llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_dense_map.h

706 lines
23 KiB
C++

//===- sanitizer_dense_map.h - Dense probed hash table ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is fork of llvm/ADT/DenseMap.h class with the following changes:
// * Use mmap to allocate.
// * No iterators.
// * Does not shrink.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_DENSE_MAP_H
#define SANITIZER_DENSE_MAP_H
#include "sanitizer_common.h"
#include "sanitizer_dense_map_info.h"
#include "sanitizer_internal_defs.h"
#include "sanitizer_type_traits.h"
namespace __sanitizer {
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
typename BucketT>
class DenseMapBase {
public:
using size_type = unsigned;
using key_type = KeyT;
using mapped_type = ValueT;
using value_type = BucketT;
WARN_UNUSED_RESULT bool empty() const { return getNumEntries() == 0; }
unsigned size() const { return getNumEntries(); }
/// Grow the densemap so that it can contain at least \p NumEntries items
/// before resizing again.
void reserve(size_type NumEntries) {
auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
if (NumBuckets > getNumBuckets())
grow(NumBuckets);
}
void clear() {
if (getNumEntries() == 0 && getNumTombstones() == 0)
return;
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
if (__sanitizer::is_trivially_destructible<ValueT>::value) {
// Use a simpler loop when values don't need destruction.
for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P)
P->getFirst() = EmptyKey;
} else {
unsigned NumEntries = getNumEntries();
for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
P->getSecond().~ValueT();
--NumEntries;
}
P->getFirst() = EmptyKey;
}
}
CHECK_EQ(NumEntries, 0);
}
setNumEntries(0);
setNumTombstones(0);
}
/// Return 1 if the specified key is in the map, 0 otherwise.
size_type count(const KeyT &Key) const {
const BucketT *TheBucket;
return LookupBucketFor(Key, TheBucket) ? 1 : 0;
}
value_type *find(const KeyT &Key) {
BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return TheBucket;
return nullptr;
}
const value_type *find(const KeyT &Key) const {
const BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return TheBucket;
return nullptr;
}
/// Alternate version of find() which allows a different, and possibly
/// less expensive, key type.
/// The DenseMapInfo is responsible for supplying methods
/// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
/// type used.
template <class LookupKeyT>
value_type *find_as(const LookupKeyT &Key) {
BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return TheBucket;
return nullptr;
}
template <class LookupKeyT>
const value_type *find_as(const LookupKeyT &Key) const {
const BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return TheBucket;
return nullptr;
}
/// lookup - Return the entry for the specified key, or a default
/// constructed value if no such entry exists.
ValueT lookup(const KeyT &Key) const {
const BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return TheBucket->getSecond();
return ValueT();
}
// Inserts key,value pair into the map if the key isn't already in the map.
// If the key is already in the map, it returns false and doesn't update the
// value.
detail::DenseMapPair<value_type *, bool> insert(const value_type &KV) {
return try_emplace(KV.first, KV.second);
}
// Inserts key,value pair into the map if the key isn't already in the map.
// If the key is already in the map, it returns false and doesn't update the
// value.
detail::DenseMapPair<value_type *, bool> insert(value_type &&KV) {
return try_emplace(__sanitizer::move(KV.first),
__sanitizer::move(KV.second));
}
// Inserts key,value pair into the map if the key isn't already in the map.
// The value is constructed in-place if the key is not in the map, otherwise
// it is not moved.
template <typename... Ts>
detail::DenseMapPair<value_type *, bool> try_emplace(KeyT &&Key,
Ts &&...Args) {
BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return {TheBucket, false}; // Already in map.
// Otherwise, insert the new element.
TheBucket = InsertIntoBucket(TheBucket, __sanitizer::move(Key),
__sanitizer::forward<Ts>(Args)...);
return {TheBucket, true};
}
// Inserts key,value pair into the map if the key isn't already in the map.
// The value is constructed in-place if the key is not in the map, otherwise
// it is not moved.
template <typename... Ts>
detail::DenseMapPair<value_type *, bool> try_emplace(const KeyT &Key,
Ts &&...Args) {
BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return {TheBucket, false}; // Already in map.
