASSERT_EQ(data.size(), 1u);
|
|
ASSERT_EQ(data[0].First, 0);
|
|
ASSERT_EQ(data[0].Second, 1);
|
|
}
|
|
|
|
TEST(SegmentedArrayTest, PopulateWithMoreElements) {
|
|
using AllocatorType = typename Array<TestData>::AllocatorType;
|
|
AllocatorType A(1 << 24);
|
|
Array<TestData> data(A);
|
|
static const auto kMaxElements = 100u;
|
|
for (auto I = 0u; I < kMaxElements; ++I) {
|
|
ASSERT_NE(data.Append(TestData{I, I + 1}), nullptr);
|
|
}
|
|
ASSERT_EQ(data.size(), kMaxElements);
|
|
for (auto I = 0u; I < kMaxElements; ++I) {
|
|
ASSERT_EQ(data[I].First, I);
|
|
ASSERT_EQ(data[I].Second, I + 1);
|
|
}
|
|
}
|
|
|
|
TEST(SegmentedArrayTest, AppendEmplace) {
|
|
using AllocatorType = typename Array<TestData>::AllocatorType;
|
|
AllocatorType A(1 << 4);
|
|
Array<TestData> data(A);
|
|
ASSERT_NE(data.AppendEmplace(1, 1), nullptr);
|
|
ASSERT_EQ(data[0].First, 1);
|
|
ASSERT_EQ(data[0].Second, 1);
|
|
}
|
|
|
|
TEST(SegmentedArrayTest, AppendAndTrim) {
|
|
using AllocatorType = typename Array<TestData>::AllocatorType;
|
|
AllocatorType A(1 << 4);
|
|
Array<TestData> data(A);
|
|
ASSERT_NE(data.AppendEmplace(1, 1), nullptr);
|
|
ASSERT_EQ(data.size(), 1u);
|
|
data.trim(1);
|
|
ASSERT_EQ(data.size(), 0u);
|
|
ASSERT_TRUE(data.empty());
|
|
}
|
|
|
|
TEST(SegmentedArrayTest, IteratorAdvance) {
|
|
using AllocatorType = typename Array<TestData>::AllocatorType;
|
|
AllocatorType A(1 << 4);
|
|
Array<TestData> data(A);
|
|
ASSERT_TRUE(data.empty());
|
|
ASSERT_EQ(data.begin(), data.end());
|
|
auto I0 = data.begin();
|
|
ASSERT_EQ(I0++, data.begin());
|
|
ASSERT_NE(I0, data.begin());
|
|
for (const auto &D : data) {
|
|
(void)D;
|
|
FAIL();
|
|
}
|
|
ASSERT_NE(data.AppendEmplace(1, 1), nullptr);
|
|
ASSERT_EQ(data.size(), 1u);
|
|
ASSERT_NE(data.begin(), data.end());
|
|
auto &D0 = *data.begin();
|
|
ASSERT_EQ(D0.First, 1);
|
|
ASSERT_EQ(D0.Second, 1);
|
|
}
|
|
|
|
TEST(SegmentedArrayTest, IteratorRetreat) {
|
|
using AllocatorType = typename Array<TestData>::AllocatorType;
|
|
AllocatorType A(1 << 4);
|
|
Array<TestData> data(A);
|
|
ASSERT_TRUE(data.empty());
|
|
ASSERT_EQ(data.begin(), data.end());
|
|
ASSERT_NE(data.AppendEmplace(1, 1), nullptr);
|
|
ASSERT_EQ(data.size(), 1u);
|
|
ASSERT_NE(data.begin(), data.end());
|
|
auto &D0 = *data.begin();
|
|
ASSERT_EQ(D0.First, 1);
|
|
ASSERT_EQ(D0.Second, 1);
|
|
|
|
auto I0 = data.end();
|
|
ASSERT_EQ(I0--, data.end());
|
|
ASSERT_NE(I0, data.end());
|
|
ASSERT_EQ(I0, data.begin());
|
|
ASSERT_EQ(I0->First, 1);
|
|
ASSERT_EQ(I0->Second, 1);
|
|
}
|
|
|
|
TEST(SegmentedArrayTest, IteratorTrimBehaviour) {
|
|
using AllocatorType = typename Array<TestData>::AllocatorType;
|
|
AllocatorType A(1 << 20);
|
|
Array<TestData> Data(A);
|
|
ASSERT_TRUE(Data.empty());
|
|
auto I0Begin = Data.begin(), I0End = Data.end();
|
|
// Add enough elements in Data to have more than one chunk.
|
|
constexpr auto Segment = Array<TestData>::SegmentSize;
|
|
constexpr auto SegmentX2 = Segment * 2;
|
|
for (auto i = SegmentX2; i > 0u; --i) {
|
|
Data.AppendEmplace(static_cast<s64>(i), static_cast<s64>(i));
|
|
}
|
|
ASSERT_EQ(Data.size(), SegmentX2);
|
|
{
|
|
auto &Back = Data.back();
|
|
ASSERT_EQ(Back.First, 1);
|
|
ASSERT_EQ(Back.Second, 1);
|
|
}
|
|
|
|
// Trim one chunk's elements worth.
