llvm-project/clang/lib/AST/ComputeDependence.cpp

890 lines
32 KiB
C++

//===- ComputeDependence.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ComputeDependence.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/DependenceFlags.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprConcepts.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprOpenMP.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "llvm/ADT/ArrayRef.h"
using namespace clang;
ExprDependence clang::computeDependence(FullExpr *E) {
return E->getSubExpr()->getDependence();
}
ExprDependence clang::computeDependence(OpaqueValueExpr *E) {
auto D = toExprDependenceForImpliedType(E->getType()->getDependence());
if (auto *S = E->getSourceExpr())
D |= S->getDependence();
assert(!(D & ExprDependence::UnexpandedPack));
return D;
}
ExprDependence clang::computeDependence(ParenExpr *E) {
return E->getSubExpr()->getDependence();
}
ExprDependence clang::computeDependence(UnaryOperator *E,
const ASTContext &Ctx) {
ExprDependence Dep =
// FIXME: Do we need to look at the type?
toExprDependenceForImpliedType(E->getType()->getDependence()) |
E->getSubExpr()->getDependence();
// C++ [temp.dep.constexpr]p5:
// An expression of the form & qualified-id where the qualified-id names a
// dependent member of the current instantiation is value-dependent. An
// expression of the form & cast-expression is also value-dependent if
// evaluating cast-expression as a core constant expression succeeds and
// the result of the evaluation refers to a templated entity that is an
// object with static or thread storage duration or a member function.
//
// What this amounts to is: constant-evaluate the operand and check whether it
// refers to a templated entity other than a variable with local storage.
if (Ctx.getLangOpts().CPlusPlus && E->getOpcode() == UO_AddrOf &&
!(Dep & ExprDependence::Value)) {
Expr::EvalResult Result;
SmallVector<PartialDiagnosticAt, 8> Diag;
Result.Diag = &Diag;
// FIXME: This doesn't enforce the C++98 constant expression rules.
if (E->getSubExpr()->EvaluateAsConstantExpr(Result, Ctx) && Diag.empty() &&
Result.Val.isLValue()) {
auto *VD = Result.Val.getLValueBase().dyn_cast<const ValueDecl *>();
if (VD && VD->isTemplated()) {
auto *VarD = dyn_cast<VarDecl>(VD);
if (!VarD || !VarD->hasLocalStorage())
Dep |= ExprDependence::Value;
}
}
}
return Dep;
}
ExprDependence clang::computeDependence(UnaryExprOrTypeTraitExpr *E) {
// Never type-dependent (C++ [temp.dep.expr]p3).
// Value-dependent if the argument is type-dependent.
if (E->isArgumentType())
return turnTypeToValueDependence(
toExprDependenceAsWritten(E->getArgumentType()->getDependence()));
auto ArgDeps = E->getArgumentExpr()->getDependence();
auto Deps = ArgDeps & ~ExprDependence::TypeValue;
// Value-dependent if the argument is type-dependent.
if (ArgDeps & ExprDependence::Type)
Deps |= ExprDependence::Value;
// Check to see if we are in the situation where alignof(decl) should be
// dependent because decl's alignment is dependent.
auto ExprKind = E->getKind();
if (ExprKind != UETT_AlignOf && ExprKind != UETT_PreferredAlignOf)
return Deps;
if ((Deps & ExprDependence::Value) && (Deps & ExprDependence::Instantiation))
return Deps;
auto *NoParens = E->getArgumentExpr()->IgnoreParens();
const ValueDecl *D = nullptr;
if (const auto *DRE = dyn_cast<DeclRefExpr>(NoParens))
D = DRE->getDecl();
else if (const auto *ME = dyn_cast<MemberExpr>(NoParens))
D = ME->getMemberDecl();
if (!D)
return Deps;
for (const auto *I : D->specific_attrs<AlignedAttr>()) {
if (I->isAlignmentErrorDependent())
Deps |= ExprDependence::Error;
if (I->isAlignmentDependent())
Deps |= ExprDependence::ValueInstantiation;
}
return Deps;
}
ExprDependence clang::computeDependence(ArraySubscriptExpr *E) {
return E->getLHS()->getDependence() | E->getRHS()->getDependence();
}
ExprDependence clang::computeDependence(MatrixSubscriptExpr *E) {
return E->getBase()->getDependence() | E->getRowIdx()->getDependence() |
(E->getColumnIdx() ? E->getColumnIdx()->getDependence()
: ExprDependence::None);
}
ExprDependence clang::computeDependence(CompoundLiteralExpr *E) {
return toExprDependenceAsWritten(
E->getTypeSourceInfo()->getType()->getDependence()) |
toExprDependenceForImpliedType(E->getType()->getDependence()) |
turnTypeToValueDependence(E->getInitializer()->getDependence());
}
ExprDependence clang::computeDependence(ImplicitCastExpr *E) {
// We model implicit conversions as combining the dependence of their
// subexpression, apart from its type, with the semantic portion of the
// target type.