// Otherwise, insert the new element.
TheBucket =
InsertIntoBucket(TheBucket, Key, __sanitizer::forward<Ts>(Args)...);
return {TheBucket, true};
}
/// Alternate version of insert() which allows a different, and possibly
/// less expensive, key type.
/// The DenseMapInfo is responsible for supplying methods
/// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
/// type used.
template <typename LookupKeyT>
detail::DenseMapPair<value_type *, bool> insert_as(value_type &&KV,
const LookupKeyT &Val) {
BucketT *TheBucket;
if (LookupBucketFor(Val, TheBucket))
return {TheBucket, false}; // Already in map.
// Otherwise, insert the new element.
TheBucket =
InsertIntoBucketWithLookup(TheBucket, __sanitizer::move(KV.first),
__sanitizer::move(KV.second), Val);
return {TheBucket, true};
}
bool erase(const KeyT &Val) {
BucketT *TheBucket;
if (!LookupBucketFor(Val, TheBucket))
return false; // not in map.
TheBucket->getSecond().~ValueT();
TheBucket->getFirst() = getTombstoneKey();
decrementNumEntries();
incrementNumTombstones();
return true;
}
void erase(value_type *I) {
CHECK_NE(I, nullptr);
BucketT *TheBucket = &*I;
TheBucket->getSecond().~ValueT();
TheBucket->getFirst() = getTombstoneKey();
decrementNumEntries();
incrementNumTombstones();
}
value_type &FindAndConstruct(const KeyT &Key) {
BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return *TheBucket;
return *InsertIntoBucket(TheBucket, Key);
}
ValueT &operator[](const KeyT &Key) { return FindAndConstruct(Key).second; }
value_type &FindAndConstruct(KeyT &&Key) {
BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return *TheBucket;
return *InsertIntoBucket(TheBucket, __sanitizer::move(Key));
}
ValueT &operator[](KeyT &&Key) {
return FindAndConstruct(__sanitizer::move(Key)).second;
}
/// Iterate over active entries of the container.
///
/// Function can return fast to stop the process.
template <class Fn>
void forEach(Fn fn) {
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
for (auto *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
const KeyT K = P->getFirst();
if (!KeyInfoT::isEqual(K, EmptyKey) &&
!KeyInfoT::isEqual(K, TombstoneKey)) {
if (!fn(*P))
return;
}
}
}
template <class Fn>
void forEach(Fn fn) const {
const_cast<DenseMapBase *>(this)->forEach(
[&](const value_type &KV) { return fn(KV); });
}
protected:
DenseMapBase() = default;
void destroyAll() {
if (getNumBuckets() == 0) // Nothing to do.
return;
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
!KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
P->getSecond().~ValueT();
P->getFirst().~KeyT();
}
}
void initEmpty() {
setNumEntries(0);
setNumTombstones(0);
CHECK_EQ((getNumBuckets() & (getNumBuckets() - 1)), 0);
const KeyT EmptyKey = getEmptyKey();
for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
::new (&B->getFirst()) KeyT(EmptyKey);
}
/// Returns the number of buckets to allocate to ensure that the DenseMap can
/// accommodate \p NumEntries without need to grow().
unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
// Ensure that "NumEntries * 4 < NumBuckets * 3"
if (NumEntries == 0)
return 0;
// +1 is required because of the strict equality.
// For example if NumEntries is 48, we need to return 401.
return RoundUpToPowerOfTwo((NumEntries * 4 / 3 + 1) + /* NextPowerOf2 */ 1);
}
void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
initEmpty();
// Insert all the old elements.
const KeyT EmptyKey = getEmptyKey();
const KeyT TombstoneKey = getTombstoneKey();
for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
!KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
// Insert the key/value into the new table.
BucketT *DestBucket;
bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
(void)FoundVal; // silence warning.
