llvm-project/clang/lib/Parse/ParseExprCXX.cpp

4046 lines
147 KiB
C++

//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expression parsing implementation for C++.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Basic/PrettyStackTrace.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/Parser.h"
#include "clang/Parse/RAIIObjectsForParser.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Scope.h"
#include "llvm/Support/ErrorHandling.h"
#include <numeric>
using namespace clang;
static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
switch (Kind) {
// template name
case tok::unknown: return 0;
// casts
case tok::kw_addrspace_cast: return 1;
case tok::kw_const_cast: return 2;
case tok::kw_dynamic_cast: return 3;
case tok::kw_reinterpret_cast: return 4;
case tok::kw_static_cast: return 5;
default:
llvm_unreachable("Unknown type for digraph error message.");
}
}
// Are the two tokens adjacent in the same source file?
bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
SourceManager &SM = PP.getSourceManager();
SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
return FirstEnd == SM.getSpellingLoc(Second.getLocation());
}
// Suggest fixit for "<::" after a cast.
static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
// Pull '<:' and ':' off token stream.
if (!AtDigraph)
PP.Lex(DigraphToken);
PP.Lex(ColonToken);
SourceRange Range;
Range.setBegin(DigraphToken.getLocation());
Range.setEnd(ColonToken.getLocation());
P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
<< SelectDigraphErrorMessage(Kind)
<< FixItHint::CreateReplacement(Range, "< ::");
// Update token information to reflect their change in token type.
ColonToken.setKind(tok::coloncolon);
ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
ColonToken.setLength(2);
DigraphToken.setKind(tok::less);
DigraphToken.setLength(1);
// Push new tokens back to token stream.
PP.EnterToken(ColonToken, /*IsReinject*/ true);
if (!AtDigraph)
PP.EnterToken(DigraphToken, /*IsReinject*/ true);
}
// Check for '<::' which should be '< ::' instead of '[:' when following
// a template name.
void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
bool EnteringContext,
IdentifierInfo &II, CXXScopeSpec &SS) {
if (!Next.is(tok::l_square) || Next.getLength() != 2)
return;
Token SecondToken = GetLookAheadToken(2);
if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
return;
TemplateTy Template;
UnqualifiedId TemplateName;
TemplateName.setIdentifier(&II, Tok.getLocation());
bool MemberOfUnknownSpecialization;
if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
TemplateName, ObjectType, EnteringContext,
Template, MemberOfUnknownSpecialization))
return;
FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
/*AtDigraph*/false);
}
/// Parse global scope or nested-name-specifier if present.
///
/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
/// may be preceded by '::'). Note that this routine will not parse ::new or
/// ::delete; it will just leave them in the token stream.
///
/// '::'[opt] nested-name-specifier
/// '::'
///
/// nested-name-specifier:
/// type-name '::'
/// namespace-name '::'
/// nested-name-specifier identifier '::'
/// nested-name-specifier 'template'[opt] simple-template-id '::'
///
///
/// \param SS the scope specifier that will be set to the parsed
/// nested-name-specifier (or empty)
///
/// \param ObjectType if this nested-name-specifier is being parsed following
/// the "." or "->" of a member access expression, this parameter provides the
/// type of the object whose members are being accessed.
///
/// \param ObjectHadErrors if this unqualified-id occurs within a member access
/// expression, indicates whether the original subexpressions had any errors.
/// When true, diagnostics for missing 'template' keyword will be supressed.
///
/// \param EnteringContext whether we will be entering into the context of
/// the nested-name-specifier after parsing it.
///
/// \param MayBePseudoDestructor When non-NULL, points to a flag that
/// indicates whether this nested-name-specifier may be part of a
/// pseudo-destructor name. In this case, the flag will be set false
/// if we don't actually end up parsing a destructor name. Moreover,
/// if we do end up determining that we are parsing a destructor name,
/// the last component of the nested-name-specifier is not parsed as
/// part of the scope specifier.
///
/// \param IsTypename If \c true, this nested-name-specifier is known to be
/// part of a type name. This is used to improve error recovery.
///
/// \param LastII When non-NULL, points to an IdentifierInfo* that will be
/// filled in with the leading identifier in the last component of the
/// nested-name-specifier, if any.
///
/// \param OnlyNamespace If true, only considers namespaces in lookup.
///
///
/// \returns true if there was an error parsing a scope specifier
bool Parser::ParseOptionalCXXScopeSpecifier(
CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
bool EnteringContext, bool *MayBePseudoDestructor, bool IsTypename,
IdentifierInfo **LastII, bool OnlyNamespace, bool InUsingDeclaration) {
assert(getLangOpts().CPlusPlus &&
"Call sites of this function should be guarded by checking for C++");
if (Tok.is(tok::annot_cxxscope)) {
assert(!LastII && "want last identifier but have already annotated scope");
assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
Tok.getAnnotationRange(),
SS);
ConsumeAnnotationToken();
return false;
}
// Has to happen before any "return false"s in this function.
bool CheckForDestructor = false;
if (MayBePseudoDestructor && *MayBePseudoDestructor) {
CheckForDestructor = true;
*MayBePseudoDestructor = false;
}
if (LastII)
*LastII = nullptr;
bool HasScopeSpecifier = false;
if (Tok.is(tok::coloncolon)) {
// ::new and ::delete aren't nested-name-specifiers.
tok::TokenKind NextKind = NextToken().getKind();
if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
return false;
if (NextKind == tok::l_brace) {
// It is invalid to have :: {, consume the scope qualifier and pretend
// like we never saw it.
Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
} else {
// '::' - Global scope qualifier.
if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
return true;
HasScopeSpecifier = true;
}
}
if (Tok.is(tok::kw___super)) {
SourceLocation SuperLoc = ConsumeToken();
if (!Tok.is(tok::coloncolon)) {
Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
return true;
}
return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
}
if (!HasScopeSpecifier &&
Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
DeclSpec DS(AttrFactory);
SourceLocation DeclLoc = Tok.getLocation();
SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
SourceLocation CCLoc;
// Work around a standard defect: 'decltype(auto)::' is not a
// nested-name-specifier.
if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto ||
!TryConsumeToken(tok::coloncolon, CCLoc)) {
AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
return false;
}
if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
HasScopeSpecifier = true;
}
// Preferred type might change when parsing qualifiers, we need the original.
auto SavedType = PreferredType;
while (true) {
if (HasScopeSpecifier) {
if (Tok.is(tok::code_completion)) {
cutOffParsing();
// Code completion for a nested-name-specifier, where the code
// completion token follows the '::'.
Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext,
InUsingDeclaration, ObjectType.get(),
SavedType.get(SS.getBeginLoc()));
// Include code completion token into the range of the scope otherwise
// when we try to annotate the scope tokens the dangling code completion
// token will cause assertion in
// Preprocessor::AnnotatePreviousCachedTokens.
SS.setEndLoc(Tok.getLocation());
return true;
}
// C++ [basic.lookup.classref]p5:
// If the qualified-id has the form
//
// ::class-name-or-namespace-name::...
//
// the class-name-or-namespace-name is looked up in global scope as a
// class-name or namespace-name.
//
// To implement this, we clear out the object type as soon as we've
// seen a leading '::' or part of a nested-name-specifier.
ObjectType = nullptr;
}
// nested-name-specifier:
// nested-name-specifier 'template'[opt] simple-template-id '::'
// Parse the optional 'template' keyword, then make sure we have
// 'identifier <' after it.
if (Tok.is(tok::kw_template)) {
// If we don't have a scope specifier or an object type, this isn't a
// nested-name-specifier, since they aren't allowed to start with
// 'template'.
if (!HasScopeSpecifier && !ObjectType)
break;
TentativeParsingAction TPA(*this);
SourceLocation TemplateKWLoc = ConsumeToken();
UnqualifiedId TemplateName;
if (Tok.is(tok::identifier)) {
// Consume the identifier.
TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
ConsumeToken();
} else if (Tok.is(tok::kw_operator)) {
// We don't need to actually parse the unqualified-id in this case,
// because a simple-template-id cannot start with 'operator', but
// go ahead and parse it anyway for consistency with the case where
// we already annotated the template-id.
if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
TemplateName)) {
TPA.Commit();
break;
}
if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId &&
TemplateName.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId) {
Diag(TemplateName.getSourceRange().getBegin(),
diag::err_id_after_template_in_nested_name_spec)
<< TemplateName.getSourceRange();
TPA.Commit();
break;
}
} else {
TPA.Revert();
break;
}
// If the next token is not '<', we have a qualified-id that refers
// to a template name, such as T::template apply, but is not a
// template-id.
if (Tok.isNot(tok::less)) {
TPA.Revert();
break;
}
// Commit to parsing the template-id.
TPA.Commit();
TemplateTy Template;
TemplateNameKind TNK = Actions.ActOnTemplateName(
getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
EnteringContext, Template, /*AllowInjectedClassName*/ true);
if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
TemplateName, false))
return true;
continue;
}
if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
// We have
//
// template-id '::'
//
// So we need to check whether the template-id is a simple-template-id of
// the right kind (it should name a type or be dependent), and then
// convert it into a type within the nested-name-specifier.
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
*MayBePseudoDestructor = true;
return false;
}
if (LastII)
*LastII = TemplateId->Name;
// Consume the template-id token.
ConsumeAnnotationToken();
assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
SourceLocation CCLoc = ConsumeToken();
HasScopeSpecifier = true;
ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
TemplateId->NumArgs);
if (TemplateId->isInvalid() ||
Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
SS,
TemplateId->TemplateKWLoc,
TemplateId->Template,
TemplateId->TemplateNameLoc,
TemplateId->LAngleLoc,
TemplateArgsPtr,
TemplateId->RAngleLoc,
CCLoc,
EnteringContext)) {
SourceLocation StartLoc
= SS.getBeginLoc().isValid()? SS.getBeginLoc()
: TemplateId->TemplateNameLoc;
SS.SetInvalid(SourceRange(StartLoc, CCLoc));
}
continue;
}
// The rest of the nested-name-specifier possibilities start with
// tok::identifier.
if (Tok.isNot(tok::identifier))
break;
IdentifierInfo &II = *Tok.getIdentifierInfo();
// nested-name-specifier:
// type-name '::'
// namespace-name '::'
// nested-name-specifier identifier '::'
Token Next = NextToken();
Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(),
ObjectType);
// If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
// and emit a fixit hint for it.
if (Next.is(tok::colon) && !ColonIsSacred) {
if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, IdInfo,
EnteringContext) &&
// If the token after the colon isn't an identifier, it's still an
// error, but they probably meant something else strange so don't
// recover like this.
PP.LookAhead(1).is(tok::identifier)) {
Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
<< FixItHint::CreateReplacement(Next.getLocation(), "::");
// Recover as if the user wrote '::'.
Next.setKind(tok::coloncolon);
}
}
if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
// It is invalid to have :: {, consume the scope qualifier and pretend
// like we never saw it.
Token Identifier = Tok; // Stash away the identifier.
ConsumeToken(); // Eat the identifier, current token is now '::'.
Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
<< tok::identifier;
UnconsumeToken(Identifier); // Stick the identifier back.
Next = NextToken(); // Point Next at the '{' token.
}
if (Next.is(tok::coloncolon)) {
if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
*MayBePseudoDestructor = true;
return false;
}
if (ColonIsSacred) {
const Token &Next2 = GetLookAheadToken(2);
if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
<< Next2.getName()
<< FixItHint::CreateReplacement(Next.getLocation(), ":");
Token ColonColon;
PP.Lex(ColonColon);
ColonColon.setKind(tok::colon);
PP.EnterToken(ColonColon, /*IsReinject*/ true);
break;
}
}
if (LastII)
*LastII = &II;
// We have an identifier followed by a '::'. Lookup this name
// as the name in a nested-name-specifier.
Token Identifier = Tok;
SourceLocation IdLoc = ConsumeToken();
assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
"NextToken() not working properly!");
Token ColonColon = Tok;
SourceLocation CCLoc = ConsumeToken();
bool IsCorrectedToColon = false;
bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
if (Actions.ActOnCXXNestedNameSpecifier(
getCurScope(), IdInfo, EnteringContext, SS, false,
CorrectionFlagPtr, OnlyNamespace)) {
// Identifier is not recognized as a nested name, but we can have
// mistyped '::' instead of ':'.
if (CorrectionFlagPtr && IsCorrectedToColon) {
ColonColon.setKind(tok::colon);
PP.EnterToken(Tok, /*IsReinject*/ true);
PP.EnterToken(ColonColon, /*IsReinject*/ true);
Tok = Identifier;
break;
}
SS.SetInvalid(SourceRange(IdLoc, CCLoc));
}
HasScopeSpecifier = true;
continue;
}
CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
// nested-name-specifier:
// type-name '<'
if (Next.is(tok::less)) {
TemplateTy Template;
UnqualifiedId TemplateName;
TemplateName.setIdentifier(&II, Tok.getLocation());
bool MemberOfUnknownSpecialization;
if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
/*hasTemplateKeyword=*/false,
TemplateName,
ObjectType,
EnteringContext,
Template,
MemberOfUnknownSpecialization)) {
// If lookup didn't find anything, we treat the name as a template-name
// anyway. C++20 requires this, and in prior language modes it improves
// error recovery. But before we commit to this, check that we actually
// have something that looks like a template-argument-list next.
if (!IsTypename && TNK == TNK_Undeclared_template &&
isTemplateArgumentList(1) == TPResult::False)
break;
// We have found a template name, so annotate this token
// with a template-id annotation. We do not permit the
// template-id to be translated into a type annotation,
// because some clients (e.g., the parsing of class template
// specializations) still want to see the original template-id
// token, and it might not be a type at all (e.g. a concept name in a
// type-constraint).