ExprDependence D =
toExprDependenceForImpliedType(E->getType()->getDependence());
if (auto *S = E->getSubExpr())
D |= S->getDependence() & ~ExprDependence::Type;
return D;
}
ExprDependence clang::computeDependence(ExplicitCastExpr *E) {
// Cast expressions are type-dependent if the type is
// dependent (C++ [temp.dep.expr]p3).
// Cast expressions are value-dependent if the type is
// dependent or if the subexpression is value-dependent.
//
// Note that we also need to consider the dependence of the actual type here,
// because when the type as written is a deduced type, that type is not
// dependent, but it may be deduced as a dependent type.
ExprDependence D =
toExprDependenceAsWritten(
cast<ExplicitCastExpr>(E)->getTypeAsWritten()->getDependence()) |
toExprDependenceForImpliedType(E->getType()->getDependence());
if (auto *S = E->getSubExpr())
D |= S->getDependence() & ~ExprDependence::Type;
return D;
}
ExprDependence clang::computeDependence(BinaryOperator *E) {
return E->getLHS()->getDependence() | E->getRHS()->getDependence();
}
ExprDependence clang::computeDependence(ConditionalOperator *E) {
// The type of the conditional operator depends on the type of the conditional
// to support the GCC vector conditional extension. Additionally,
// [temp.dep.expr] does specify state that this should be dependent on ALL sub
// expressions.
return E->getCond()->getDependence() | E->getLHS()->getDependence() |
E->getRHS()->getDependence();
}
ExprDependence clang::computeDependence(BinaryConditionalOperator *E) {
return E->getCommon()->getDependence() | E->getFalseExpr()->getDependence();
}
ExprDependence clang::computeDependence(StmtExpr *E, unsigned TemplateDepth) {
auto D = toExprDependenceForImpliedType(E->getType()->getDependence());
// Propagate dependence of the result.
if (const auto *CompoundExprResult =
dyn_cast_or_null<ValueStmt>(E->getSubStmt()->getStmtExprResult()))
if (const Expr *ResultExpr = CompoundExprResult->getExprStmt())
D |= ResultExpr->getDependence();
// Note: we treat a statement-expression in a dependent context as always
// being value- and instantiation-dependent. This matches the behavior of
// lambda-expressions and GCC.
if (TemplateDepth)
D |= ExprDependence::ValueInstantiation;
// A param pack cannot be expanded over stmtexpr boundaries.
return D & ~ExprDependence::UnexpandedPack;
}
ExprDependence clang::computeDependence(ConvertVectorExpr *E) {
auto D = toExprDependenceAsWritten(
E->getTypeSourceInfo()->getType()->getDependence()) |
E->getSrcExpr()->getDependence();
if (!E->getType()->isDependentType())
D &= ~ExprDependence::Type;
return D;
}
ExprDependence clang::computeDependence(ChooseExpr *E) {
if (E->isConditionDependent())
return ExprDependence::TypeValueInstantiation |
E->getCond()->getDependence() | E->getLHS()->getDependence() |
E->getRHS()->getDependence();
auto Cond = E->getCond()->getDependence();
auto Active = E->getLHS()->getDependence();
auto Inactive = E->getRHS()->getDependence();
if (!E->isConditionTrue())
std::swap(Active, Inactive);
// Take type- and value- dependency from the active branch. Propagate all
// other flags from all branches.