CHECK(!FoundVal);
DestBucket->getFirst() = __sanitizer::move(B->getFirst());
::new (&DestBucket->getSecond())
ValueT(__sanitizer::move(B->getSecond()));
incrementNumEntries();
// Free the value.
B->getSecond().~ValueT();
}
B->getFirst().~KeyT();
}
}
template <typename OtherBaseT>
void copyFrom(
const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
CHECK_NE(&other, this);
CHECK_EQ(getNumBuckets(), other.getNumBuckets());
setNumEntries(other.getNumEntries());
setNumTombstones(other.getNumTombstones());
if (__sanitizer::is_trivially_copyable<KeyT>::value &&
__sanitizer::is_trivially_copyable<ValueT>::value)
internal_memcpy(reinterpret_cast<void *>(getBuckets()),
other.getBuckets(), getNumBuckets() * sizeof(BucketT));
else
for (uptr i = 0; i < getNumBuckets(); ++i) {
::new (&getBuckets()[i].getFirst())
KeyT(other.getBuckets()[i].getFirst());
if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
::new (&getBuckets()[i].getSecond())
ValueT(other.getBuckets()[i].getSecond());
}
}
static unsigned getHashValue(const KeyT &Val) {
return KeyInfoT::getHashValue(Val);
}
template <typename LookupKeyT>
static unsigned getHashValue(const LookupKeyT &Val) {
return KeyInfoT::getHashValue(Val);
}
static const KeyT getEmptyKey() { return KeyInfoT::getEmptyKey(); }
static const KeyT getTombstoneKey() { return KeyInfoT::getTombstoneKey(); }
private:
unsigned getNumEntries() const {
return static_cast<const DerivedT *>(this)->getNumEntries();
}
void setNumEntries(unsigned Num) {
static_cast<DerivedT *>(this)->setNumEntries(Num);
}
void incrementNumEntries() { setNumEntries(getNumEntries() + 1); }
void decrementNumEntries() { setNumEntries(getNumEntries() - 1); }
unsigned getNumTombstones() const {
return static_cast<const DerivedT *>(this)->getNumTombstones();
}
void setNumTombstones(unsigned Num) {
static_cast<DerivedT *>(this)->setNumTombstones(Num);
}
void incrementNumTombstones() { setNumTombstones(getNumTombstones() + 1); }
void decrementNumTombstones() { setNumTombstones(getNumTombstones() - 1); }
const BucketT *getBuckets() const {
return static_cast<const DerivedT *>(this)->getBuckets();
}
BucketT *getBuckets() { return static_cast<DerivedT *>(this)->getBuckets(); }
unsigned getNumBuckets() const {
return static_cast<const DerivedT *>(this)->getNumBuckets();
}
BucketT *getBucketsEnd() { return getBuckets() + getNumBuckets(); }
const BucketT *getBucketsEnd() const {
return getBuckets() + getNumBuckets();
}
void grow(unsigned AtLeast) { static_cast<DerivedT *>(this)->grow(AtLeast); }
template <typename KeyArg, typename... ValueArgs>
BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
ValueArgs &&...Values) {
TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);
TheBucket->getFirst() = __sanitizer::forward<KeyArg>(Key);
::new (&TheBucket->getSecond())
ValueT(__sanitizer::forward<ValueArgs>(Values)...);
return TheBucket;
}
template <typename LookupKeyT>
BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
ValueT &&Value, LookupKeyT &Lookup) {
TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);
TheBucket->getFirst() = __sanitizer::move(Key);
::new (&TheBucket->getSecond()) ValueT(__sanitizer::move(Value));
return TheBucket;
}
template <typename LookupKeyT>
BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
BucketT *TheBucket) {
// If the load of the hash table is more than 3/4, or if fewer than 1/8 of
// the buckets are empty (meaning that many are filled with tombstones),
// grow the table.