ConsumeToken();
if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
TemplateName, false))
return true;
continue;
}
if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
(IsTypename || isTemplateArgumentList(1) == TPResult::True)) {
// If we had errors before, ObjectType can be dependent even without any
// templates. Do not report missing template keyword in that case.
if (!ObjectHadErrors) {
// We have something like t::getAs<T>, where getAs is a
// member of an unknown specialization. However, this will only
// parse correctly as a template, so suggest the keyword 'template'
// before 'getAs' and treat this as a dependent template name.
unsigned DiagID = diag::err_missing_dependent_template_keyword;
if (getLangOpts().MicrosoftExt)
DiagID = diag::warn_missing_dependent_template_keyword;
Diag(Tok.getLocation(), DiagID)
<< II.getName()
<< FixItHint::CreateInsertion(Tok.getLocation(), "template ");
}
SourceLocation TemplateNameLoc = ConsumeToken();
TemplateNameKind TNK = Actions.ActOnTemplateName(
getCurScope(), SS, TemplateNameLoc, TemplateName, ObjectType,
EnteringContext, Template, /*AllowInjectedClassName*/ true);
if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
TemplateName, false))
return true;
continue;
}
}
// We don't have any tokens that form the beginning of a
// nested-name-specifier, so we're done.
break;
}
// Even if we didn't see any pieces of a nested-name-specifier, we
// still check whether there is a tilde in this position, which
// indicates a potential pseudo-destructor.
if (CheckForDestructor && !HasScopeSpecifier && Tok.is(tok::tilde))
*MayBePseudoDestructor = true;
return false;
}
ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS,
bool isAddressOfOperand,
Token &Replacement) {
ExprResult E;
// We may have already annotated this id-expression.
switch (Tok.getKind()) {
case tok::annot_non_type: {
NamedDecl *ND = getNonTypeAnnotation(Tok);
SourceLocation Loc = ConsumeAnnotationToken();
E = Actions.ActOnNameClassifiedAsNonType(getCurScope(), SS, ND, Loc, Tok);
break;
}
case tok::annot_non_type_dependent: {
IdentifierInfo *II = getIdentifierAnnotation(Tok);
SourceLocation Loc = ConsumeAnnotationToken();
// This is only the direct operand of an & operator if it is not
// followed by a postfix-expression suffix.
if (isAddressOfOperand && isPostfixExpressionSuffixStart())
isAddressOfOperand = false;
E = Actions.ActOnNameClassifiedAsDependentNonType(SS, II, Loc,
isAddressOfOperand);
break;
}
case tok::annot_non_type_undeclared: {
assert(SS.isEmpty() &&
"undeclared non-type annotation should be unqualified");
IdentifierInfo *II = getIdentifierAnnotation(Tok);
SourceLocation Loc = ConsumeAnnotationToken();
E = Actions.ActOnNameClassifiedAsUndeclaredNonType(II, Loc);
break;
}
default:
SourceLocation TemplateKWLoc;
UnqualifiedId Name;
if (ParseUnqualifiedId(SS, /*ObjectType=*/nullptr,
/*ObjectHadErrors=*/false,
/*EnteringContext=*/false,
/*AllowDestructorName=*/false,
/*AllowConstructorName=*/false,
/*AllowDeductionGuide=*/false, &TemplateKWLoc, Name))
return ExprError();
// This is only the direct operand of an & operator if it is not
// followed by a postfix-expression suffix.
if (isAddressOfOperand && isPostfixExpressionSuffixStart())
isAddressOfOperand = false;
E = Actions.ActOnIdExpression(
getCurScope(), SS, TemplateKWLoc, Name, Tok.is(tok::l_paren),
isAddressOfOperand, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false,
&Replacement);
break;
}
if (!E.isInvalid() && !E.isUnset() && Tok.is(tok::less))
checkPotentialAngleBracket(E);
return E;
}
/// ParseCXXIdExpression - Handle id-expression.
///
/// id-expression:
/// unqualified-id
/// qualified-id
///
/// qualified-id:
/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
/// '::' identifier
/// '::' operator-function-id
/// '::' template-id
///
/// NOTE: The standard specifies that, for qualified-id, the parser does not
/// expect:
///
/// '::' conversion-function-id
/// '::' '~' class-name
///
/// This may cause a slight inconsistency on diagnostics:
///
/// class C {};
/// namespace A {}
/// void f() {
/// :: A :: ~ C(); // Some Sema error about using destructor with a
/// // namespace.
/// :: ~ C(); // Some Parser error like 'unexpected ~'.
/// }
///
/// We simplify the parser a bit and make it work like:
///
/// qualified-id:
/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
/// '::' unqualified-id
///
/// That way Sema can handle and report similar errors for namespaces and the
/// global scope.
///
/// The isAddressOfOperand parameter indicates that this id-expression is a
/// direct operand of the address-of operator. This is, besides member contexts,
/// the only place where a qualified-id naming a non-static class member may
/// appear.
///
ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
// qualified-id:
// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
// '::' unqualified-id
//
CXXScopeSpec SS;
ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
/*ObjectHasErrors=*/false,
/*EnteringContext=*/false);
Token Replacement;
ExprResult Result =
tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
if (Result.isUnset()) {
// If the ExprResult is valid but null, then typo correction suggested a
// keyword replacement that needs to be reparsed.
UnconsumeToken(Replacement);
Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
}
assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
"for a previous keyword suggestion");
return Result;
}
/// ParseLambdaExpression - Parse a C++11 lambda expression.
///
/// lambda-expression:
/// lambda-introducer lambda-declarator compound-statement
/// lambda-introducer '<' template-parameter-list '>'
/// requires-clause[opt] lambda-declarator compound-statement
///
/// lambda-introducer:
/// '[' lambda-capture[opt] ']'
///
/// lambda-capture:
/// capture-default
/// capture-list
/// capture-default ',' capture-list
///
/// capture-default:
/// '&'
/// '='
///
/// capture-list:
/// capture
/// capture-list ',' capture
///
/// capture:
/// simple-capture
/// init-capture [C++1y]
///
/// simple-capture:
/// identifier
/// '&' identifier
/// 'this'
///
/// init-capture: [C++1y]
/// identifier initializer
/// '&' identifier initializer
///
/// lambda-declarator:
/// lambda-specifiers [C++2b]
/// '(' parameter-declaration-clause ')' lambda-specifiers
/// requires-clause[opt]
///
/// lambda-specifiers:
/// decl-specifier-seq[opt] noexcept-specifier[opt]
/// attribute-specifier-seq[opt] trailing-return-type[opt]
///
ExprResult Parser::ParseLambdaExpression() {
// Parse lambda-introducer.
LambdaIntroducer Intro;
if (ParseLambdaIntroducer(Intro)) {
SkipUntil(tok::r_square, StopAtSemi);
SkipUntil(tok::l_brace, StopAtSemi);
SkipUntil(tok::r_brace, StopAtSemi);
return ExprError();
}
return ParseLambdaExpressionAfterIntroducer(Intro);
}
/// Use lookahead and potentially tentative parsing to determine if we are
/// looking at a C++11 lambda expression, and parse it if we are.
///
/// If we are not looking at a lambda expression, returns ExprError().
ExprResult Parser::TryParseLambdaExpression() {
assert(getLangOpts().CPlusPlus11
&& Tok.is(tok::l_square)
&& "Not at the start of a possible lambda expression.");
const Token Next = NextToken();
if (Next.is(tok::eof)) // Nothing else to lookup here...
return ExprEmpty();
const Token After = GetLookAheadToken(2);
// If lookahead indicates this is a lambda...
if (Next.is(tok::r_square) || // []
Next.is(tok::equal) || // [=
(Next.is(tok::amp) && // [&] or [&,
After.isOneOf(tok::r_square, tok::comma)) ||
(Next.is(tok::identifier) && // [identifier]
After.is(tok::r_square)) ||
Next.is(tok::ellipsis)) { // [...
return ParseLambdaExpression();
}
// If lookahead indicates an ObjC message send...
// [identifier identifier
if (Next.is(tok::identifier) && After.is(tok::identifier))
return ExprEmpty();
// Here, we're stuck: lambda introducers and Objective-C message sends are
// unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a
// lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of
// writing two routines to parse a lambda introducer, just try to parse
// a lambda introducer first, and fall back if that fails.
LambdaIntroducer Intro;
{
TentativeParsingAction TPA(*this);
LambdaIntroducerTentativeParse Tentative;
if (ParseLambdaIntroducer(Intro, &Tentative)) {
TPA.Commit();
return ExprError();
}
switch (Tentative) {
case LambdaIntroducerTentativeParse::Success:
TPA.Commit();
break;
case LambdaIntroducerTentativeParse::Incomplete:
// Didn't fully parse the lambda-introducer, try again with a
// non-tentative parse.
TPA.Revert();
Intro = LambdaIntroducer();
if (ParseLambdaIntroducer(Intro))
return ExprError();
break;
case LambdaIntroducerTentativeParse::MessageSend:
case LambdaIntroducerTentativeParse::Invalid:
// Not a lambda-introducer, might be a message send.
TPA.Revert();
return ExprEmpty();
}
}
return ParseLambdaExpressionAfterIntroducer(Intro);
}
/// Parse a lambda introducer.
/// \param Intro A LambdaIntroducer filled in with information about the
/// contents of the lambda-introducer.
/// \param Tentative If non-null, we are disambiguating between a
/// lambda-introducer and some other construct. In this mode, we do not
/// produce any diagnostics or take any other irreversible action unless
/// we're sure that this is a lambda-expression.
/// \return \c true if parsing (or disambiguation) failed with a diagnostic and
/// the caller should bail out / recover.
bool Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
LambdaIntroducerTentativeParse *Tentative) {
if (Tentative)
*Tentative = LambdaIntroducerTentativeParse::Success;
assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
BalancedDelimiterTracker T(*this, tok::l_square);
T.consumeOpen();
Intro.Range.setBegin(T.getOpenLocation());
bool First = true;
// Produce a diagnostic if we're not tentatively parsing; otherwise track
// that our parse has failed.
auto Invalid = [&](llvm::function_ref<void()> Action) {
if (Tentative) {
*Tentative = LambdaIntroducerTentativeParse::Invalid;
return false;
}
Action();
return true;
};
// Perform some irreversible action if this is a non-tentative parse;
// otherwise note that our actions were incomplete.
auto NonTentativeAction = [&](llvm::function_ref<void()> Action) {
if (Tentative)
*Tentative = LambdaIntroducerTentativeParse::Incomplete;
else
Action();
};
// Parse capture-default.
if (Tok.is(tok::amp) &&
(NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
Intro.Default = LCD_ByRef;
Intro.DefaultLoc = ConsumeToken();
First = false;
if (!Tok.getIdentifierInfo()) {
// This can only be a lambda; no need for tentative parsing any more.
// '[[and]]' can still be an attribute, though.
Tentative = nullptr;
}
} else if (Tok.is(tok::equal)) {
Intro.Default = LCD_ByCopy;
Intro.DefaultLoc = ConsumeToken();
First = false;
Tentative = nullptr;
}
while (Tok.isNot(tok::r_square)) {
if (!First) {
if (Tok.isNot(tok::comma)) {
// Provide a completion for a lambda introducer here. Except
// in Objective-C, where this is Almost Surely meant to be a message
// send. In that case, fail here and let the ObjC message
// expression parser perform the completion.
if (Tok.is(tok::code_completion) &&
!(getLangOpts().ObjC && Tentative)) {
cutOffParsing();
Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
/*AfterAmpersand=*/false);
break;
}
return Invalid([&] {
Diag(Tok.getLocation(), diag::err_expected_comma_or_rsquare);
});
}
ConsumeToken();
}
if (Tok.is(tok::code_completion)) {
cutOffParsing();
// If we're in Objective-C++ and we have a bare '[', then this is more
// likely to be a message receiver.
if (getLangOpts().ObjC && Tentative && First)
Actions.CodeCompleteObjCMessageReceiver(getCurScope());
else
Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
/*AfterAmpersand=*/false);
break;
}
First = false;
// Parse capture.
LambdaCaptureKind Kind = LCK_ByCopy;
LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
SourceLocation Loc;
IdentifierInfo *Id = nullptr;
SourceLocation EllipsisLocs[4];
ExprResult Init;
SourceLocation LocStart = Tok.getLocation();
if (Tok.is(tok::star)) {
Loc = ConsumeToken();
if (Tok.is(tok::kw_this)) {
ConsumeToken();
Kind = LCK_StarThis;
} else {
return Invalid([&] {
Diag(Tok.getLocation(), diag::err_expected_star_this_capture);
});
}
} else if (Tok.is(tok::kw_this)) {
Kind = LCK_This;
Loc = ConsumeToken();
} else if (Tok.isOneOf(tok::amp, tok::equal) &&
NextToken().isOneOf(tok::comma, tok::r_square) &&
Intro.Default == LCD_None) {
// We have a lone "&" or "=" which is either a misplaced capture-default
// or the start of a capture (in the "&" case) with the rest of the
// capture missing. Both are an error but a misplaced capture-default
// is more likely if we don't already have a capture default.
return Invalid(
[&] { Diag(Tok.getLocation(), diag::err_capture_default_first); });
} else {
TryConsumeToken(tok::ellipsis, EllipsisLocs[0]);
if (Tok.is(tok::amp)) {
Kind = LCK_ByRef;
ConsumeToken();
if (Tok.is(tok::code_completion)) {
cutOffParsing();
Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
/*AfterAmpersand=*/true);
break;
}
}
TryConsumeToken(tok::ellipsis, EllipsisLocs[1]);
if (Tok.is(tok::identifier)) {
Id = Tok.getIdentifierInfo();
Loc = ConsumeToken();
} else if (Tok.is(tok::kw_this)) {
return Invalid([&] {
// FIXME: Suggest a fixit here.
Diag(Tok.getLocation(), diag::err_this_captured_by_reference);
});
} else {
return Invalid([&] {
Diag(Tok.getLocation(), diag::err_expected_capture);
});
}
TryConsumeToken(tok::ellipsis, EllipsisLocs[2]);
if (Tok.is(tok::l_paren)) {
BalancedDelimiterTracker Parens(*this, tok::l_paren);
Parens.consumeOpen();
InitKind = LambdaCaptureInitKind::DirectInit;
ExprVector Exprs;
CommaLocsTy Commas;
if (Tentative) {
Parens.skipToEnd();
*Tentative = LambdaIntroducerTentativeParse::Incomplete;
} else if (ParseExpressionList(Exprs, Commas)) {
Parens.skipToEnd();
Init = ExprError();
} else {
Parens.consumeClose();
Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
Parens.getCloseLocation(),
Exprs);
}
} else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
// Each lambda init-capture forms its own full expression, which clears
// Actions.MaybeODRUseExprs. So create an expression evaluation context
// to save the necessary state, and restore it later.
EnterExpressionEvaluationContext EC(
Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
if (TryConsumeToken(tok::equal))
InitKind = LambdaCaptureInitKind::CopyInit;
else
InitKind = LambdaCaptureInitKind::ListInit;
if (!Tentative) {
Init = ParseInitializer();
} else if (Tok.is(tok::l_brace)) {
BalancedDelimiterTracker Braces(*this, tok::l_brace);
Braces.consumeOpen();
Braces.skipToEnd();
*Tentative = LambdaIntroducerTentativeParse::Incomplete;
} else {
// We're disambiguating this:
//
// [..., x = expr
//
// We need to find the end of the following expression in order to
// determine whether this is an Obj-C message send's receiver, a
// C99 designator, or a lambda init-capture.
//
// Parse the expression to find where it ends, and annotate it back
// onto the tokens. We would have parsed this expression the same way
// in either case: both the RHS of an init-capture and the RHS of an
// assignment expression are parsed as an initializer-clause, and in
// neither case can anything be added to the scope between the '[' and
// here.
//
// FIXME: This is horrible. Adding a mechanism to skip an expression
// would be much cleaner.
// FIXME: If there is a ',' before the next ']' or ':', we can skip to
// that instead. (And if we see a ':' with no matching '?', we can
// classify this as an Obj-C message send.)