return (Active & ExprDependence::TypeValue) |
((Cond | Active | Inactive) & ~ExprDependence::TypeValue);
}
ExprDependence clang::computeDependence(ParenListExpr *P) {
auto D = ExprDependence::None;
for (auto *E : P->exprs())
D |= E->getDependence();
return D;
}
ExprDependence clang::computeDependence(VAArgExpr *E) {
auto D = toExprDependenceAsWritten(
E->getWrittenTypeInfo()->getType()->getDependence()) |
(E->getSubExpr()->getDependence() & ~ExprDependence::Type);
return D & ~ExprDependence::Value;
}
ExprDependence clang::computeDependence(NoInitExpr *E) {
return toExprDependenceForImpliedType(E->getType()->getDependence()) &
(ExprDependence::Instantiation | ExprDependence::Error);
}
ExprDependence clang::computeDependence(ArrayInitLoopExpr *E) {
auto D = E->getCommonExpr()->getDependence() |
E->getSubExpr()->getDependence() | ExprDependence::Instantiation;
if (!E->getType()->isInstantiationDependentType())
D &= ~ExprDependence::Instantiation;
return turnTypeToValueDependence(D);
}
ExprDependence clang::computeDependence(ImplicitValueInitExpr *E) {
return toExprDependenceForImpliedType(E->getType()->getDependence()) &
ExprDependence::Instantiation;
}
ExprDependence clang::computeDependence(ExtVectorElementExpr *E) {
return E->getBase()->getDependence();
}
ExprDependence clang::computeDependence(BlockExpr *E) {
auto D = toExprDependenceForImpliedType(E->getType()->getDependence());
if (E->getBlockDecl()->isDependentContext())
D |= ExprDependence::Instantiation;
return D;
}
ExprDependence clang::computeDependence(AsTypeExpr *E) {
// FIXME: AsTypeExpr doesn't store the type as written. Assume the expression
// type has identical sugar for now, so is a type-as-written.
auto D = toExprDependenceAsWritten(E->getType()->getDependence()) |
E->getSrcExpr()->getDependence();
if (!E->getType()->isDependentType())
D &= ~ExprDependence::Type;
return D;
}
ExprDependence clang::computeDependence(CXXRewrittenBinaryOperator *E) {
return E->getSemanticForm()->getDependence();
}
ExprDependence clang::computeDependence(CXXStdInitializerListExpr *E) {
auto D = turnTypeToValueDependence(E->getSubExpr()->getDependence());
D |= toExprDependenceForImpliedType(E->getType()->getDependence());
return D;
}
ExprDependence clang::computeDependence(CXXTypeidExpr *E) {
auto D = ExprDependence::None;
if (E->isTypeOperand())
D = toExprDependenceAsWritten(
E->getTypeOperandSourceInfo()->getType()->getDependence());
else
D = turnTypeToValueDependence(E->getExprOperand()->getDependence());
// typeid is never type-dependent (C++ [temp.dep.expr]p4)
return D & ~ExprDependence::Type;
}
ExprDependence clang::computeDependence(MSPropertyRefExpr *E) {
return E->getBaseExpr()->getDependence() & ~ExprDependence::Type;
}
ExprDependence clang::computeDependence(MSPropertySubscriptExpr *E) {
return E->getIdx()->getDependence();
}
ExprDependence clang::computeDependence(CXXUuidofExpr *E) {
if (E->isTypeOperand())
return turnTypeToValueDependence(toExprDependenceAsWritten(
E->getTypeOperandSourceInfo()->getType()->getDependence()));
return turnTypeToValueDependence(E->getExprOperand()->getDependence());
}
ExprDependence clang::computeDependence(CXXThisExpr *E) {
// 'this' is type-dependent if the class type of the enclosing
// member function is dependent (C++ [temp.dep.expr]p2)
auto D = toExprDependenceForImpliedType(E->getType()->getDependence());
assert(!(D & ExprDependence::UnexpandedPack));
return D;
}
ExprDependence clang::computeDependence(CXXThrowExpr *E) {
auto *Op = E->getSubExpr();
if (!Op)
return ExprDependence::None;
return Op->getDependence() & ~ExprDependence::TypeValue;
}
ExprDependence clang::computeDependence(CXXBindTemporaryExpr *E) {
return E->getSubExpr()->getDependence();
}
ExprDependence clang::computeDependence(CXXScalarValueInitExpr *E) {