|
|
Data.trim(Segment);
|
|
ASSERT_EQ(Data.size(), Segment);
|
|
|
|
// Check that we are still able to access 'back' properly.
|
|
{
|
|
auto &Back = Data.back();
|
|
ASSERT_EQ(Back.First, static_cast<s64>(Segment + 1));
|
|
ASSERT_EQ(Back.Second, static_cast<s64>(Segment + 1));
|
|
}
|
|
|
|
// Then trim until it's empty.
|
|
Data.trim(Segment);
|
|
ASSERT_TRUE(Data.empty());
|
|
|
|
// Here our iterators should be the same.
|
|
auto I1Begin = Data.begin(), I1End = Data.end();
|
|
EXPECT_EQ(I0Begin, I1Begin);
|
|
EXPECT_EQ(I0End, I1End);
|
|
|
|
// Then we ensure that adding elements back works just fine.
|
|
for (auto i = SegmentX2; i > 0u; --i) {
|
|
Data.AppendEmplace(static_cast<s64>(i), static_cast<s64>(i));
|
|
}
|
|
EXPECT_EQ(Data.size(), SegmentX2);
|
|
}
|
|
|
|
TEST(SegmentedArrayTest, HandleExhaustedAllocator) {
|
|
using AllocatorType = typename Array<TestData>::AllocatorType;
|
|
constexpr auto Segment = Array<TestData>::SegmentSize;
|
|
constexpr auto MaxElements = Array<TestData>::ElementsPerSegment;
|
|
AllocatorType A(Segment);
|
|
Array<TestData> Data(A);
|
|
for (auto i = MaxElements; i > 0u; --i)
|
|
EXPECT_NE(Data.AppendEmplace(static_cast<s64>(i), static_cast<s64>(i)),
|
|
nullptr);
|
|
EXPECT_EQ(Data.AppendEmplace(0, 0), nullptr);
|
|
EXPECT_THAT(Data, SizeIs(MaxElements));
|
|
|
|
// Trimming more elements than there are in the container should be fine.
|
|
Data.trim(MaxElements + 1);
|
|
EXPECT_THAT(Data, SizeIs(0u));
|
|
}
|
|
|
|
struct ShadowStackEntry {
|
|
uint64_t EntryTSC = 0;
|
|
uint64_t *NodePtr = nullptr;
|
|
ShadowStackEntry(uint64_t T, uint64_t *N) : EntryTSC(T), NodePtr(N) {}
|
|
};
|
|
|
|
TEST(SegmentedArrayTest, SimulateStackBehaviour) {
|
|
using AllocatorType = typename Array<ShadowStackEntry>::AllocatorType;
|
|
AllocatorType A(1 << 10);
|
|
Array<ShadowStackEntry> Data(A);
|
|
static uint64_t Dummy = 0;
|
|
constexpr uint64_t Max = 9;
|
|
|
|
for (uint64_t i = 0; i < Max; ++i) {
|
|
auto P = Data.Append({i, &Dummy});
|
|
ASSERT_NE(P, nullptr);
|
|
ASSERT_EQ(P->NodePtr, &Dummy);
|
|
auto &Back = Data.back();
|
|
ASSERT_EQ(Back.NodePtr, &Dummy);
|
|
ASSERT_EQ(Back.EntryTSC, i);
|
|
}
|
|
|
|
// Simulate a stack by checking the data from the end as we're trimming.
|
|
auto Counter = Max;
|
|
ASSERT_EQ(Data.size(), size_t(Max));
|
|
while (!Data.empty()) {
|
|
const auto &Top = Data.back();
|
|
uint64_t *TopNode = Top.NodePtr;
|
|
EXPECT_EQ(TopNode, &Dummy) << "Counter = " << Counter;
|
|
Data.trim(1);
|
|
--Counter;
|
|
ASSERT_EQ(Data.size(), size_t(Counter));
|
|
}
|
|
}
|
|
|
|
TEST(SegmentedArrayTest, PlacementNewOnAlignedStorage) {
|
|
using AllocatorType = typename Array<ShadowStackEntry>::AllocatorType;
|
|
typename std::aligned_storage<sizeof(AllocatorType),
|
|
alignof(AllocatorType)>::type AllocatorStorage;
|
|
new (&AllocatorStorage) AllocatorType(1 << 10);
|
|
auto *A = reinterpret_cast<AllocatorType *>(&AllocatorStorage);
|
|
typename std::aligned_storage<sizeof(Array<ShadowStackEntry>),
|
|
alignof(Array<ShadowStackEntry>)>::type
|
|
ArrayStorage;
|
|
new (&ArrayStorage) Array<ShadowStackEntry>(*A);
|
|
auto *Data = reinterpret_cast<Array<ShadowStackEntry> *>(&ArrayStorage);
|
|
|
|
static uint64_t Dummy = 0;
|
|
constexpr uint64_t Max = 9;
|
|
|
|
for (uint64_t i = 0; i < Max; ++i) {
|
|
auto P = Data->Append({i, &Dummy});
|
|
ASSERT_NE(P, nullptr);
|
|
ASSERT_EQ(P->NodePtr, &Dummy);
|
|
auto &Back = Data->back();
|
|
ASSERT_EQ(Back.NodePtr, &Dummy);
|
|
ASSERT_EQ(Back.EntryTSC, i);
|
|
}
|
|
|
|
// Simulate a stack by checking the data from the end as we're trimming.