SourceLocation StartLoc = Tok.getLocation();
InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
Init = ParseInitializer();
if (!Init.isInvalid())
Init = Actions.CorrectDelayedTyposInExpr(Init.get());
if (Tok.getLocation() != StartLoc) {
// Back out the lexing of the token after the initializer.
PP.RevertCachedTokens(1);
// Replace the consumed tokens with an appropriate annotation.
Tok.setLocation(StartLoc);
Tok.setKind(tok::annot_primary_expr);
setExprAnnotation(Tok, Init);
Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
PP.AnnotateCachedTokens(Tok);
// Consume the annotated initializer.
ConsumeAnnotationToken();
}
}
}
TryConsumeToken(tok::ellipsis, EllipsisLocs[3]);
}
// Check if this is a message send before we act on a possible init-capture.
if (Tentative && Tok.is(tok::identifier) &&
NextToken().isOneOf(tok::colon, tok::r_square)) {
// This can only be a message send. We're done with disambiguation.
*Tentative = LambdaIntroducerTentativeParse::MessageSend;
return false;
}
// Ensure that any ellipsis was in the right place.
SourceLocation EllipsisLoc;
if (llvm::any_of(EllipsisLocs,
[](SourceLocation Loc) { return Loc.isValid(); })) {
// The '...' should appear before the identifier in an init-capture, and
// after the identifier otherwise.
bool InitCapture = InitKind != LambdaCaptureInitKind::NoInit;
SourceLocation *ExpectedEllipsisLoc =
!InitCapture ? &EllipsisLocs[2] :
Kind == LCK_ByRef ? &EllipsisLocs[1] :
&EllipsisLocs[0];
EllipsisLoc = *ExpectedEllipsisLoc;
unsigned DiagID = 0;
if (EllipsisLoc.isInvalid()) {
DiagID = diag::err_lambda_capture_misplaced_ellipsis;
for (SourceLocation Loc : EllipsisLocs) {
if (Loc.isValid())
EllipsisLoc = Loc;
}
} else {
unsigned NumEllipses = std::accumulate(
std::begin(EllipsisLocs), std::end(EllipsisLocs), 0,
[](int N, SourceLocation Loc) { return N + Loc.isValid(); });
if (NumEllipses > 1)
DiagID = diag::err_lambda_capture_multiple_ellipses;
}
if (DiagID) {
NonTentativeAction([&] {
// Point the diagnostic at the first misplaced ellipsis.
SourceLocation DiagLoc;
for (SourceLocation &Loc : EllipsisLocs) {
if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) {
DiagLoc = Loc;
break;
}
}
assert(DiagLoc.isValid() && "no location for diagnostic");
// Issue the diagnostic and produce fixits showing where the ellipsis
// should have been written.
auto &&D = Diag(DiagLoc, DiagID);
if (DiagID == diag::err_lambda_capture_misplaced_ellipsis) {
SourceLocation ExpectedLoc =
InitCapture ? Loc
: Lexer::getLocForEndOfToken(
Loc, 0, PP.getSourceManager(), getLangOpts());
D << InitCapture << FixItHint::CreateInsertion(ExpectedLoc, "...");
}
for (SourceLocation &Loc : EllipsisLocs) {
if (&Loc != ExpectedEllipsisLoc && Loc.isValid())
D << FixItHint::CreateRemoval(Loc);
}
});
}
}
// Process the init-capture initializers now rather than delaying until we
// form the lambda-expression so that they can be handled in the context
// enclosing the lambda-expression, rather than in the context of the
// lambda-expression itself.
ParsedType InitCaptureType;
if (Init.isUsable())
Init = Actions.CorrectDelayedTyposInExpr(Init.get());
if (Init.isUsable()) {
NonTentativeAction([&] {
// Get the pointer and store it in an lvalue, so we can use it as an
// out argument.
Expr *InitExpr = Init.get();
// This performs any lvalue-to-rvalue conversions if necessary, which
// can affect what gets captured in the containing decl-context.
InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
Loc, Kind == LCK_ByRef, EllipsisLoc, Id, InitKind, InitExpr);
Init = InitExpr;
});
}
SourceLocation LocEnd = PrevTokLocation;
Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
InitCaptureType, SourceRange(LocStart, LocEnd));
}
T.consumeClose();
Intro.Range.setEnd(T.getCloseLocation());
return false;
}
static void tryConsumeLambdaSpecifierToken(Parser &P,
SourceLocation &MutableLoc,
SourceLocation &ConstexprLoc,
SourceLocation &ConstevalLoc,
SourceLocation &DeclEndLoc) {
assert(MutableLoc.isInvalid());
assert(ConstexprLoc.isInvalid());
// Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
// to the final of those locations. Emit an error if we have multiple
// copies of those keywords and recover.
while (true) {
switch (P.getCurToken().getKind()) {
case tok::kw_mutable: {
if (MutableLoc.isValid()) {
P.Diag(P.getCurToken().getLocation(),
diag::err_lambda_decl_specifier_repeated)
<< 0 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
}
MutableLoc = P.ConsumeToken();
DeclEndLoc = MutableLoc;
break /*switch*/;
}
case tok::kw_constexpr:
if (ConstexprLoc.isValid()) {
P.Diag(P.getCurToken().getLocation(),
diag::err_lambda_decl_specifier_repeated)
<< 1 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
}
ConstexprLoc = P.ConsumeToken();
DeclEndLoc = ConstexprLoc;
break /*switch*/;
case tok::kw_consteval:
if (ConstevalLoc.isValid()) {
P.Diag(P.getCurToken().getLocation(),
diag::err_lambda_decl_specifier_repeated)
<< 2 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
}
ConstevalLoc = P.ConsumeToken();
DeclEndLoc = ConstevalLoc;
break /*switch*/;
default:
return;
}
}
}
static void
addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
DeclSpec &DS) {
if (ConstexprLoc.isValid()) {
P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17
? diag::ext_constexpr_on_lambda_cxx17
: diag::warn_cxx14_compat_constexpr_on_lambda);
const char *PrevSpec = nullptr;
unsigned DiagID = 0;
DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, ConstexprLoc, PrevSpec,
DiagID);
assert(PrevSpec == nullptr && DiagID == 0 &&
"Constexpr cannot have been set previously!");
}
}
static void addConstevalToLambdaDeclSpecifier(Parser &P,
SourceLocation ConstevalLoc,
DeclSpec &DS) {
if (ConstevalLoc.isValid()) {
P.Diag(ConstevalLoc, diag::warn_cxx20_compat_consteval);
const char *PrevSpec = nullptr;
unsigned DiagID = 0;
DS.SetConstexprSpec(ConstexprSpecKind::Consteval, ConstevalLoc, PrevSpec,
DiagID);
if (DiagID != 0)
P.Diag(ConstevalLoc, DiagID) << PrevSpec;
}
}
/// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
/// expression.
ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
LambdaIntroducer &Intro) {
SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
"lambda expression parsing");
// FIXME: Call into Actions to add any init-capture declarations to the
// scope while parsing the lambda-declarator and compound-statement.
// Parse lambda-declarator[opt].
DeclSpec DS(AttrFactory);
Declarator D(DS, DeclaratorContext::LambdaExpr);
TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
Actions.PushLambdaScope();
ParsedAttributes Attr(AttrFactory);
if (getLangOpts().CUDA) {
// In CUDA code, GNU attributes are allowed to appear immediately after the
// "[...]", even if there is no "(...)" before the lambda body.
MaybeParseGNUAttributes(D);
}
// Helper to emit a warning if we see a CUDA host/device/global attribute
// after '(...)'. nvcc doesn't accept this.
auto WarnIfHasCUDATargetAttr = [&] {
if (getLangOpts().CUDA)
for (const ParsedAttr &A : Attr)
if (A.getKind() == ParsedAttr::AT_CUDADevice ||
A.getKind() == ParsedAttr::AT_CUDAHost ||
A.getKind() == ParsedAttr::AT_CUDAGlobal)
Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position)
<< A.getAttrName()->getName();
};
MultiParseScope TemplateParamScope(*this);
if (Tok.is(tok::less)) {
Diag(Tok, getLangOpts().CPlusPlus20
? diag::warn_cxx17_compat_lambda_template_parameter_list
: diag::ext_lambda_template_parameter_list);
SmallVector<NamedDecl*, 4> TemplateParams;
SourceLocation LAngleLoc, RAngleLoc;
if (ParseTemplateParameters(TemplateParamScope,
CurTemplateDepthTracker.getDepth(),
TemplateParams, LAngleLoc, RAngleLoc)) {
Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
return ExprError();
}
if (TemplateParams.empty()) {
Diag(RAngleLoc,
diag::err_lambda_template_parameter_list_empty);
} else {
ExprResult RequiresClause;
if (TryConsumeToken(tok::kw_requires)) {
RequiresClause =
Actions.ActOnRequiresClause(ParseConstraintLogicalOrExpression(
/*IsTrailingRequiresClause=*/false));
if (RequiresClause.isInvalid())
SkipUntil({tok::l_brace, tok::l_paren}, StopAtSemi | StopBeforeMatch);
}
Actions.ActOnLambdaExplicitTemplateParameterList(
LAngleLoc, TemplateParams, RAngleLoc, RequiresClause);
++CurTemplateDepthTracker;
}
}
// Implement WG21 P2173, which allows attributes immediately before the
// lambda declarator and applies them to the corresponding function operator
// or operator template declaration. We accept this as a conforming extension
// in all language modes that support lambdas.
if (isCXX11AttributeSpecifier()) {
Diag(Tok, getLangOpts().CPlusPlus2b
? diag::warn_cxx20_compat_decl_attrs_on_lambda
: diag::ext_decl_attrs_on_lambda);
MaybeParseCXX11Attributes(D);
}
TypeResult TrailingReturnType;
SourceLocation TrailingReturnTypeLoc;
auto ParseLambdaSpecifiers =
[&](SourceLocation LParenLoc, SourceLocation RParenLoc,
MutableArrayRef<DeclaratorChunk::ParamInfo> ParamInfo,
SourceLocation EllipsisLoc) {
SourceLocation DeclEndLoc = RParenLoc;
// GNU-style attributes must be parsed before the mutable specifier to
// be compatible with GCC. MSVC-style attributes must be parsed before
// the mutable specifier to be compatible with MSVC.
MaybeParseAttributes(PAKM_GNU | PAKM_Declspec, Attr);
// Parse mutable-opt and/or constexpr-opt or consteval-opt, and update
// the DeclEndLoc.
SourceLocation MutableLoc;
SourceLocation ConstexprLoc;
SourceLocation ConstevalLoc;
tryConsumeLambdaSpecifierToken(*this, MutableLoc, ConstexprLoc,
ConstevalLoc, DeclEndLoc);
addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);
addConstevalToLambdaDeclSpecifier(*this, ConstevalLoc, DS);
// Parse exception-specification[opt].
ExceptionSpecificationType ESpecType = EST_None;
SourceRange ESpecRange;
SmallVector<ParsedType, 2> DynamicExceptions;
SmallVector<SourceRange, 2> DynamicExceptionRanges;
ExprResult NoexceptExpr;
CachedTokens *ExceptionSpecTokens;
ESpecType = tryParseExceptionSpecification(
/*Delayed=*/false, ESpecRange, DynamicExceptions,
DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens);
if (ESpecType != EST_None)
DeclEndLoc = ESpecRange.getEnd();
// Parse attribute-specifier[opt].
if (MaybeParseCXX11Attributes(Attr))
DeclEndLoc = Attr.Range.getEnd();
// Parse OpenCL addr space attribute.
if (Tok.isOneOf(tok::kw___private, tok::kw___global, tok::kw___local,
tok::kw___constant, tok::kw___generic)) {
ParseOpenCLQualifiers(DS.getAttributes());
ConsumeToken();
}
SourceLocation FunLocalRangeEnd = DeclEndLoc;
// Parse trailing-return-type[opt].
if (Tok.is(tok::arrow)) {
FunLocalRangeEnd = Tok.getLocation();
SourceRange Range;
TrailingReturnType = ParseTrailingReturnType(
Range, /*MayBeFollowedByDirectInit*/ false);
TrailingReturnTypeLoc = Range.getBegin();
if (Range.getEnd().isValid())
DeclEndLoc = Range.getEnd();
}
SourceLocation NoLoc;
D.AddTypeInfo(
DeclaratorChunk::getFunction(
/*HasProto=*/true,
/*IsAmbiguous=*/false, LParenLoc, ParamInfo.data(),
ParamInfo.size(), EllipsisLoc, RParenLoc,
/*RefQualifierIsLvalueRef=*/true,
/*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType, ESpecRange,
DynamicExceptions.data(), DynamicExceptionRanges.data(),
DynamicExceptions.size(),
NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
/*ExceptionSpecTokens*/ nullptr,
/*DeclsInPrototype=*/None, LParenLoc, FunLocalRangeEnd, D,
TrailingReturnType, TrailingReturnTypeLoc, &DS),
std::move(Attr), DeclEndLoc);
};
if (Tok.is(tok::l_paren)) {
ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope |
Scope::FunctionDeclarationScope |
Scope::DeclScope);
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
SourceLocation LParenLoc = T.getOpenLocation();
// Parse parameter-declaration-clause.
SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
SourceLocation EllipsisLoc;
if (Tok.isNot(tok::r_paren)) {
Actions.RecordParsingTemplateParameterDepth(
CurTemplateDepthTracker.getOriginalDepth());
ParseParameterDeclarationClause(D.getContext(), Attr, ParamInfo,
EllipsisLoc);
// For a generic lambda, each 'auto' within the parameter declaration
// clause creates a template type parameter, so increment the depth.
// If we've parsed any explicit template parameters, then the depth will
// have already been incremented. So we make sure that at most a single
// depth level is added.
if (Actions.getCurGenericLambda())
CurTemplateDepthTracker.setAddedDepth(1);
}
T.consumeClose();
// Parse lambda-specifiers.
ParseLambdaSpecifiers(LParenLoc, /*DeclEndLoc=*/T.getCloseLocation(),
ParamInfo, EllipsisLoc);
// Parse requires-clause[opt].
if (Tok.is(tok::kw_requires))
ParseTrailingRequiresClause(D);
} else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
tok::kw_constexpr, tok::kw_consteval,
tok::kw___private, tok::kw___global, tok::kw___local,
tok::kw___constant, tok::kw___generic,
tok::kw_requires, tok::kw_noexcept) ||
(Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
if (!getLangOpts().CPlusPlus2b)
// It's common to forget that one needs '()' before 'mutable', an
// attribute specifier, the result type, or the requires clause. Deal with
// this.