auto D = toExprDependenceForImpliedType(E->getType()->getDependence());
if (auto *TSI = E->getTypeSourceInfo())
D |= toExprDependenceAsWritten(TSI->getType()->getDependence());
return D;
}
ExprDependence clang::computeDependence(CXXDeleteExpr *E) {
return turnTypeToValueDependence(E->getArgument()->getDependence());
}
ExprDependence clang::computeDependence(ArrayTypeTraitExpr *E) {
auto D = toExprDependenceAsWritten(E->getQueriedType()->getDependence());
if (auto *Dim = E->getDimensionExpression())
D |= Dim->getDependence();
return turnTypeToValueDependence(D);
}
ExprDependence clang::computeDependence(ExpressionTraitExpr *E) {
// Never type-dependent.
auto D = E->getQueriedExpression()->getDependence() & ~ExprDependence::Type;
// Value-dependent if the argument is type-dependent.
if (E->getQueriedExpression()->isTypeDependent())
D |= ExprDependence::Value;
return D;
}
ExprDependence clang::computeDependence(CXXNoexceptExpr *E, CanThrowResult CT) {
auto D = E->getOperand()->getDependence() & ~ExprDependence::TypeValue;
if (CT == CT_Dependent)
D |= ExprDependence::ValueInstantiation;
return D;
}
ExprDependence clang::computeDependence(PackExpansionExpr *E) {
return (E->getPattern()->getDependence() & ~ExprDependence::UnexpandedPack) |
ExprDependence::TypeValueInstantiation;
}
ExprDependence clang::computeDependence(SubstNonTypeTemplateParmExpr *E) {
return E->getReplacement()->getDependence();
}
ExprDependence clang::computeDependence(CoroutineSuspendExpr *E) {
if (auto *Resume = E->getResumeExpr())
return (Resume->getDependence() &
(ExprDependence::TypeValue | ExprDependence::Error)) |
(E->getCommonExpr()->getDependence() & ~ExprDependence::TypeValue);
return E->getCommonExpr()->getDependence() |
ExprDependence::TypeValueInstantiation;
}
ExprDependence clang::computeDependence(DependentCoawaitExpr *E) {
return E->getOperand()->getDependence() |
ExprDependence::TypeValueInstantiation;
}
ExprDependence clang::computeDependence(ObjCBoxedExpr *E) {
return E->getSubExpr()->getDependence();
}
ExprDependence clang::computeDependence(ObjCEncodeExpr *E) {
return toExprDependenceAsWritten(E->getEncodedType()->getDependence());
}
ExprDependence clang::computeDependence(ObjCIvarRefExpr *E) {
return turnTypeToValueDependence(E->getBase()->getDependence());
}
ExprDependence clang::computeDependence(ObjCPropertyRefExpr *E) {
if (E->isObjectReceiver())
return E->getBase()->getDependence() & ~ExprDependence::Type;
if (E->isSuperReceiver())
return toExprDependenceForImpliedType(
E->getSuperReceiverType()->getDependence()) &
~ExprDependence::TypeValue;
assert(E->isClassReceiver());
return ExprDependence::None;
}
ExprDependence clang::computeDependence(ObjCSubscriptRefExpr *E) {
return E->getBaseExpr()->getDependence() | E->getKeyExpr()->getDependence();
}
ExprDependence clang::computeDependence(ObjCIsaExpr *E) {
return E->getBase()->getDependence() & ~ExprDependence::Type &
~ExprDependence::UnexpandedPack;
}
ExprDependence clang::computeDependence(ObjCIndirectCopyRestoreExpr *E) {
return E->getSubExpr()->getDependence();
}
ExprDependence clang::computeDependence(OMPArraySectionExpr *E) {
auto D = E->getBase()->getDependence();
if (auto *LB = E->getLowerBound())
D |= LB->getDependence();
if (auto *Len = E->getLength())
D |= Len->getDependence();
return D;
}
ExprDependence clang::computeDependence(OMPArrayShapingExpr *E) {
auto D = E->getBase()->getDependence();
for (Expr *Dim: E->getDimensions())
if (Dim)
D |= turnValueToTypeDependence(Dim->getDependence());
return D;
}
ExprDependence clang::computeDependence(OMPIteratorExpr *E) {
auto D = toExprDependenceForImpliedType(E->getType()->getDependence());
for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) {
if (auto *DD = cast_or_null<DeclaratorDecl>(E->getIteratorDecl(I))) {
// If the type is omitted, it's 'int', and is not dependent in any way.