//
// The later case is tricky. For example, if we had one empty bucket with
// tons of tombstones, failing lookups (e.g. for insertion) would have to
// probe almost the entire table until it found the empty bucket. If the
// table completely filled with tombstones, no lookup would ever succeed,
// causing infinite loops in lookup.
unsigned NewNumEntries = getNumEntries() + 1;
unsigned NumBuckets = getNumBuckets();
if (UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
this->grow(NumBuckets * 2);
LookupBucketFor(Lookup, TheBucket);
NumBuckets = getNumBuckets();
} else if (UNLIKELY(NumBuckets - (NewNumEntries + getNumTombstones()) <=
NumBuckets / 8)) {
this->grow(NumBuckets);
LookupBucketFor(Lookup, TheBucket);
}
CHECK(TheBucket);
// Only update the state after we've grown our bucket space appropriately
// so that when growing buckets we have self-consistent entry count.
incrementNumEntries();
// If we are writing over a tombstone, remember this.
const KeyT EmptyKey = getEmptyKey();
if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
decrementNumTombstones();
return TheBucket;
}
/// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
/// FoundBucket. If the bucket contains the key and a value, this returns
/// true, otherwise it returns a bucket with an empty marker or tombstone and
/// returns false.
template <typename LookupKeyT>
bool LookupBucketFor(const LookupKeyT &Val,
const BucketT *&FoundBucket) const {
const BucketT *BucketsPtr = getBuckets();
const unsigned NumBuckets = getNumBuckets();
if (NumBuckets == 0) {
FoundBucket = nullptr;
return false;
}
// FoundTombstone - Keep track of whether we find a tombstone while probing.
const BucketT *FoundTombstone = nullptr;
const KeyT EmptyKey = getEmptyKey();
const KeyT TombstoneKey = getTombstoneKey();
CHECK(!KeyInfoT::isEqual(Val, EmptyKey));
CHECK(!KeyInfoT::isEqual(Val, TombstoneKey));
unsigned BucketNo = getHashValue(Val) & (NumBuckets - 1);
unsigned ProbeAmt = 1;
while (true) {
const BucketT *ThisBucket = BucketsPtr + BucketNo;
// Found Val's bucket? If so, return it.
if (LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
FoundBucket = ThisBucket;
return true;
}
// If we found an empty bucket, the key doesn't exist in the set.
// Insert it and return the default value.
if (LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
// If we've already seen a tombstone while probing, fill it in instead
// of the empty bucket we eventually probed to.
FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
return false;
}
// If this is a tombstone, remember it. If Val ends up not in the map, we
// prefer to return it than something that would require more probing.
if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
!FoundTombstone)
FoundTombstone = ThisBucket; // Remember the first tombstone found.
// Otherwise, it's a hash collision or a tombstone, continue quadratic
// probing.
BucketNo += ProbeAmt++;
BucketNo &= (NumBuckets - 1);
}
}
template <typename LookupKeyT>
bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
const BucketT *ConstFoundBucket;
bool Result = const_cast<const DenseMapBase *>(this)->LookupBucketFor(
Val, ConstFoundBucket);
FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
return Result;
}
public:
/// Return the approximate size (in bytes) of the actual map.
/// This is just the raw memory used by DenseMap.
/// If entries are pointers to objects, the size of the referenced objects
/// are not included.
uptr getMemorySize() const {
return RoundUpTo(getNumBuckets() * sizeof(BucketT), GetPageSizeCached());
}
};
/// Equality comparison for DenseMap.
///
/// Iterates over elements of LHS confirming that each (key, value) pair in LHS
/// is also in RHS, and that no additional pairs are in RHS.
/// Equivalent to N calls to RHS.find and N value comparisons. Amortized
/// complexity is linear, worst case is O(N^2) (if every hash collides).
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
typename BucketT>
bool operator==(
const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
if (LHS.size() != RHS.size())
return false;
bool R = true;
LHS.forEach(
[&](const typename DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT,
BucketT>::value_type &KV) -> bool {
const auto *I = RHS.find(KV.first);
if (!I || I->second != KV.second) {
R = false;
return false;
}
return true;
});
return R;
}
/// Inequality comparison for DenseMap.
///
/// Equivalent to !(LHS == RHS). See operator== for performance notes.