Diag(Tok, diag::ext_lambda_missing_parens)
<< FixItHint::CreateInsertion(Tok.getLocation(), "() ");
SourceLocation NoLoc;
// Parse lambda-specifiers.
std::vector<DeclaratorChunk::ParamInfo> EmptyParamInfo;
ParseLambdaSpecifiers(/*LParenLoc=*/NoLoc, /*RParenLoc=*/NoLoc,
EmptyParamInfo, /*EllipsisLoc=*/NoLoc);
}
WarnIfHasCUDATargetAttr();
// FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
// it.
unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope |
Scope::CompoundStmtScope;
ParseScope BodyScope(this, ScopeFlags);
Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
// Parse compound-statement.
if (!Tok.is(tok::l_brace)) {
Diag(Tok, diag::err_expected_lambda_body);
Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
return ExprError();
}
StmtResult Stmt(ParseCompoundStatementBody());
BodyScope.Exit();
TemplateParamScope.Exit();
if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
return ExprError();
}
/// ParseCXXCasts - This handles the various ways to cast expressions to another
/// type.
///
/// postfix-expression: [C++ 5.2p1]
/// 'dynamic_cast' '<' type-name '>' '(' expression ')'
/// 'static_cast' '<' type-name '>' '(' expression ')'
/// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
/// 'const_cast' '<' type-name '>' '(' expression ')'
///
/// C++ for OpenCL s2.3.1 adds:
/// 'addrspace_cast' '<' type-name '>' '(' expression ')'
ExprResult Parser::ParseCXXCasts() {
tok::TokenKind Kind = Tok.getKind();
const char *CastName = nullptr; // For error messages
switch (Kind) {
default: llvm_unreachable("Unknown C++ cast!");
case tok::kw_addrspace_cast: CastName = "addrspace_cast"; break;
case tok::kw_const_cast: CastName = "const_cast"; break;
case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
case tok::kw_static_cast: CastName = "static_cast"; break;
}
SourceLocation OpLoc = ConsumeToken();
SourceLocation LAngleBracketLoc = Tok.getLocation();
// Check for "<::" which is parsed as "[:". If found, fix token stream,
// diagnose error, suggest fix, and recover parsing.
if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
Token Next = NextToken();
if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
}
if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
return ExprError();
// Parse the common declaration-specifiers piece.
DeclSpec DS(AttrFactory);
ParseSpecifierQualifierList(DS);
// Parse the abstract-declarator, if present.
Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
ParseDeclarator(DeclaratorInfo);
SourceLocation RAngleBracketLoc = Tok.getLocation();
if (ExpectAndConsume(tok::greater))
return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
return ExprError();
ExprResult Result = ParseExpression();
// Match the ')'.
T.consumeClose();
if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
LAngleBracketLoc, DeclaratorInfo,
RAngleBracketLoc,
T.getOpenLocation(), Result.get(),
T.getCloseLocation());
return Result;
}
/// ParseCXXTypeid - This handles the C++ typeid expression.
///
/// postfix-expression: [C++ 5.2p1]
/// 'typeid' '(' expression ')'
/// 'typeid' '(' type-id ')'
///
ExprResult Parser::ParseCXXTypeid() {
assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
SourceLocation OpLoc = ConsumeToken();
SourceLocation LParenLoc, RParenLoc;
BalancedDelimiterTracker T(*this, tok::l_paren);
// typeid expressions are always parenthesized.
if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
return ExprError();
LParenLoc = T.getOpenLocation();
ExprResult Result;
// C++0x [expr.typeid]p3:
// When typeid is applied to an expression other than an lvalue of a
// polymorphic class type [...] The expression is an unevaluated
// operand (Clause 5).
//
// Note that we can't tell whether the expression is an lvalue of a
// polymorphic class type until after we've parsed the expression; we
// speculatively assume the subexpression is unevaluated, and fix it up
// later.
//
// We enter the unevaluated context before trying to determine whether we
// have a type-id, because the tentative parse logic will try to resolve
// names, and must treat them as unevaluated.
EnterExpressionEvaluationContext Unevaluated(
Actions, Sema::ExpressionEvaluationContext::Unevaluated,
Sema::ReuseLambdaContextDecl);
if (isTypeIdInParens()) {
TypeResult Ty = ParseTypeName();
// Match the ')'.
T.consumeClose();
RParenLoc = T.getCloseLocation();
if (Ty.isInvalid() || RParenLoc.isInvalid())
return ExprError();
Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
Ty.get().getAsOpaquePtr(), RParenLoc);
} else {
Result = ParseExpression();
// Match the ')'.
if (Result.isInvalid())
SkipUntil(tok::r_paren, StopAtSemi);
else {
T.consumeClose();
RParenLoc = T.getCloseLocation();
if (RParenLoc.isInvalid())
return ExprError();
Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
Result.get(), RParenLoc);
}
}
return Result;
}
/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
///
/// '__uuidof' '(' expression ')'
/// '__uuidof' '(' type-id ')'
///
ExprResult Parser::ParseCXXUuidof() {
assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
SourceLocation OpLoc = ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
// __uuidof expressions are always parenthesized.
if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
return ExprError();
ExprResult Result;
if (isTypeIdInParens()) {
TypeResult Ty = ParseTypeName();
// Match the ')'.
T.consumeClose();
if (Ty.isInvalid())
return ExprError();
Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
Ty.get().getAsOpaquePtr(),
T.getCloseLocation());
} else {
EnterExpressionEvaluationContext Unevaluated(
Actions, Sema::ExpressionEvaluationContext::Unevaluated);
Result = ParseExpression();
// Match the ')'.
if (Result.isInvalid())
SkipUntil(tok::r_paren, StopAtSemi);
else {
T.consumeClose();
Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
/*isType=*/false,
Result.get(), T.getCloseLocation());
}
}
return Result;
}
/// Parse a C++ pseudo-destructor expression after the base,
/// . or -> operator, and nested-name-specifier have already been
/// parsed. We're handling this fragment of the grammar:
///
/// postfix-expression: [C++2a expr.post]
/// postfix-expression . template[opt] id-expression
/// postfix-expression -> template[opt] id-expression
///
/// id-expression:
/// qualified-id
/// unqualified-id
///
/// qualified-id:
/// nested-name-specifier template[opt] unqualified-id
///
/// nested-name-specifier:
/// type-name ::
/// decltype-specifier :: FIXME: not implemented, but probably only
/// allowed in C++ grammar by accident
/// nested-name-specifier identifier ::
/// nested-name-specifier template[opt] simple-template-id ::
/// [...]
///
/// unqualified-id:
/// ~ type-name
/// ~ decltype-specifier
/// [...]
///
/// ... where the all but the last component of the nested-name-specifier
/// has already been parsed, and the base expression is not of a non-dependent
/// class type.
ExprResult
Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
tok::TokenKind OpKind,
CXXScopeSpec &SS,
ParsedType ObjectType) {
// If the last component of the (optional) nested-name-specifier is
// template[opt] simple-template-id, it has already been annotated.
UnqualifiedId FirstTypeName;
SourceLocation CCLoc;
if (Tok.is(tok::identifier)) {
FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
ConsumeToken();
assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
CCLoc = ConsumeToken();
} else if (Tok.is(tok::annot_template_id)) {
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
// FIXME: Carry on and build an AST representation for tooling.
if (TemplateId->isInvalid())
return ExprError();
FirstTypeName.setTemplateId(TemplateId);
ConsumeAnnotationToken();
assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
CCLoc = ConsumeToken();
} else {
assert(SS.isEmpty() && "missing last component of nested name specifier");
FirstTypeName.setIdentifier(nullptr, SourceLocation());
}
// Parse the tilde.
assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
SourceLocation TildeLoc = ConsumeToken();
if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid()) {
DeclSpec DS(AttrFactory);
ParseDecltypeSpecifier(DS);
if (DS.getTypeSpecType() == TST_error)
return ExprError();
return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
TildeLoc, DS);
}
if (!Tok.is(tok::identifier)) {
Diag(Tok, diag::err_destructor_tilde_identifier);
return ExprError();
}
// Parse the second type.
UnqualifiedId SecondTypeName;
IdentifierInfo *Name = Tok.getIdentifierInfo();
SourceLocation NameLoc = ConsumeToken();
SecondTypeName.setIdentifier(Name, NameLoc);
// If there is a '<', the second type name is a template-id. Parse
// it as such.
//
// FIXME: This is not a context in which a '<' is assumed to start a template
// argument list. This affects examples such as
// void f(auto *p) { p->~X<int>(); }
// ... but there's no ambiguity, and nowhere to write 'template' in such an
// example, so we accept it anyway.
if (Tok.is(tok::less) &&
ParseUnqualifiedIdTemplateId(
SS, ObjectType, Base && Base->containsErrors(), SourceLocation(),
Name, NameLoc, false, SecondTypeName,
/*AssumeTemplateId=*/true))
return ExprError();
return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
SS, FirstTypeName, CCLoc, TildeLoc,
SecondTypeName);
}
/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
///
/// boolean-literal: [C++ 2.13.5]
/// 'true'
/// 'false'
ExprResult Parser::ParseCXXBoolLiteral() {
tok::TokenKind Kind = Tok.getKind();
return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
}
/// ParseThrowExpression - This handles the C++ throw expression.
///
/// throw-expression: [C++ 15]
/// 'throw' assignment-expression[opt]
ExprResult Parser::ParseThrowExpression() {
assert(Tok.is(tok::kw_throw) && "Not throw!");
SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
// If the current token isn't the start of an assignment-expression,
// then the expression is not present. This handles things like:
// "C ? throw : (void)42", which is crazy but legal.
switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
case tok::semi:
case tok::r_paren:
case tok::r_square:
case tok::r_brace:
case tok::colon:
case tok::comma:
return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
default:
ExprResult Expr(ParseAssignmentExpression());
if (Expr.isInvalid()) return Expr;
return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
}
}
/// Parse the C++ Coroutines co_yield expression.
///
/// co_yield-expression:
/// 'co_yield' assignment-expression[opt]
ExprResult Parser::ParseCoyieldExpression() {
assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");
SourceLocation Loc = ConsumeToken();
ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
: ParseAssignmentExpression();
if (!Expr.isInvalid())
Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
return Expr;
}
/// ParseCXXThis - This handles the C++ 'this' pointer.
///
/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
/// a non-lvalue expression whose value is the address of the object for which
/// the function is called.
ExprResult Parser::ParseCXXThis() {
assert(Tok.is(tok::kw_this) && "Not 'this'!");
SourceLocation ThisLoc = ConsumeToken();
return Actions.ActOnCXXThis(ThisLoc);
}
/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
/// See [C++ 5.2.3].
///
/// postfix-expression: [C++ 5.2p1]
/// simple-type-specifier '(' expression-list[opt] ')'
/// [C++0x] simple-type-specifier braced-init-list
/// typename-specifier '(' expression-list[opt] ')'
/// [C++0x] typename-specifier braced-init-list
///
/// In C++1z onwards, the type specifier can also be a template-name.
ExprResult
Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
Declarator DeclaratorInfo(DS, DeclaratorContext::FunctionalCast);
ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
assert((Tok.is(tok::l_paren) ||
(getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
&& "Expected '(' or '{'!");
if (Tok.is(tok::l_brace)) {
PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
ExprResult Init = ParseBraceInitializer();
if (Init.isInvalid())
return Init;
Expr *InitList = Init.get();
return Actions.ActOnCXXTypeConstructExpr(
TypeRep, InitList->getBeginLoc(), MultiExprArg(&InitList, 1),
InitList->getEndLoc(), /*ListInitialization=*/true);
} else {
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
ExprVector Exprs;
CommaLocsTy CommaLocs;
auto RunSignatureHelp = [&]() {
QualType PreferredType;
if (TypeRep)
PreferredType = Actions.ProduceConstructorSignatureHelp(
TypeRep.get()->getCanonicalTypeInternal(), DS.getEndLoc(), Exprs,
T.getOpenLocation(), /*Braced=*/false);
CalledSignatureHelp = true;
return PreferredType;
};
if (Tok.isNot(tok::r_paren)) {
if (ParseExpressionList(Exprs, CommaLocs, [&] {
PreferredType.enterFunctionArgument(Tok.getLocation(),
RunSignatureHelp);
})) {
if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
RunSignatureHelp();
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
}
// Match the ')'.
T.consumeClose();
// TypeRep could be null, if it references an invalid typedef.
if (!TypeRep)
return ExprError();
assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
"Unexpected number of commas!");
return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
Exprs, T.getCloseLocation(),
/*ListInitialization=*/false);
}
}
Parser::DeclGroupPtrTy
Parser::ParseAliasDeclarationInInitStatement(DeclaratorContext Context,
ParsedAttributes &Attrs) {
assert(Tok.is(tok::kw_using) && "Expected using");
assert((Context == DeclaratorContext::ForInit ||
Context == DeclaratorContext::SelectionInit) &&
"Unexpected Declarator Context");
DeclGroupPtrTy DG;
SourceLocation DeclStart = ConsumeToken(), DeclEnd;
DG = ParseUsingDeclaration(Context, {}, DeclStart, DeclEnd, Attrs, AS_none);
if (!DG)
return DG;
Diag(DeclStart, !getLangOpts().CPlusPlus2b
? diag::ext_alias_in_init_statement
: diag::warn_cxx20_alias_in_init_statement)
<< SourceRange(DeclStart, DeclEnd);
return DG;
}
/// ParseCXXCondition - if/switch/while condition expression.
///
/// condition:
/// expression
/// type-specifier-seq declarator '=' assignment-expression
/// [C++11] type-specifier-seq declarator '=' initializer-clause
/// [C++11] type-specifier-seq declarator braced-init-list
/// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
/// brace-or-equal-initializer
/// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
/// '=' assignment-expression
///
/// In C++1z, a condition may in some contexts be preceded by an
/// optional init-statement. This function will parse that too.
///
/// \param InitStmt If non-null, an init-statement is permitted, and if present
/// will be parsed and stored here.
///
/// \param Loc The location of the start of the statement that requires this
/// condition, e.g., the "for" in a for loop.
///
/// \param MissingOK Whether an empty condition is acceptable here. Otherwise
/// it is considered an error to be recovered from.
///
/// \param FRI If non-null, a for range declaration is permitted, and if
/// present will be parsed and stored here, and a null result will be returned.
///
/// \param EnterForConditionScope If true, enter a continue/break scope at the
/// appropriate moment for a 'for' loop.
///
/// \returns The parsed condition.