if (auto *TSI = DD->getTypeSourceInfo()) {
D |= toExprDependenceAsWritten(TSI->getType()->getDependence());
}
}
OMPIteratorExpr::IteratorRange IR = E->getIteratorRange(I);
if (Expr *BE = IR.Begin)
D |= BE->getDependence();
if (Expr *EE = IR.End)
D |= EE->getDependence();
if (Expr *SE = IR.Step)
D |= SE->getDependence();
}
return D;
}
/// Compute the type-, value-, and instantiation-dependence of a
/// declaration reference
/// based on the declaration being referenced.
ExprDependence clang::computeDependence(DeclRefExpr *E, const ASTContext &Ctx) {
auto Deps = ExprDependence::None;
if (auto *NNS = E->getQualifier())
Deps |= toExprDependence(NNS->getDependence() &
~NestedNameSpecifierDependence::Dependent);
if (auto *FirstArg = E->getTemplateArgs()) {
unsigned NumArgs = E->getNumTemplateArgs();
for (auto *Arg = FirstArg, *End = FirstArg + NumArgs; Arg < End; ++Arg)
Deps |= toExprDependence(Arg->getArgument().getDependence());
}
auto *Decl = E->getDecl();
auto Type = E->getType();
if (Decl->isParameterPack())
Deps |= ExprDependence::UnexpandedPack;
Deps |= toExprDependenceForImpliedType(Type->getDependence()) &
ExprDependence::Error;
// C++ [temp.dep.expr]p3:
// An id-expression is type-dependent if it contains:
// - an identifier associated by name lookup with one or more declarations
// declared with a dependent type
//
// [The "or more" case is not modeled as a DeclRefExpr. There are a bunch
// more bullets here that we handle by treating the declaration as having a
// dependent type if they involve a placeholder type that can't be deduced.]
if (Type->isDependentType())
return Deps | ExprDependence::TypeValueInstantiation;
else if (Type->isInstantiationDependentType())
Deps |= ExprDependence::Instantiation;
// - a conversion-function-id that specifies a dependent type
if (Decl->getDeclName().getNameKind() ==
DeclarationName::CXXConversionFunctionName) {
QualType T = Decl->getDeclName().getCXXNameType();
if (T->isDependentType())
return Deps | ExprDependence::TypeValueInstantiation;
if (T->isInstantiationDependentType())
Deps |= ExprDependence::Instantiation;
}
// - a template-id that is dependent,
// - a nested-name-specifier or a qualified-id that names a member of an
// unknown specialization
// [These are not modeled as DeclRefExprs.]
// or if it names a dependent member of the current instantiation that is a
// static data member of type "array of unknown bound of T" for some T
// [handled below].