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
typename BucketT>
bool operator!=(
const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
return !(LHS == RHS);
}
template <typename KeyT, typename ValueT,
typename KeyInfoT = DenseMapInfo<KeyT>,
typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
KeyT, ValueT, KeyInfoT, BucketT> {
friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
// Lift some types from the dependent base class into this class for
// simplicity of referring to them.
using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
BucketT *Buckets = nullptr;
unsigned NumEntries = 0;
unsigned NumTombstones = 0;
unsigned NumBuckets = 0;
public:
/// Create a DenseMap with an optional \p InitialReserve that guarantee that
/// this number of elements can be inserted in the map without grow()
explicit DenseMap(unsigned InitialReserve) { init(InitialReserve); }
constexpr DenseMap() = default;
DenseMap(const DenseMap &other) : BaseT() {
init(0);
copyFrom(other);
}
DenseMap(DenseMap &&other) : BaseT() {
init(0);
swap(other);
}
~DenseMap() {
this->destroyAll();
deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets);
}
void swap(DenseMap &RHS) {
Swap(Buckets, RHS.Buckets);
Swap(NumEntries, RHS.NumEntries);
Swap(NumTombstones, RHS.NumTombstones);
Swap(NumBuckets, RHS.NumBuckets);
}
DenseMap &operator=(const DenseMap &other) {
if (&other != this)
copyFrom(other);
return *this;
}
DenseMap &operator=(DenseMap &&other) {
this->destroyAll();
deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
init(0);
swap(other);
return *this;
}
void copyFrom(const DenseMap &other) {
this->destroyAll();
deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets);
if (allocateBuckets(other.NumBuckets)) {
this->BaseT::copyFrom(other);
} else {
NumEntries = 0;
NumTombstones = 0;
}
}
void init(unsigned InitNumEntries) {
auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
if (allocateBuckets(InitBuckets)) {
this->BaseT::initEmpty();
} else {
NumEntries = 0;
NumTombstones = 0;
}
}
void grow(unsigned AtLeast) {
unsigned OldNumBuckets = NumBuckets;
BucketT *OldBuckets = Buckets;
allocateBuckets(RoundUpToPowerOfTwo(Max<unsigned>(64, AtLeast)));
CHECK(Buckets);
if (!OldBuckets) {
this->BaseT::initEmpty();
return;
}
this->moveFromOldBuckets(OldBuckets, OldBuckets + OldNumBuckets);
// Free the old table.
deallocate_buffer(OldBuckets, sizeof(BucketT) * OldNumBuckets);
}
private:
unsigned getNumEntries() const { return NumEntries; }
void setNumEntries(unsigned Num) { NumEntries = Num; }
unsigned getNumTombstones() const { return NumTombstones; }
void setNumTombstones(unsigned Num) { NumTombstones = Num; }
BucketT *getBuckets() const { return Buckets; }
unsigned getNumBuckets() const { return NumBuckets; }
bool allocateBuckets(unsigned Num) {
NumBuckets = Num;
if (NumBuckets == 0) {
Buckets = nullptr;
return false;
}
uptr Size = sizeof(BucketT) * NumBuckets;
if (Size * 2 <= GetPageSizeCached()) {
// We always allocate at least a page, so use entire space.
unsigned Log2 = MostSignificantSetBitIndex(GetPageSizeCached() / Size);
Size <<= Log2;
NumBuckets <<= Log2;
CHECK_EQ(Size, sizeof(BucketT) * NumBuckets);
CHECK_GT(Size * 2, GetPageSizeCached());
}
Buckets = static_cast<BucketT *>(allocate_buffer(Size));
return true;
}
static void *allocate_buffer(uptr Size) {
return MmapOrDie(RoundUpTo(Size, GetPageSizeCached()), "DenseMap");
}
static void deallocate_buffer(void *Ptr, uptr Size) {
UnmapOrDie(Ptr, RoundUpTo(Size, GetPageSizeCached()));
}
};
} // namespace __sanitizer
#endif // SANITIZER_DENSE_MAP_H