Sema::ConditionResult
Parser::ParseCXXCondition(StmtResult *InitStmt, SourceLocation Loc,
Sema::ConditionKind CK, bool MissingOK,
ForRangeInfo *FRI, bool EnterForConditionScope) {
// Helper to ensure we always enter a continue/break scope if requested.
struct ForConditionScopeRAII {
Scope *S;
void enter(bool IsConditionVariable) {
if (S) {
S->AddFlags(Scope::BreakScope | Scope::ContinueScope);
S->setIsConditionVarScope(IsConditionVariable);
}
}
~ForConditionScopeRAII() {
if (S)
S->setIsConditionVarScope(false);
}
} ForConditionScope{EnterForConditionScope ? getCurScope() : nullptr};
ParenBraceBracketBalancer BalancerRAIIObj(*this);
PreferredType.enterCondition(Actions, Tok.getLocation());
if (Tok.is(tok::code_completion)) {
cutOffParsing();
Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
return Sema::ConditionError();
}
ParsedAttributes attrs(AttrFactory);
MaybeParseCXX11Attributes(attrs);
const auto WarnOnInit = [this, &CK] {
Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
? diag::warn_cxx14_compat_init_statement
: diag::ext_init_statement)
<< (CK == Sema::ConditionKind::Switch);
};
// Determine what kind of thing we have.
switch (isCXXConditionDeclarationOrInitStatement(InitStmt, FRI)) {
case ConditionOrInitStatement::Expression: {
// If this is a for loop, we're entering its condition.
ForConditionScope.enter(/*IsConditionVariable=*/false);
ProhibitAttributes(attrs);
// We can have an empty expression here.
// if (; true);
if (InitStmt && Tok.is(tok::semi)) {
WarnOnInit();
SourceLocation SemiLoc = Tok.getLocation();
if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) {
Diag(SemiLoc, diag::warn_empty_init_statement)
<< (CK == Sema::ConditionKind::Switch)
<< FixItHint::CreateRemoval(SemiLoc);
}
ConsumeToken();
*InitStmt = Actions.ActOnNullStmt(SemiLoc);
return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
}
// Parse the expression.
ExprResult Expr = ParseExpression(); // expression
if (Expr.isInvalid())
return Sema::ConditionError();
if (InitStmt && Tok.is(tok::semi)) {
WarnOnInit();
*InitStmt = Actions.ActOnExprStmt(Expr.get());
ConsumeToken();
return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
}
return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK,
MissingOK);
}
case ConditionOrInitStatement::InitStmtDecl: {
WarnOnInit();
DeclGroupPtrTy DG;
SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
if (Tok.is(tok::kw_using))
DG = ParseAliasDeclarationInInitStatement(
DeclaratorContext::SelectionInit, attrs);
else
DG = ParseSimpleDeclaration(DeclaratorContext::SelectionInit, DeclEnd,
attrs, /*RequireSemi=*/true);
*InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
}
case ConditionOrInitStatement::ForRangeDecl: {
// This is 'for (init-stmt; for-range-decl : range-expr)'.
// We're not actually in a for loop yet, so 'break' and 'continue' aren't
// permitted here.
assert(FRI && "should not parse a for range declaration here");
SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
DeclGroupPtrTy DG = ParseSimpleDeclaration(DeclaratorContext::ForInit,
DeclEnd, attrs, false, FRI);
FRI->LoopVar = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
assert((FRI->ColonLoc.isValid() || !DG) &&
"cannot find for range declaration");
return Sema::ConditionResult();
}
case ConditionOrInitStatement::ConditionDecl:
case ConditionOrInitStatement::Error:
break;
}
// If this is a for loop, we're entering its condition.
ForConditionScope.enter(/*IsConditionVariable=*/true);
// type-specifier-seq
DeclSpec DS(AttrFactory);
DS.takeAttributesFrom(attrs);
ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_condition);
// declarator
Declarator DeclaratorInfo(DS, DeclaratorContext::Condition);
ParseDeclarator(DeclaratorInfo);
// simple-asm-expr[opt]
if (Tok.is(tok::kw_asm)) {
SourceLocation Loc;
ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
if (AsmLabel.isInvalid()) {
SkipUntil(tok::semi, StopAtSemi);
return Sema::ConditionError();
}
DeclaratorInfo.setAsmLabel(AsmLabel.get());
DeclaratorInfo.SetRangeEnd(Loc);
}
// If attributes are present, parse them.
MaybeParseGNUAttributes(DeclaratorInfo);
// Type-check the declaration itself.
DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
DeclaratorInfo);
if (Dcl.isInvalid())
return Sema::ConditionError();
Decl *DeclOut = Dcl.get();
// '=' assignment-expression
// If a '==' or '+=' is found, suggest a fixit to '='.
bool CopyInitialization = isTokenEqualOrEqualTypo();
if (CopyInitialization)
ConsumeToken();
ExprResult InitExpr = ExprError();
if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
Diag(Tok.getLocation(),
diag::warn_cxx98_compat_generalized_initializer_lists);
InitExpr = ParseBraceInitializer();
} else if (CopyInitialization) {
PreferredType.enterVariableInit(Tok.getLocation(), DeclOut);
InitExpr = ParseAssignmentExpression();
} else if (Tok.is(tok::l_paren)) {
// This was probably an attempt to initialize the variable.
SourceLocation LParen = ConsumeParen(), RParen = LParen;
if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
RParen = ConsumeParen();
Diag(DeclOut->getLocation(),
diag::err_expected_init_in_condition_lparen)
<< SourceRange(LParen, RParen);
} else {
Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
}
if (!InitExpr.isInvalid())
Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization);
else
Actions.ActOnInitializerError(DeclOut);
Actions.FinalizeDeclaration(DeclOut);
return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
}
/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
/// This should only be called when the current token is known to be part of
/// simple-type-specifier.
///
/// simple-type-specifier:
/// '::'[opt] nested-name-specifier[opt] type-name
/// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
/// char
/// wchar_t
/// bool
/// short
/// int
/// long
/// signed
/// unsigned
/// float
/// double
/// void
/// [GNU] typeof-specifier
/// [C++0x] auto [TODO]
///
/// type-name:
/// class-name
/// enum-name
/// typedef-name
///
void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
DS.SetRangeStart(Tok.getLocation());
const char *PrevSpec;
unsigned DiagID;
SourceLocation Loc = Tok.getLocation();
const clang::PrintingPolicy &Policy =
Actions.getASTContext().getPrintingPolicy();
switch (Tok.getKind()) {
case tok::identifier: // foo::bar
case tok::coloncolon: // ::foo::bar
llvm_unreachable("Annotation token should already be formed!");
default:
llvm_unreachable("Not a simple-type-specifier token!");
// type-name
case tok::annot_typename: {
DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
getTypeAnnotation(Tok), Policy);
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
ConsumeAnnotationToken();
DS.Finish(Actions, Policy);
return;
}
case tok::kw__ExtInt:
case tok::kw__BitInt: {
DiagnoseBitIntUse(Tok);
ExprResult ER = ParseExtIntegerArgument();
if (ER.isInvalid())
DS.SetTypeSpecError();
else
DS.SetBitIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
// Do this here because we have already consumed the close paren.
DS.SetRangeEnd(PrevTokLocation);
DS.Finish(Actions, Policy);
return;
}
// builtin types
case tok::kw_short:
DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec, DiagID,
Policy);
break;
case tok::kw_long:
DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec, DiagID,
Policy);
break;
case tok::kw___int64:
DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID,
Policy);
break;
case tok::kw_signed:
DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
break;
case tok::kw_unsigned:
DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec, DiagID);
break;
case tok::kw_void:
DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw_auto:
DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw_char:
DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw_int:
DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw___int128:
DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw___bf16:
DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw_half:
DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw_float:
DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw_double:
DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw__Float16:
DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw___float128:
DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw___ibm128:
DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw_wchar_t:
DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw_char8_t:
DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw_char16_t:
DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw_char32_t:
DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
break;
case tok::kw_bool:
DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
break;
#define GENERIC_IMAGE_TYPE(ImgType, Id) \
case tok::kw_##ImgType##_t: \
DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID, \
Policy); \
break;
#include "clang/Basic/OpenCLImageTypes.def"
case tok::annot_decltype:
case tok::kw_decltype:
DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
return DS.Finish(Actions, Policy);
// GNU typeof support.
case tok::kw_typeof:
ParseTypeofSpecifier(DS);
DS.Finish(Actions, Policy);
return;
}
ConsumeAnyToken();
DS.SetRangeEnd(PrevTokLocation);
DS.Finish(Actions, Policy);
}
/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
/// [dcl.name]), which is a non-empty sequence of type-specifiers,
/// e.g., "const short int". Note that the DeclSpec is *not* finished
/// by parsing the type-specifier-seq, because these sequences are
/// typically followed by some form of declarator. Returns true and
/// emits diagnostics if this is not a type-specifier-seq, false
/// otherwise.
///
/// type-specifier-seq: [C++ 8.1]
/// type-specifier type-specifier-seq[opt]
///
bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_type_specifier);
DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
return false;
}
/// Finish parsing a C++ unqualified-id that is a template-id of
/// some form.
///
/// This routine is invoked when a '<' is encountered after an identifier or
/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
/// whether the unqualified-id is actually a template-id. This routine will
/// then parse the template arguments and form the appropriate template-id to
/// return to the caller.
///
/// \param SS the nested-name-specifier that precedes this template-id, if
/// we're actually parsing a qualified-id.
///
/// \param ObjectType if this unqualified-id occurs within a member access
/// expression, the type of the base object whose member is being accessed.
///
/// \param ObjectHadErrors this unqualified-id occurs within a member access
/// expression, indicates whether the original subexpressions had any errors.
///
/// \param Name for constructor and destructor names, this is the actual
/// identifier that may be a template-name.
///
/// \param NameLoc the location of the class-name in a constructor or
/// destructor.
///
/// \param EnteringContext whether we're entering the scope of the
/// nested-name-specifier.
///
/// \param Id as input, describes the template-name or operator-function-id
/// that precedes the '<'. If template arguments were parsed successfully,
/// will be updated with the template-id.
///
/// \param AssumeTemplateId When true, this routine will assume that the name
/// refers to a template without performing name lookup to verify.
///
/// \returns true if a parse error occurred, false otherwise.
bool Parser::ParseUnqualifiedIdTemplateId(
CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
SourceLocation TemplateKWLoc, IdentifierInfo *Name, SourceLocation NameLoc,
bool EnteringContext, UnqualifiedId &Id, bool AssumeTemplateId) {
assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
TemplateTy Template;
TemplateNameKind TNK = TNK_Non_template;
switch (Id.getKind()) {
case UnqualifiedIdKind::IK_Identifier:
case UnqualifiedIdKind::IK_OperatorFunctionId:
case UnqualifiedIdKind::IK_LiteralOperatorId:
if (AssumeTemplateId) {
// We defer the injected-class-name checks until we've found whether
// this template-id is used to form a nested-name-specifier or not.
TNK = Actions.ActOnTemplateName(getCurScope(), SS, TemplateKWLoc, Id,
ObjectType, EnteringContext, Template,
/*AllowInjectedClassName*/ true);
} else {
bool MemberOfUnknownSpecialization;
TNK = Actions.isTemplateName(getCurScope(), SS,
TemplateKWLoc.isValid(), Id,
ObjectType, EnteringContext, Template,
MemberOfUnknownSpecialization);
// If lookup found nothing but we're assuming that this is a template
// name, double-check that makes sense syntactically before committing
// to it.
if (TNK == TNK_Undeclared_template &&
isTemplateArgumentList(0) == TPResult::False)
return false;
if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
ObjectType && isTemplateArgumentList(0) == TPResult::True) {
// If we had errors before, ObjectType can be dependent even without any
// templates, do not report missing template keyword in that case.
if (!ObjectHadErrors) {
// We have something like t->getAs<T>(), where getAs is a
// member of an unknown specialization. However, this will only
// parse correctly as a template, so suggest the keyword 'template'
// before 'getAs' and treat this as a dependent template name.
std::string Name;
if (Id.getKind() == UnqualifiedIdKind::IK_Identifier)
Name = std::string(Id.Identifier->getName());
else {
Name = "operator ";
if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId)
Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
else
Name += Id.Identifier->getName();
}
Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
<< Name
<< FixItHint::CreateInsertion(Id.StartLocation, "template ");
}
TNK = Actions.ActOnTemplateName(
getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
Template, /*AllowInjectedClassName*/ true);
} else if (TNK == TNK_Non_template) {
return false;
}
}
break;
case UnqualifiedIdKind::IK_ConstructorName: {
UnqualifiedId TemplateName;
bool MemberOfUnknownSpecialization;
TemplateName.setIdentifier(Name, NameLoc);
TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
TemplateName, ObjectType,
EnteringContext, Template,
MemberOfUnknownSpecialization);
if (TNK == TNK_Non_template)
return false;
break;
}
case UnqualifiedIdKind::IK_DestructorName: {
UnqualifiedId TemplateName;
bool MemberOfUnknownSpecialization;
TemplateName.setIdentifier(Name, NameLoc);
if (ObjectType) {
TNK = Actions.ActOnTemplateName(
getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
EnteringContext, Template, /*AllowInjectedClassName*/ true);
} else {
TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
TemplateName, ObjectType,
EnteringContext, Template,
MemberOfUnknownSpecialization);
if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
Diag(NameLoc, diag::err_destructor_template_id)
<< Name << SS.getRange();
// Carry on to parse the template arguments before bailing out.
}
}
break;
}
default:
return false;
}
// Parse the enclosed template argument list.
SourceLocation LAngleLoc, RAngleLoc;
TemplateArgList TemplateArgs;
if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs, RAngleLoc,
Template))
return true;
// If this is a non-template, we already issued a diagnostic.
if (TNK == TNK_Non_template)
return true;
if (Id.getKind() == UnqualifiedIdKind::IK_Identifier ||
Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
Id.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) {
// Form a parsed representation of the template-id to be stored in the
// UnqualifiedId.
// FIXME: Store name for literal operator too.
IdentifierInfo *TemplateII =
Id.getKind() == UnqualifiedIdKind::IK_Identifier ? Id.Identifier
: nullptr;
OverloadedOperatorKind OpKind =
Id.getKind() == UnqualifiedIdKind::IK_Identifier
? OO_None
: Id.OperatorFunctionId.Operator;
TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create(
TemplateKWLoc, Id.StartLocation, TemplateII, OpKind, Template, TNK,
LAngleLoc, RAngleLoc, TemplateArgs, /*ArgsInvalid*/false, TemplateIds);
Id.setTemplateId(TemplateId);
return false;
}
// Bundle the template arguments together.
ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
// Constructor and destructor names.
TypeResult Type = Actions.ActOnTemplateIdType(
getCurScope(), SS, TemplateKWLoc, Template, Name, NameLoc, LAngleLoc,
TemplateArgsPtr, RAngleLoc, /*IsCtorOrDtorName=*/true);
if (Type.isInvalid())
return true;
if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
else
Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
return false;
}
/// Parse an operator-function-id or conversion-function-id as part
/// of a C++ unqualified-id.
///
/// This routine is responsible only for parsing the operator-function-id or
/// conversion-function-id; it does not handle template arguments in any way.