// C++ [temp.dep.constexpr]p2:
// An id-expression is value-dependent if:
// - it is type-dependent [handled above]
// - it is the name of a non-type template parameter,
if (isa<NonTypeTemplateParmDecl>(Decl))
return Deps | ExprDependence::ValueInstantiation;
// - it names a potentially-constant variable that is initialized with an
// expression that is value-dependent
if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
if (Var->mightBeUsableInConstantExpressions(Ctx)) {
if (const Expr *Init = Var->getAnyInitializer()) {
if (Init->isValueDependent())
Deps |= ExprDependence::ValueInstantiation;
if (Init->containsErrors())
Deps |= ExprDependence::Error;
}
}
// - it names a static data member that is a dependent member of the
// current instantiation and is not initialized in a member-declarator,
if (Var->isStaticDataMember() &&
Var->getDeclContext()->isDependentContext() &&
!Var->getFirstDecl()->hasInit()) {
const VarDecl *First = Var->getFirstDecl();
TypeSourceInfo *TInfo = First->getTypeSourceInfo();
if (TInfo->getType()->isIncompleteArrayType()) {
Deps |= ExprDependence::TypeValueInstantiation;
} else if (!First->hasInit()) {
Deps |= ExprDependence::ValueInstantiation;
}
}
return Deps;
}
// - it names a static member function that is a dependent member of the
// current instantiation
//
// FIXME: It's unclear that the restriction to static members here has any
// effect: any use of a non-static member function name requires either
// forming a pointer-to-member or providing an object parameter, either of
// which makes the overall expression value-dependent.
if (auto *MD = dyn_cast<CXXMethodDecl>(Decl)) {
if (MD->isStatic() && Decl->getDeclContext()->isDependentContext())
Deps |= ExprDependence::ValueInstantiation;
}
return Deps;
}
ExprDependence clang::computeDependence(RecoveryExpr *E) {
// RecoveryExpr is
// - always value-dependent, and therefore instantiation dependent
// - contains errors (ExprDependence::Error), by definition
// - type-dependent if we don't know the type (fallback to an opaque
// dependent type), or the type is known and dependent, or it has
// type-dependent subexpressions.
auto D = toExprDependenceForImpliedType(E->getType()->getDependence()) |
ExprDependence::ErrorDependent;
// FIXME: remove the type-dependent bit from subexpressions, if the
// RecoveryExpr has a non-dependent type.
for (auto *S : E->subExpressions())
D |= S->getDependence();
return D;
}
ExprDependence clang::computeDependence(SYCLUniqueStableNameExpr *E) {
return toExprDependenceAsWritten(
E->getTypeSourceInfo()->getType()->getDependence());
}
ExprDependence clang::computeDependence(PredefinedExpr *E) {
return toExprDependenceForImpliedType(E->getType()->getDependence());
}
ExprDependence clang::computeDependence(CallExpr *E,
llvm::ArrayRef<Expr *> PreArgs) {
auto D = E->getCallee()->getDependence();
for (auto *A : llvm::makeArrayRef(E->getArgs(), E->getNumArgs())) {
if (A)
D |= A->getDependence();
}
for (auto *A : PreArgs)
D |= A->getDependence();
return D;
}
ExprDependence clang::computeDependence(OffsetOfExpr *E) {
auto D = turnTypeToValueDependence(toExprDependenceAsWritten(
E->getTypeSourceInfo()->getType()->getDependence()));
for (unsigned I = 0, N = E->getNumExpressions(); I < N; ++I)
D |= turnTypeToValueDependence(E->getIndexExpr(I)->getDependence());
return D;
}
ExprDependence clang::computeDependence(MemberExpr *E) {
auto *MemberDecl = E->getMemberDecl();
auto D = E->getBase()->getDependence();
if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
DeclContext *DC = MemberDecl->getDeclContext();
// dyn_cast_or_null is used to handle objC variables which do not
// have a declaration context.
CXXRecordDecl *RD = dyn_cast_or_null<CXXRecordDecl>(DC);
if (RD && RD->isDependentContext() && RD->isCurrentInstantiation(DC)) {
if (!E->getType()->isDependentType())
D &= ~ExprDependence::Type;
}
// Bitfield with value-dependent width is type-dependent.