|
|
auto Counter = Max;
|
|
ASSERT_EQ(Data->size(), size_t(Max));
|
|
while (!Data->empty()) {
|
|
const auto &Top = Data->back();
|
|
uint64_t *TopNode = Top.NodePtr;
|
|
EXPECT_EQ(TopNode, &Dummy) << "Counter = " << Counter;
|
|
Data->trim(1);
|
|
--Counter;
|
|
ASSERT_EQ(Data->size(), size_t(Counter));
|
|
}
|
|
|
|
// Once the stack is exhausted, we re-use the storage.
|
|
for (uint64_t i = 0; i < Max; ++i) {
|
|
auto P = Data->Append({i, &Dummy});
|
|
ASSERT_NE(P, nullptr);
|
|
ASSERT_EQ(P->NodePtr, &Dummy);
|
|
auto &Back = Data->back();
|
|
ASSERT_EQ(Back.NodePtr, &Dummy);
|
|
ASSERT_EQ(Back.EntryTSC, i);
|
|
}
|
|
|
|
// We re-initialize the storage, by calling the destructor and
|
|
// placement-new'ing again.
|
|
Data->~Array();
|
|
A->~AllocatorType();
|
|
new (A) AllocatorType(1 << 10);
|
|
new (Data) Array<ShadowStackEntry>(*A);
|
|
|
|
// Then re-do the test.
|
|
for (uint64_t i = 0; i < Max; ++i) {
|
|
auto P = Data->Append({i, &Dummy});
|
|
ASSERT_NE(P, nullptr);
|
|
ASSERT_EQ(P->NodePtr, &Dummy);
|
|
auto &Back = Data->back();
|
|
ASSERT_EQ(Back.NodePtr, &Dummy);
|
|
ASSERT_EQ(Back.EntryTSC, i);
|
|
}
|
|
|
|
// Simulate a stack by checking the data from the end as we're trimming.
|
|
Counter = Max;
|
|
ASSERT_EQ(Data->size(), size_t(Max));
|
|
while (!Data->empty()) {
|
|
const auto &Top = Data->back();
|
|
uint64_t *TopNode = Top.NodePtr;
|
|
EXPECT_EQ(TopNode, &Dummy) << "Counter = " << Counter;
|
|
Data->trim(1);
|
|
--Counter;
|
|
ASSERT_EQ(Data->size(), size_t(Counter));
|
|
}
|
|
|
|
// Once the stack is exhausted, we re-use the storage.
|
|
for (uint64_t i = 0; i < Max; ++i) {
|
|
auto P = Data->Append({i, &Dummy});
|
|
ASSERT_NE(P, nullptr);
|
|
ASSERT_EQ(P->NodePtr, &Dummy);
|
|
auto &Back = Data->back();
|
|
ASSERT_EQ(Back.NodePtr, &Dummy);
|
|
ASSERT_EQ(Back.EntryTSC, i);
|
|
}
|
|
}
|
|
|
|
TEST(SegmentedArrayTest, ArrayOfPointersIteratorAccess) {
|
|
using PtrArray = Array<int *>;
|
|
PtrArray::AllocatorType Alloc(16384);
|
|
Array<int *> A(Alloc);
|
|
static constexpr size_t Count = 100;
|
|
std::vector<int> Integers(Count);
|
|
std::iota(Integers.begin(), Integers.end(), 0);
|
|
for (auto &I : Integers)
|
|
ASSERT_NE(A.Append(&I), nullptr);
|
|
int V = 0;
|
|
ASSERT_EQ(A.size(), Count);
|
|
for (auto P : A) {
|
|
ASSERT_NE(P, nullptr);
|
|
ASSERT_EQ(*P, V++);
|
|
}
|
|
}
|
|
|
|
TEST(SegmentedArrayTest, ArrayOfPointersIteratorAccessExhaustion) {
|
|
using PtrArray = Array<int *>;
|
|
PtrArray::AllocatorType Alloc(4096);
|
|
Array<int *> A(Alloc);
|
|
static constexpr size_t Count = 1000;
|
|
std::vector<int> Integers(Count);
|
|
std::iota(Integers.begin(), Integers.end(), 0);
|
|
for (auto &I : Integers)
|
|
if (A.Append(&I) == nullptr)
|
|
break;
|
|
int V = 0;
|
|
ASSERT_LT(A.size(), Count);
|
|
for (auto P : A) {
|
|
ASSERT_NE(P, nullptr);
|
|
ASSERT_EQ(*P, V++);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace __xray
|