///
/// \code
/// operator-function-id: [C++ 13.5]
/// 'operator' operator
///
/// operator: one of
/// new delete new[] delete[]
/// + - * / % ^ & | ~
/// ! = < > += -= *= /= %=
/// ^= &= |= << >> >>= <<= == !=
/// <= >= && || ++ -- , ->* ->
/// () [] <=>
///
/// conversion-function-id: [C++ 12.3.2]
/// operator conversion-type-id
///
/// conversion-type-id:
/// type-specifier-seq conversion-declarator[opt]
///
/// conversion-declarator:
/// ptr-operator conversion-declarator[opt]
/// \endcode
///
/// \param SS The nested-name-specifier that preceded this unqualified-id. If
/// non-empty, then we are parsing the unqualified-id of a qualified-id.
///
/// \param EnteringContext whether we are entering the scope of the
/// nested-name-specifier.
///
/// \param ObjectType if this unqualified-id occurs within a member access
/// expression, the type of the base object whose member is being accessed.
///
/// \param Result on a successful parse, contains the parsed unqualified-id.
///
/// \returns true if parsing fails, false otherwise.
bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
ParsedType ObjectType,
UnqualifiedId &Result) {
assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
// Consume the 'operator' keyword.
SourceLocation KeywordLoc = ConsumeToken();
// Determine what kind of operator name we have.
unsigned SymbolIdx = 0;
SourceLocation SymbolLocations[3];
OverloadedOperatorKind Op = OO_None;
switch (Tok.getKind()) {
case tok::kw_new:
case tok::kw_delete: {
bool isNew = Tok.getKind() == tok::kw_new;
// Consume the 'new' or 'delete'.
SymbolLocations[SymbolIdx++] = ConsumeToken();
// Check for array new/delete.
if (Tok.is(tok::l_square) &&
(!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
// Consume the '[' and ']'.
BalancedDelimiterTracker T(*this, tok::l_square);
T.consumeOpen();
T.consumeClose();
if (T.getCloseLocation().isInvalid())
return true;
SymbolLocations[SymbolIdx++] = T.getOpenLocation();
SymbolLocations[SymbolIdx++] = T.getCloseLocation();
Op = isNew? OO_Array_New : OO_Array_Delete;
} else {
Op = isNew? OO_New : OO_Delete;
}
break;
}
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
case tok::Token: \
SymbolLocations[SymbolIdx++] = ConsumeToken(); \
Op = OO_##Name; \
break;
#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
#include "clang/Basic/OperatorKinds.def"
case tok::l_paren: {
// Consume the '(' and ')'.
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
T.consumeClose();
if (T.getCloseLocation().isInvalid())
return true;
SymbolLocations[SymbolIdx++] = T.getOpenLocation();
SymbolLocations[SymbolIdx++] = T.getCloseLocation();
Op = OO_Call;
break;
}
case tok::l_square: {
// Consume the '[' and ']'.
BalancedDelimiterTracker T(*this, tok::l_square);
T.consumeOpen();
T.consumeClose();
if (T.getCloseLocation().isInvalid())
return true;
SymbolLocations[SymbolIdx++] = T.getOpenLocation();
SymbolLocations[SymbolIdx++] = T.getCloseLocation();
Op = OO_Subscript;
break;
}
case tok::code_completion: {
// Don't try to parse any further.
cutOffParsing();
// Code completion for the operator name.
Actions.CodeCompleteOperatorName(getCurScope());
return true;
}
default:
break;
}
if (Op != OO_None) {
// We have parsed an operator-function-id.
Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
return false;
}
// Parse a literal-operator-id.
//
// literal-operator-id: C++11 [over.literal]
// operator string-literal identifier
// operator user-defined-string-literal
if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
SourceLocation DiagLoc;
unsigned DiagId = 0;
// We're past translation phase 6, so perform string literal concatenation
// before checking for "".
SmallVector<Token, 4> Toks;
SmallVector<SourceLocation, 4> TokLocs;
while (isTokenStringLiteral()) {
if (!Tok.is(tok::string_literal) && !DiagId) {
// C++11 [over.literal]p1:
// The string-literal or user-defined-string-literal in a
// literal-operator-id shall have no encoding-prefix [...].
DiagLoc = Tok.getLocation();
DiagId = diag::err_literal_operator_string_prefix;
}
Toks.push_back(Tok);
TokLocs.push_back(ConsumeStringToken());
}
StringLiteralParser Literal(Toks, PP);
if (Literal.hadError)
return true;
// Grab the literal operator's suffix, which will be either the next token
// or a ud-suffix from the string literal.
bool IsUDSuffix = !Literal.getUDSuffix().empty();
IdentifierInfo *II = nullptr;
SourceLocation SuffixLoc;
if (IsUDSuffix) {
II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
SuffixLoc =
Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
Literal.getUDSuffixOffset(),
PP.getSourceManager(), getLangOpts());
} else if (Tok.is(tok::identifier)) {
II = Tok.getIdentifierInfo();
SuffixLoc = ConsumeToken();
TokLocs.push_back(SuffixLoc);
} else {
Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
return true;
}
// The string literal must be empty.
if (!Literal.GetString().empty() || Literal.Pascal) {
// C++11 [over.literal]p1:
// The string-literal or user-defined-string-literal in a
// literal-operator-id shall [...] contain no characters
// other than the implicit terminating '\0'.
DiagLoc = TokLocs.front();
DiagId = diag::err_literal_operator_string_not_empty;
}
if (DiagId) {
// This isn't a valid literal-operator-id, but we think we know
// what the user meant. Tell them what they should have written.
SmallString<32> Str;
Str += "\"\"";
Str += II->getName();
Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
SourceRange(TokLocs.front(), TokLocs.back()), Str);
}
Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
return Actions.checkLiteralOperatorId(SS, Result, IsUDSuffix);
}
// Parse a conversion-function-id.
//
// conversion-function-id: [C++ 12.3.2]
// operator conversion-type-id
//
// conversion-type-id:
// type-specifier-seq conversion-declarator[opt]
//
// conversion-declarator:
// ptr-operator conversion-declarator[opt]
// Parse the type-specifier-seq.
DeclSpec DS(AttrFactory);
if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
return true;
// Parse the conversion-declarator, which is merely a sequence of
// ptr-operators.
Declarator D(DS, DeclaratorContext::ConversionId);
ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
// Finish up the type.
TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
if (Ty.isInvalid())
return true;
// Note that this is a conversion-function-id.
Result.setConversionFunctionId(KeywordLoc, Ty.get(),
D.getSourceRange().getEnd());
return false;
}
/// Parse a C++ unqualified-id (or a C identifier), which describes the
/// name of an entity.
///
/// \code
/// unqualified-id: [C++ expr.prim.general]
/// identifier
/// operator-function-id
/// conversion-function-id
/// [C++0x] literal-operator-id [TODO]
/// ~ class-name
/// template-id
///
/// \endcode
///
/// \param SS The nested-name-specifier that preceded this unqualified-id. If
/// non-empty, then we are parsing the unqualified-id of a qualified-id.
///
/// \param ObjectType if this unqualified-id occurs within a member access
/// expression, the type of the base object whose member is being accessed.
///
/// \param ObjectHadErrors if this unqualified-id occurs within a member access
/// expression, indicates whether the original subexpressions had any errors.
/// When true, diagnostics for missing 'template' keyword will be supressed.
///
/// \param EnteringContext whether we are entering the scope of the
/// nested-name-specifier.
///
/// \param AllowDestructorName whether we allow parsing of a destructor name.
///
/// \param AllowConstructorName whether we allow parsing a constructor name.
///
/// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
///
/// \param Result on a successful parse, contains the parsed unqualified-id.
///
/// \returns true if parsing fails, false otherwise.
bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, ParsedType ObjectType,
bool ObjectHadErrors, bool EnteringContext,
bool AllowDestructorName,
bool AllowConstructorName,
bool AllowDeductionGuide,
SourceLocation *TemplateKWLoc,
UnqualifiedId &Result) {
if (TemplateKWLoc)
*TemplateKWLoc = SourceLocation();
// Handle 'A::template B'. This is for template-ids which have not
// already been annotated by ParseOptionalCXXScopeSpecifier().
bool TemplateSpecified = false;
if (Tok.is(tok::kw_template)) {
if (TemplateKWLoc && (ObjectType || SS.isSet())) {
TemplateSpecified = true;
*TemplateKWLoc = ConsumeToken();
} else {
SourceLocation TemplateLoc = ConsumeToken();
Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
<< FixItHint::CreateRemoval(TemplateLoc);
}
}
// unqualified-id:
// identifier
// template-id (when it hasn't already been annotated)
if (Tok.is(tok::identifier)) {
// Consume the identifier.
IdentifierInfo *Id = Tok.getIdentifierInfo();
SourceLocation IdLoc = ConsumeToken();
if (!getLangOpts().CPlusPlus) {
// If we're not in C++, only identifiers matter. Record the
// identifier and return.
Result.setIdentifier(Id, IdLoc);
return false;
}
ParsedTemplateTy TemplateName;
if (AllowConstructorName &&
Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
// We have parsed a constructor name.
ParsedType Ty = Actions.getConstructorName(*Id, IdLoc, getCurScope(), SS,
EnteringContext);
if (!Ty)
return true;
Result.setConstructorName(Ty, IdLoc, IdLoc);
} else if (getLangOpts().CPlusPlus17 &&
AllowDeductionGuide && SS.isEmpty() &&
Actions.isDeductionGuideName(getCurScope(), *Id, IdLoc,
&TemplateName)) {
// We have parsed a template-name naming a deduction guide.
Result.setDeductionGuideName(TemplateName, IdLoc);
} else {
// We have parsed an identifier.
Result.setIdentifier(Id, IdLoc);
}
// If the next token is a '<', we may have a template.
TemplateTy Template;
if (Tok.is(tok::less))
return ParseUnqualifiedIdTemplateId(
SS, ObjectType, ObjectHadErrors,
TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Id, IdLoc,
EnteringContext, Result, TemplateSpecified);
else if (TemplateSpecified &&
Actions.ActOnTemplateName(
getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
EnteringContext, Template,
/*AllowInjectedClassName*/ true) == TNK_Non_template)
return true;
return false;
}
// unqualified-id:
// template-id (already parsed and annotated)
if (Tok.is(tok::annot_template_id)) {
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
// FIXME: Consider passing invalid template-ids on to callers; they may
// be able to recover better than we can.
if (TemplateId->isInvalid()) {
ConsumeAnnotationToken();
return true;
}
// If the template-name names the current class, then this is a constructor
if (AllowConstructorName && TemplateId->Name &&
Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
if (SS.isSet()) {
// C++ [class.qual]p2 specifies that a qualified template-name
// is taken as the constructor name where a constructor can be
// declared. Thus, the template arguments are extraneous, so
// complain about them and remove them entirely.
Diag(TemplateId->TemplateNameLoc,
diag::err_out_of_line_constructor_template_id)
<< TemplateId->Name
<< FixItHint::CreateRemoval(
SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
ParsedType Ty = Actions.getConstructorName(
*TemplateId->Name, TemplateId->TemplateNameLoc, getCurScope(), SS,
EnteringContext);
if (!Ty)
return true;
Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
TemplateId->RAngleLoc);
ConsumeAnnotationToken();
return false;
}
Result.setConstructorTemplateId(TemplateId);
ConsumeAnnotationToken();
return false;
}
// We have already parsed a template-id; consume the annotation token as
// our unqualified-id.
Result.setTemplateId(TemplateId);
SourceLocation TemplateLoc = TemplateId->TemplateKWLoc;
if (TemplateLoc.isValid()) {
if (TemplateKWLoc && (ObjectType || SS.isSet()))
*TemplateKWLoc = TemplateLoc;
else
Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
<< FixItHint::CreateRemoval(TemplateLoc);
}
ConsumeAnnotationToken();
return false;
}
// unqualified-id:
// operator-function-id
// conversion-function-id
if (Tok.is(tok::kw_operator)) {
if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
return true;
// If we have an operator-function-id or a literal-operator-id and the next
// token is a '<', we may have a
//
// template-id:
// operator-function-id < template-argument-list[opt] >
TemplateTy Template;
if ((Result.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
Result.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) &&
Tok.is(tok::less))
return ParseUnqualifiedIdTemplateId(
SS, ObjectType, ObjectHadErrors,
TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), nullptr,
SourceLocation(), EnteringContext, Result, TemplateSpecified);
else if (TemplateSpecified &&
Actions.ActOnTemplateName(
getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
EnteringContext, Template,
/*AllowInjectedClassName*/ true) == TNK_Non_template)
return true;
return false;
}
if (getLangOpts().CPlusPlus &&
(AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
// C++ [expr.unary.op]p10:
// There is an ambiguity in the unary-expression ~X(), where X is a
// class-name. The ambiguity is resolved in favor of treating ~ as a
// unary complement rather than treating ~X as referring to a destructor.
// Parse the '~'.
SourceLocation TildeLoc = ConsumeToken();
if (TemplateSpecified) {
// C++ [temp.names]p3:
// A name prefixed by the keyword template shall be a template-id [...]
//
// A template-id cannot begin with a '~' token. This would never work
// anyway: x.~A<int>() would specify that the destructor is a template,
// not that 'A' is a template.
//
// FIXME: Suggest replacing the attempted destructor name with a correct
// destructor name and recover. (This is not trivial if this would become
// a pseudo-destructor name).
Diag(*TemplateKWLoc, diag::err_unexpected_template_in_destructor_name)
<< Tok.getLocation();
return true;
}
if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
DeclSpec DS(AttrFactory);
SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
if (ParsedType Type =
Actions.getDestructorTypeForDecltype(DS, ObjectType)) {
Result.setDestructorName(TildeLoc, Type, EndLoc);
return false;
}
return true;
}
// Parse the class-name.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_destructor_tilde_identifier);
return true;
}
// If the user wrote ~T::T, correct it to T::~T.
DeclaratorScopeObj DeclScopeObj(*this, SS);
if (NextToken().is(tok::coloncolon)) {
// Don't let ParseOptionalCXXScopeSpecifier() "correct"
// `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
// it will confuse this recovery logic.
ColonProtectionRAIIObject ColonRAII(*this, false);
if (SS.isSet()) {
AnnotateScopeToken(SS, /*NewAnnotation*/true);
SS.clear();
}
if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, ObjectHadErrors,
EnteringContext))
return true;
if (SS.isNotEmpty())
ObjectType = nullptr;
if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
!SS.isSet()) {
Diag(TildeLoc, diag::err_destructor_tilde_scope);
return true;
}
// Recover as if the tilde had been written before the identifier.
Diag(TildeLoc, diag::err_destructor_tilde_scope)
<< FixItHint::CreateRemoval(TildeLoc)
<< FixItHint::CreateInsertion(Tok.getLocation(), "~");
// Temporarily enter the scope for the rest of this function.
if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
DeclScopeObj.EnterDeclaratorScope();
}
// Parse the class-name (or template-name in a simple-template-id).