if (FD && FD->isBitField() && FD->getBitWidth()->isValueDependent()) {
D |= ExprDependence::Type;
}
}
// FIXME: move remaining dependence computation from MemberExpr::Create()
return D;
}
ExprDependence clang::computeDependence(InitListExpr *E) {
auto D = ExprDependence::None;
for (auto *A : E->inits())
D |= A->getDependence();
return D;
}
ExprDependence clang::computeDependence(ShuffleVectorExpr *E) {
auto D = toExprDependenceForImpliedType(E->getType()->getDependence());
for (auto *C : llvm::makeArrayRef(E->getSubExprs(), E->getNumSubExprs()))
D |= C->getDependence();
return D;
}
ExprDependence clang::computeDependence(GenericSelectionExpr *E,
bool ContainsUnexpandedPack) {
auto D = ContainsUnexpandedPack ? ExprDependence::UnexpandedPack
: ExprDependence::None;
for (auto *AE : E->getAssocExprs())
D |= AE->getDependence() & ExprDependence::Error;
D |= E->getControllingExpr()->getDependence() & ExprDependence::Error;
if (E->isResultDependent())
return D | ExprDependence::TypeValueInstantiation;
return D | (E->getResultExpr()->getDependence() &
~ExprDependence::UnexpandedPack);
}
ExprDependence clang::computeDependence(DesignatedInitExpr *E) {
auto Deps = E->getInit()->getDependence();
for (auto D : E->designators()) {
auto DesignatorDeps = ExprDependence::None;
if (D.isArrayDesignator())
DesignatorDeps |= E->getArrayIndex(D)->getDependence();
else if (D.isArrayRangeDesignator())
DesignatorDeps |= E->getArrayRangeStart(D)->getDependence() |
E->getArrayRangeEnd(D)->getDependence();
Deps |= DesignatorDeps;
if (DesignatorDeps & ExprDependence::TypeValue)
Deps |= ExprDependence::TypeValueInstantiation;
}
return Deps;
}
ExprDependence clang::computeDependence(PseudoObjectExpr *O) {
auto D = O->getSyntacticForm()->getDependence();
for (auto *E : O->semantics())
D |= E->getDependence();
return D;
}
ExprDependence clang::computeDependence(AtomicExpr *A) {
auto D = ExprDependence::None;
for (auto *E : llvm::makeArrayRef(A->getSubExprs(), A->getNumSubExprs()))
D |= E->getDependence();
return D;
}
ExprDependence clang::computeDependence(CXXNewExpr *E) {
auto D = toExprDependenceAsWritten(
E->getAllocatedTypeSourceInfo()->getType()->getDependence());
D |= toExprDependenceForImpliedType(E->getAllocatedType()->getDependence());
auto Size = E->getArraySize();
if (Size.hasValue() && *Size)
D |= turnTypeToValueDependence((*Size)->getDependence());
if (auto *I = E->getInitializer())
D |= turnTypeToValueDependence(I->getDependence());
for (auto *A : E->placement_arguments())
D |= turnTypeToValueDependence(A->getDependence());
return D;
}
ExprDependence clang::computeDependence(CXXPseudoDestructorExpr *E) {
auto D = E->getBase()->getDependence();
if (auto *TSI = E->getDestroyedTypeInfo())
D |= toExprDependenceAsWritten(TSI->getType()->getDependence());
if (auto *ST = E->getScopeTypeInfo())
D |= turnTypeToValueDependence(
toExprDependenceAsWritten(ST->getType()->getDependence()));
if (auto *Q = E->getQualifier())
D |= toExprDependence(Q->getDependence() &
~NestedNameSpecifierDependence::Dependent);
return D;
}
static inline ExprDependence getDependenceInExpr(DeclarationNameInfo Name) {
auto D = ExprDependence::None;
if (Name.isInstantiationDependent())
D |= ExprDependence::Instantiation;
if (Name.containsUnexpandedParameterPack())
D |= ExprDependence::UnexpandedPack;
return D;
}
ExprDependence
clang::computeDependence(OverloadExpr *E, bool KnownDependent,
bool KnownInstantiationDependent,
bool KnownContainsUnexpandedParameterPack) {
auto Deps = ExprDependence::None;
if (KnownDependent)
Deps |= ExprDependence::TypeValue;
if (KnownInstantiationDependent)
Deps |= ExprDependence::Instantiation;
if (KnownContainsUnexpandedParameterPack)
Deps |= ExprDependence::UnexpandedPack;
Deps |= getDependenceInExpr(E->getNameInfo());
if (auto *Q = E->getQualifier())
Deps |= toExprDependence(Q->getDependence() &
~NestedNameSpecifierDependence::Dependent);
for (auto *D : E->decls()) {
if (D->getDeclContext()->isDependentContext() ||
isa<UnresolvedUsingValueDecl>(D))
Deps |= ExprDependence::TypeValueInstantiation;
}
// If we have explicit template arguments, check for dependent
// template arguments and whether they contain any unexpanded pack
// expansions.