IdentifierInfo *ClassName = Tok.getIdentifierInfo();
SourceLocation ClassNameLoc = ConsumeToken();
if (Tok.is(tok::less)) {
Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
return ParseUnqualifiedIdTemplateId(
SS, ObjectType, ObjectHadErrors,
TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), ClassName,
ClassNameLoc, EnteringContext, Result, TemplateSpecified);
}
// Note that this is a destructor name.
ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
ClassNameLoc, getCurScope(),
SS, ObjectType,
EnteringContext);
if (!Ty)
return true;
Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
return false;
}
Diag(Tok, diag::err_expected_unqualified_id)
<< getLangOpts().CPlusPlus;
return true;
}
/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
/// memory in a typesafe manner and call constructors.
///
/// This method is called to parse the new expression after the optional :: has
/// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
/// is its location. Otherwise, "Start" is the location of the 'new' token.
///
/// new-expression:
/// '::'[opt] 'new' new-placement[opt] new-type-id
/// new-initializer[opt]
/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
/// new-initializer[opt]
///
/// new-placement:
/// '(' expression-list ')'
///
/// new-type-id:
/// type-specifier-seq new-declarator[opt]
/// [GNU] attributes type-specifier-seq new-declarator[opt]
///
/// new-declarator:
/// ptr-operator new-declarator[opt]
/// direct-new-declarator
///
/// new-initializer:
/// '(' expression-list[opt] ')'
/// [C++0x] braced-init-list
///
ExprResult
Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
assert(Tok.is(tok::kw_new) && "expected 'new' token");
ConsumeToken(); // Consume 'new'
// A '(' now can be a new-placement or the '(' wrapping the type-id in the
// second form of new-expression. It can't be a new-type-id.
ExprVector PlacementArgs;
SourceLocation PlacementLParen, PlacementRParen;
SourceRange TypeIdParens;
DeclSpec DS(AttrFactory);
Declarator DeclaratorInfo(DS, DeclaratorContext::CXXNew);
if (Tok.is(tok::l_paren)) {
// If it turns out to be a placement, we change the type location.
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
PlacementLParen = T.getOpenLocation();
if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
return ExprError();
}
T.consumeClose();
PlacementRParen = T.getCloseLocation();
if (PlacementRParen.isInvalid()) {
SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
return ExprError();
}
if (PlacementArgs.empty()) {
// Reset the placement locations. There was no placement.
TypeIdParens = T.getRange();
PlacementLParen = PlacementRParen = SourceLocation();
} else {
// We still need the type.
if (Tok.is(tok::l_paren)) {
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
MaybeParseGNUAttributes(DeclaratorInfo);
ParseSpecifierQualifierList(DS);
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
ParseDeclarator(DeclaratorInfo);
T.consumeClose();
TypeIdParens = T.getRange();
} else {
MaybeParseGNUAttributes(DeclaratorInfo);
if (ParseCXXTypeSpecifierSeq(DS))
DeclaratorInfo.setInvalidType(true);
else {
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
ParseDeclaratorInternal(DeclaratorInfo,
&Parser::ParseDirectNewDeclarator);
}
}
}
} else {
// A new-type-id is a simplified type-id, where essentially the
// direct-declarator is replaced by a direct-new-declarator.
MaybeParseGNUAttributes(DeclaratorInfo);
if (ParseCXXTypeSpecifierSeq(DS))
DeclaratorInfo.setInvalidType(true);
else {
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
ParseDeclaratorInternal(DeclaratorInfo,
&Parser::ParseDirectNewDeclarator);
}
}
if (DeclaratorInfo.isInvalidType()) {
SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
return ExprError();
}
ExprResult Initializer;
if (Tok.is(tok::l_paren)) {
SourceLocation ConstructorLParen, ConstructorRParen;
ExprVector ConstructorArgs;
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
ConstructorLParen = T.getOpenLocation();
if (Tok.isNot(tok::r_paren)) {
CommaLocsTy CommaLocs;
auto RunSignatureHelp = [&]() {
ParsedType TypeRep =
Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
QualType PreferredType;
// ActOnTypeName might adjust DeclaratorInfo and return a null type even
// the passing DeclaratorInfo is valid, e.g. running SignatureHelp on
// `new decltype(invalid) (^)`.
if (TypeRep)
PreferredType = Actions.ProduceConstructorSignatureHelp(
TypeRep.get()->getCanonicalTypeInternal(),
DeclaratorInfo.getEndLoc(), ConstructorArgs, ConstructorLParen,
/*Braced=*/false);
CalledSignatureHelp = true;
return PreferredType;
};
if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] {
PreferredType.enterFunctionArgument(Tok.getLocation(),
RunSignatureHelp);
})) {
if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
RunSignatureHelp();
SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
return ExprError();
}
}
T.consumeClose();
ConstructorRParen = T.getCloseLocation();
if (ConstructorRParen.isInvalid()) {
SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
return ExprError();
}
Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
ConstructorRParen,
ConstructorArgs);
} else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
Diag(Tok.getLocation(),
diag::warn_cxx98_compat_generalized_initializer_lists);
Initializer = ParseBraceInitializer();
}
if (Initializer.isInvalid())
return Initializer;
return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
PlacementArgs, PlacementRParen,
TypeIdParens, DeclaratorInfo, Initializer.get());
}
/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
/// passed to ParseDeclaratorInternal.
///
/// direct-new-declarator:
/// '[' expression[opt] ']'
/// direct-new-declarator '[' constant-expression ']'
///
void Parser::ParseDirectNewDeclarator(Declarator &D) {
// Parse the array dimensions.
bool First = true;
while (Tok.is(tok::l_square)) {
// An array-size expression can't start with a lambda.
if (CheckProhibitedCXX11Attribute())
continue;
BalancedDelimiterTracker T(*this, tok::l_square);
T.consumeOpen();
ExprResult Size =
First ? (Tok.is(tok::r_square) ? ExprResult() : ParseExpression())
: ParseConstantExpression();
if (Size.isInvalid()) {
// Recover
SkipUntil(tok::r_square, StopAtSemi);
return;
}
First = false;
T.consumeClose();
// Attributes here appertain to the array type. C++11 [expr.new]p5.
ParsedAttributes Attrs(AttrFactory);
MaybeParseCXX11Attributes(Attrs);
D.AddTypeInfo(DeclaratorChunk::getArray(0,
/*isStatic=*/false, /*isStar=*/false,
Size.get(), T.getOpenLocation(),
T.getCloseLocation()),
std::move(Attrs), T.getCloseLocation());
if (T.getCloseLocation().isInvalid())
return;
}
}
/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
/// This ambiguity appears in the syntax of the C++ new operator.
///
/// new-expression:
/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
/// new-initializer[opt]
///
/// new-placement:
/// '(' expression-list ')'
///
bool Parser::ParseExpressionListOrTypeId(
SmallVectorImpl<Expr*> &PlacementArgs,
Declarator &D) {
// The '(' was already consumed.
if (isTypeIdInParens()) {
ParseSpecifierQualifierList(D.getMutableDeclSpec());
D.SetSourceRange(D.getDeclSpec().getSourceRange());
ParseDeclarator(D);
return D.isInvalidType();
}
// It's not a type, it has to be an expression list.
// Discard the comma locations - ActOnCXXNew has enough parameters.
CommaLocsTy CommaLocs;
return ParseExpressionList(PlacementArgs, CommaLocs);
}
/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
/// to free memory allocated by new.
///
/// This method is called to parse the 'delete' expression after the optional
/// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
/// and "Start" is its location. Otherwise, "Start" is the location of the
/// 'delete' token.
///
/// delete-expression:
/// '::'[opt] 'delete' cast-expression
/// '::'[opt] 'delete' '[' ']' cast-expression
ExprResult
Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
ConsumeToken(); // Consume 'delete'
// Array delete?
bool ArrayDelete = false;
if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
// C++11 [expr.delete]p1:
// Whenever the delete keyword is followed by empty square brackets, it
// shall be interpreted as [array delete].
// [Footnote: A lambda expression with a lambda-introducer that consists
// of empty square brackets can follow the delete keyword if
// the lambda expression is enclosed in parentheses.]
const Token Next = GetLookAheadToken(2);
// Basic lookahead to check if we have a lambda expression.
if (Next.isOneOf(tok::l_brace, tok::less) ||
(Next.is(tok::l_paren) &&
(GetLookAheadToken(3).is(tok::r_paren) ||
(GetLookAheadToken(3).is(tok::identifier) &&
GetLookAheadToken(4).is(tok::identifier))))) {
TentativeParsingAction TPA(*this);
SourceLocation LSquareLoc = Tok.getLocation();
SourceLocation RSquareLoc = NextToken().getLocation();
// SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this
// case.
SkipUntil({tok::l_brace, tok::less}, StopBeforeMatch);
SourceLocation RBraceLoc;
bool EmitFixIt = false;
if (Tok.is(tok::l_brace)) {
ConsumeBrace();
SkipUntil(tok::r_brace, StopBeforeMatch);
RBraceLoc = Tok.getLocation();
EmitFixIt = true;
}
TPA.Revert();
if (EmitFixIt)
Diag(Start, diag::err_lambda_after_delete)
<< SourceRange(Start, RSquareLoc)
<< FixItHint::CreateInsertion(LSquareLoc, "(")
<< FixItHint::CreateInsertion(
Lexer::getLocForEndOfToken(
RBraceLoc, 0, Actions.getSourceManager(), getLangOpts()),
")");
else
Diag(Start, diag::err_lambda_after_delete)
<< SourceRange(Start, RSquareLoc);
// Warn that the non-capturing lambda isn't surrounded by parentheses
// to disambiguate it from 'delete[]'.
ExprResult Lambda = ParseLambdaExpression();
if (Lambda.isInvalid())
return ExprError();
// Evaluate any postfix expressions used on the lambda.
Lambda = ParsePostfixExpressionSuffix(Lambda);
if (Lambda.isInvalid())
return ExprError();
return Actions.ActOnCXXDelete(Start, UseGlobal, /*ArrayForm=*/false,
Lambda.get());
}
ArrayDelete = true;
BalancedDelimiterTracker T(*this, tok::l_square);
T.consumeOpen();
T.consumeClose();
if (T.getCloseLocation().isInvalid())
return ExprError();
}
ExprResult Operand(ParseCastExpression(AnyCastExpr));
if (Operand.isInvalid())
return Operand;
return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
}
/// ParseRequiresExpression - Parse a C++2a requires-expression.
/// C++2a [expr.prim.req]p1
/// A requires-expression provides a concise way to express requirements on
/// template arguments. A requirement is one that can be checked by name
/// lookup (6.4) or by checking properties of types and expressions.
///
/// requires-expression:
/// 'requires' requirement-parameter-list[opt] requirement-body
///
/// requirement-parameter-list:
/// '(' parameter-declaration-clause[opt] ')'
///
/// requirement-body:
/// '{' requirement-seq '}'
///
/// requirement-seq:
/// requirement
/// requirement-seq requirement
///
/// requirement:
/// simple-requirement
/// type-requirement
/// compound-requirement
/// nested-requirement
ExprResult Parser::ParseRequiresExpression() {
assert(Tok.is(tok::kw_requires) && "Expected 'requires' keyword");
SourceLocation RequiresKWLoc = ConsumeToken(); // Consume 'requires'
llvm::SmallVector<ParmVarDecl *, 2> LocalParameterDecls;
if (Tok.is(tok::l_paren)) {
// requirement parameter list is present.
ParseScope LocalParametersScope(this, Scope::FunctionPrototypeScope |
Scope::DeclScope);
BalancedDelimiterTracker Parens(*this, tok::l_paren);
Parens.consumeOpen();
if (!Tok.is(tok::r_paren)) {
ParsedAttributes FirstArgAttrs(getAttrFactory());
SourceLocation EllipsisLoc;
llvm::SmallVector<DeclaratorChunk::ParamInfo, 2> LocalParameters;
ParseParameterDeclarationClause(DeclaratorContext::RequiresExpr,
FirstArgAttrs, LocalParameters,
EllipsisLoc);
if (EllipsisLoc.isValid())
Diag(EllipsisLoc, diag::err_requires_expr_parameter_list_ellipsis);
for (auto &ParamInfo : LocalParameters)
LocalParameterDecls.push_back(cast<ParmVarDecl>(ParamInfo.Param));
}
Parens.consumeClose();
}
BalancedDelimiterTracker Braces(*this, tok::l_brace);
if (Braces.expectAndConsume())
return ExprError();
// Start of requirement list
llvm::SmallVector<concepts::Requirement *, 2> Requirements;
// C++2a [expr.prim.req]p2
// Expressions appearing within a requirement-body are unevaluated operands.
EnterExpressionEvaluationContext Ctx(
Actions, Sema::ExpressionEvaluationContext::Unevaluated);
ParseScope BodyScope(this, Scope::DeclScope);
RequiresExprBodyDecl *Body = Actions.ActOnStartRequiresExpr(
RequiresKWLoc, LocalParameterDecls, getCurScope());
if (Tok.is(tok::r_brace)) {
// Grammar does not allow an empty body.
// requirement-body:
// { requirement-seq }
// requirement-seq:
// requirement
// requirement-seq requirement
Diag(Tok, diag::err_empty_requires_expr);
// Continue anyway and produce a requires expr with no requirements.
} else {
while (!Tok.is(tok::r_brace)) {
switch (Tok.getKind()) {
case tok::l_brace: {
// Compound requirement
// C++ [expr.prim.req.compound]
// compound-requirement:
// '{' expression '}' 'noexcept'[opt]
// return-type-requirement[opt] ';'
// return-type-requirement:
// trailing-return-type
// '->' cv-qualifier-seq[opt] constrained-parameter
// cv-qualifier-seq[opt] abstract-declarator[opt]
BalancedDelimiterTracker ExprBraces(*this, tok::l_brace);
ExprBraces.consumeOpen();
ExprResult Expression =
Actions.CorrectDelayedTyposInExpr(ParseExpression());
if (!Expression.isUsable()) {
ExprBraces.skipToEnd();
SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
break;
}
if (ExprBraces.consumeClose())
ExprBraces.skipToEnd();
concepts::Requirement *Req = nullptr;
SourceLocation NoexceptLoc;
TryConsumeToken(tok::kw_noexcept, NoexceptLoc);
if (Tok.is(tok::semi)) {
Req = Actions.ActOnCompoundRequirement(Expression.get(), NoexceptLoc);
if (Req)
Requirements.push_back(Req);
break;
}
if (!TryConsumeToken(tok::arrow))
// User probably forgot the arrow, remind them and try to continue.
Diag(Tok, diag::err_requires_expr_missing_arrow)
<< FixItHint::CreateInsertion(Tok.getLocation(), "->");
// Try to parse a 'type-constraint'
if (TryAnnotateTypeConstraint()) {
SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
break;
}
if (!isTypeConstraintAnnotation()) {
Diag(Tok, diag::err_requires_expr_expected_type_constraint);
SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
break;
}
CXXScopeSpec SS;
if (Tok.is(tok::annot_cxxscope)) {
Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
Tok.getAnnotationRange(),
SS);
ConsumeAnnotationToken();
}
Req = Actions.ActOnCompoundRequirement(
Expression.get(), NoexceptLoc, SS, takeTemplateIdAnnotation(Tok),
TemplateParameterDepth);
ConsumeAnnotationToken();
if (Req)
Requirements.push_back(Req);
break;
}
default: {
bool PossibleRequiresExprInSimpleRequirement = false;
if (Tok.is(tok::kw_requires)) {
auto IsNestedRequirement = [&] {
RevertingTentativeParsingAction TPA(*this);
ConsumeToken(); // 'requires'
if (Tok.is(tok::l_brace))
// This is a requires expression
// requires (T t) {
// requires { t++; };
// ... ^
// }
return false;
if (Tok.is(tok::l_paren)) {
// This might be the parameter list of a requires expression
ConsumeParen();
auto Res = TryParseParameterDeclarationClause();
if (Res != TPResult::False) {
// Skip to the closing parenthesis
// FIXME: Don't traverse these tokens twice (here and in
// TryParseParameterDeclarationClause).
unsigned Depth = 1;
while (Depth != 0) {
if (Tok.is(tok::l_paren))
Depth++;
else if (Tok.is(tok::r_paren))
Depth--;
ConsumeAnyToken();
}
// requires (T t) {
// requires () ?
// ... ^
// - OR -
// requires (int x) ?
// ... ^
// }
if (Tok.is(tok::l_brace))
// requires (...) {
// ^ - a requires expression as a
// simple-requirement.
return false;
}
}
return true;
};
if (IsNestedRequirement()) {
ConsumeToken();
// Nested requirement
// C++ [expr.prim.req.nested]
// nested-requirement:
// 'requires' constraint-expression ';'
ExprResult ConstraintExpr =
Actions.CorrectDelayedTyposInExpr(ParseConstraintExpression());
if (ConstraintExpr.isInvalid() || !ConstraintExpr.isUsable()) {
SkipUntil(tok::semi, tok::r_brace,
SkipUntilFlags::StopBeforeMatch);
break;
}
if (auto *Req =
Actions.ActOnNestedRequirement(ConstraintExpr.get()))
Requirements.push_back(Req);
else {
SkipUntil(tok::semi, tok::r_brace,
SkipUntilFlags::StopBeforeMatch);
break;
}
break;
} else
PossibleRequiresExprInSimpleRequirement = true;
} else if (Tok.is(tok::kw_typename)) {
// This might be 'typename T::value_type;' (a type requirement) or
// 'typename T::value_type{};' (a simple requirement).
TentativeParsingAction TPA(*this);
// We need to consume the typename to allow 'requires { typename a; }'
SourceLocation TypenameKWLoc = ConsumeToken();
if (TryAnnotateOptionalCXXScopeToken()) {
TPA.Commit();
SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
break;
}
CXXScopeSpec SS;
if (Tok.is(tok::annot_cxxscope)) {
Actions.RestoreNestedNameSpecifierAnnotation(
Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
ConsumeAnnotationToken();
}
if (Tok.isOneOf(tok::identifier, tok::annot_template_id) &&
!NextToken().isOneOf(tok::l_brace, tok::l_paren)) {
TPA.Commit();
SourceLocation NameLoc = Tok.getLocation();
IdentifierInfo *II = nullptr;
TemplateIdAnnotation *TemplateId = nullptr;
if (Tok.is(tok::identifier)) {
II = Tok.getIdentifierInfo();
ConsumeToken();
} else {
TemplateId = takeTemplateIdAnnotation(Tok);
ConsumeAnnotationToken();
if (TemplateId->isInvalid())
break;
}
if (auto *Req = Actions.ActOnTypeRequirement(TypenameKWLoc, SS,
NameLoc, II,
TemplateId)) {
Requirements.push_back(Req);
}
break;
}
TPA.Revert();
}
// Simple requirement
// C++ [expr.prim.req.simple]
// simple-requirement:
// expression ';'
SourceLocation StartLoc = Tok.getLocation();
ExprResult Expression =
Actions.CorrectDelayedTyposInExpr(ParseExpression());
if (!Expression.isUsable()) {
SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
break;
}
if (!Expression.isInvalid() && PossibleRequiresExprInSimpleRequirement)
Diag(StartLoc, diag::err_requires_expr_in_simple_requirement)
<< FixItHint::CreateInsertion(StartLoc, "requires");
if (auto *Req = Actions.ActOnSimpleRequirement(Expression.get()))
Requirements.push_back(Req);
else {
SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
break;
}
// User may have tried to put some compound requirement stuff here
if (Tok.is(tok::kw_noexcept)) {
Diag(Tok, diag::err_requires_expr_simple_requirement_noexcept)
<< FixItHint::CreateInsertion(StartLoc, "{")
<< FixItHint::CreateInsertion(Tok.getLocation(), "}");
SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
break;
}
break;
}
}
if (ExpectAndConsumeSemi(diag::err_expected_semi_requirement)) {
SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
TryConsumeToken(tok::semi);
break;
}
}
if (Requirements.empty()) {
// Don't emit an empty requires expr here to avoid confusing the user with
// other diagnostics quoting an empty requires expression they never
// wrote.
Braces.consumeClose();
Actions.ActOnFinishRequiresExpr();
return ExprError();
}
}
Braces.consumeClose();
Actions.ActOnFinishRequiresExpr();
return Actions.ActOnRequiresExpr(RequiresKWLoc, Body, LocalParameterDecls,
Requirements, Braces.getCloseLocation());
}
static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
switch (kind) {
default: llvm_unreachable("Not a known type trait");
#define TYPE_TRAIT_1(Spelling, Name, Key) \
case tok::kw_ ## Spelling: return UTT_ ## Name;
#define TYPE_TRAIT_2(Spelling, Name, Key) \
case tok::kw_ ## Spelling: return BTT_ ## Name;
#include "clang/Basic/TokenKinds.def"
#define TYPE_TRAIT_N(Spelling, Name, Key) \
case tok::kw_ ## Spelling: return TT_ ## Name;
#include "clang/Basic/TokenKinds.def"
}
}
static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
switch (kind) {
default:
llvm_unreachable("Not a known array type trait");
#define ARRAY_TYPE_TRAIT(Spelling, Name, Key) \
case tok::kw_##Spelling: \
return ATT_##Name;
#include "clang/Basic/TokenKinds.def"
}
}
static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
switch (kind) {
default:
llvm_unreachable("Not a known unary expression trait.");
#define EXPRESSION_TRAIT(Spelling, Name, Key) \
case tok::kw_##Spelling: \
return ET_##Name;
#include "clang/Basic/TokenKinds.def"
}
}
static unsigned TypeTraitArity(tok::TokenKind kind) {
switch (kind) {
default: llvm_unreachable("Not a known type trait");
#define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
#include "clang/Basic/TokenKinds.def"
}
}
/// Parse the built-in type-trait pseudo-functions that allow
/// implementation of the TR1/C++11 type traits templates.
///
/// primary-expression:
/// unary-type-trait '(' type-id ')'
/// binary-type-trait '(' type-id ',' type-id ')'
/// type-trait '(' type-id-seq ')'
///
/// type-id-seq:
/// type-id ...[opt] type-id-seq[opt]
///
ExprResult Parser::ParseTypeTrait() {
tok::TokenKind Kind = Tok.getKind();
unsigned Arity = TypeTraitArity(Kind);
SourceLocation Loc = ConsumeToken();
BalancedDelimiterTracker Parens(*this, tok::l_paren);
if (Parens.expectAndConsume())
return ExprError();
SmallVector<ParsedType, 2> Args;
do {
// Parse the next type.
TypeResult Ty = ParseTypeName();
if (Ty.isInvalid()) {
Parens.skipToEnd();
return ExprError();
}
// Parse the ellipsis, if present.
if (Tok.is(tok::ellipsis)) {
Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
if (Ty.isInvalid()) {
Parens.skipToEnd();
return ExprError();
}
}
// Add this type to the list of arguments.
Args.push_back(Ty.get());
} while (TryConsumeToken(tok::comma));
if (Parens.consumeClose())
return ExprError();
SourceLocation EndLoc = Parens.getCloseLocation();
if (Arity && Args.size() != Arity) {
Diag(EndLoc, diag::err_type_trait_arity)
<< Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
return ExprError();
}
if (!Arity && Args.empty()) {
Diag(EndLoc, diag::err_type_trait_arity)
<< 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
return ExprError();
}
return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
}
/// ParseArrayTypeTrait - Parse the built-in array type-trait
/// pseudo-functions.
///
/// primary-expression:
/// [Embarcadero] '__array_rank' '(' type-id ')'
/// [Embarcadero] '__array_extent' '(' type-id ',' expression ')'
///
ExprResult Parser::ParseArrayTypeTrait() {
ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
SourceLocation Loc = ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume())
return ExprError();
TypeResult Ty = ParseTypeName();
if (Ty.isInvalid()) {
SkipUntil(tok::comma, StopAtSemi);
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
switch (ATT) {
case ATT_ArrayRank: {
T.consumeClose();
return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
T.getCloseLocation());
}
case ATT_ArrayExtent: {
if (ExpectAndConsume(tok::comma)) {
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
ExprResult DimExpr = ParseExpression();
T.consumeClose();
return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
T.getCloseLocation());
}
}
llvm_unreachable("Invalid ArrayTypeTrait!");
}
/// ParseExpressionTrait - Parse built-in expression-trait
/// pseudo-functions like __is_lvalue_expr( xxx ).
///
/// primary-expression:
/// [Embarcadero] expression-trait '(' expression ')'
///
ExprResult Parser::ParseExpressionTrait() {
ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
SourceLocation Loc = ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume())
return ExprError();
ExprResult Expr = ParseExpression();
T.consumeClose();
return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
T.getCloseLocation());
}
/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
/// based on the context past the parens.
ExprResult
Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
ParsedType &CastTy,
BalancedDelimiterTracker &Tracker,
ColonProtectionRAIIObject &ColonProt) {
assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
assert(isTypeIdInParens() && "Not a type-id!");
ExprResult Result(true);
CastTy = nullptr;
// We need to disambiguate a very ugly part of the C++ syntax:
//
// (T())x; - type-id
// (T())*x; - type-id
// (T())/x; - expression
// (T()); - expression
//
// The bad news is that we cannot use the specialized tentative parser, since
// it can only verify that the thing inside the parens can be parsed as
// type-id, it is not useful for determining the context past the parens.
//
// The good news is that the parser can disambiguate this part without
// making any unnecessary Action calls.
//
// It uses a scheme similar to parsing inline methods. The parenthesized
// tokens are cached, the context that follows is determined (possibly by
// parsing a cast-expression), and then we re-introduce the cached tokens
// into the token stream and parse them appropriately.
ParenParseOption ParseAs;
CachedTokens Toks;
// Store the tokens of the parentheses. We will parse them after we determine
// the context that follows them.
if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
// We didn't find the ')' we expected.
Tracker.consumeClose();
return ExprError();
}
if (Tok.is(tok::l_brace)) {
ParseAs = CompoundLiteral;
} else {
bool NotCastExpr;
if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
NotCastExpr = true;
} else {
// Try parsing the cast-expression that may follow.
// If it is not a cast-expression, NotCastExpr will be true and no token
// will be consumed.
ColonProt.restore();
Result = ParseCastExpression(AnyCastExpr,
false/*isAddressofOperand*/,
NotCastExpr,
// type-id has priority.
IsTypeCast);
}
// If we parsed a cast-expression, it's really a type-id, otherwise it's
// an expression.
ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
}
// Create a fake EOF to mark end of Toks buffer.
Token AttrEnd;
AttrEnd.startToken();
AttrEnd.setKind(tok::eof);
AttrEnd.setLocation(Tok.getLocation());
AttrEnd.setEofData(Toks.data());
Toks.push_back(AttrEnd);
// The current token should go after the cached tokens.
Toks.push_back(Tok);
// Re-enter the stored parenthesized tokens into the token stream, so we may
// parse them now.
PP.EnterTokenStream(Toks, /*DisableMacroExpansion*/ true,
/*IsReinject*/ true);
// Drop the current token and bring the first cached one. It's the same token
// as when we entered this function.
ConsumeAnyToken();
if (ParseAs >= CompoundLiteral) {
// Parse the type declarator.
DeclSpec DS(AttrFactory);
Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
{
ColonProtectionRAIIObject InnerColonProtection(*this);
ParseSpecifierQualifierList(DS);
ParseDeclarator(DeclaratorInfo);
}
// Match the ')'.
Tracker.consumeClose();
ColonProt.restore();
// Consume EOF marker for Toks buffer.
assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
ConsumeAnyToken();
if (ParseAs == CompoundLiteral) {
ExprType = CompoundLiteral;
if (DeclaratorInfo.isInvalidType())
return ExprError();
TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
return ParseCompoundLiteralExpression(Ty.get(),
Tracker.getOpenLocation(),
Tracker.getCloseLocation());
}
// We parsed '(' type-id ')' and the thing after it wasn't a '{'.
assert(ParseAs == CastExpr);
if (DeclaratorInfo.isInvalidType())
return ExprError();
// Result is what ParseCastExpression returned earlier.
if (!Result.isInvalid())
Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
DeclaratorInfo, CastTy,
Tracker.getCloseLocation(), Result.get());
return Result;
}
// Not a compound literal, and not followed by a cast-expression.
assert(ParseAs == SimpleExpr);
ExprType = SimpleExpr;
Result = ParseExpression();
if (!Result.isInvalid() && Tok.is(tok::r_paren))
Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
Tok.getLocation(), Result.get());
// Match the ')'.
if (Result.isInvalid()) {
while (Tok.isNot(tok::eof))
ConsumeAnyToken();
assert(Tok.getEofData() == AttrEnd.getEofData());
ConsumeAnyToken();
return ExprError();
}
Tracker.consumeClose();
// Consume EOF marker for Toks buffer.
assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
ConsumeAnyToken();
return Result;
}
/// Parse a __builtin_bit_cast(T, E).
ExprResult Parser::ParseBuiltinBitCast() {
SourceLocation KWLoc = ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume(diag::err_expected_lparen_after, "__builtin_bit_cast"))
return ExprError();
// Parse the common declaration-specifiers piece.
DeclSpec DS(AttrFactory);
ParseSpecifierQualifierList(DS);
// Parse the abstract-declarator, if present.
Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
ParseDeclarator(DeclaratorInfo);
if (ExpectAndConsume(tok::comma)) {
Diag(Tok.getLocation(), diag::err_expected) << tok::comma;
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
ExprResult Operand = ParseExpression();
if (T.consumeClose())
return ExprError();
if (Operand.isInvalid() || DeclaratorInfo.isInvalidType())
return ExprError();
return Actions.ActOnBuiltinBitCastExpr(KWLoc, DeclaratorInfo, Operand,
T.getCloseLocation());
}