for (auto A : E->template_arguments())
Deps |= toExprDependence(A.getArgument().getDependence());
return Deps;
}
ExprDependence clang::computeDependence(DependentScopeDeclRefExpr *E) {
auto D = ExprDependence::TypeValue;
D |= getDependenceInExpr(E->getNameInfo());
if (auto *Q = E->getQualifier())
D |= toExprDependence(Q->getDependence());
for (auto A : E->template_arguments())
D |= toExprDependence(A.getArgument().getDependence());
return D;
}
ExprDependence clang::computeDependence(CXXConstructExpr *E) {
ExprDependence D =
toExprDependenceForImpliedType(E->getType()->getDependence());
for (auto *A : E->arguments())
D |= A->getDependence() & ~ExprDependence::Type;
return D;
}
ExprDependence clang::computeDependence(CXXTemporaryObjectExpr *E) {
CXXConstructExpr *BaseE = E;
return toExprDependenceAsWritten(
E->getTypeSourceInfo()->getType()->getDependence()) |
computeDependence(BaseE);
}
ExprDependence clang::computeDependence(CXXDefaultInitExpr *E) {
return E->getExpr()->getDependence();
}
ExprDependence clang::computeDependence(CXXDefaultArgExpr *E) {
return E->getExpr()->getDependence();
}
ExprDependence clang::computeDependence(LambdaExpr *E,
bool ContainsUnexpandedParameterPack) {
auto D = toExprDependenceForImpliedType(E->getType()->getDependence());
if (ContainsUnexpandedParameterPack)
D |= ExprDependence::UnexpandedPack;
return D;
}
ExprDependence clang::computeDependence(CXXUnresolvedConstructExpr *E) {
auto D = ExprDependence::ValueInstantiation;
D |= toExprDependenceAsWritten(E->getTypeAsWritten()->getDependence());
D |= toExprDependenceForImpliedType(E->getType()->getDependence());
for (auto *A : E->arguments())
D |= A->getDependence() &
(ExprDependence::UnexpandedPack | ExprDependence::Error);
return D;
}
ExprDependence clang::computeDependence(CXXDependentScopeMemberExpr *E) {
auto D = ExprDependence::TypeValueInstantiation;
if (!E->isImplicitAccess())
D |= E->getBase()->getDependence();
if (auto *Q = E->getQualifier())
D |= toExprDependence(Q->getDependence());
D |= getDependenceInExpr(E->getMemberNameInfo());
for (auto A : E->template_arguments())
D |= toExprDependence(A.getArgument().getDependence());
return D;
}
ExprDependence clang::computeDependence(MaterializeTemporaryExpr *E) {
return E->getSubExpr()->getDependence();
}
ExprDependence clang::computeDependence(CXXFoldExpr *E) {
auto D = ExprDependence::TypeValueInstantiation;
for (const auto *C : {E->getLHS(), E->getRHS()}) {
if (C)
D |= C->getDependence() & ~ExprDependence::UnexpandedPack;
}
return D;
}
ExprDependence clang::computeDependence(TypeTraitExpr *E) {
auto D = ExprDependence::None;
for (const auto *A : E->getArgs())
D |= toExprDependenceAsWritten(A->getType()->getDependence()) &
~ExprDependence::Type;
return D;
}
ExprDependence clang::computeDependence(ConceptSpecializationExpr *E,
bool ValueDependent) {
auto TA = TemplateArgumentDependence::None;
const auto InterestingDeps = TemplateArgumentDependence::Instantiation |
TemplateArgumentDependence::UnexpandedPack;
for (const TemplateArgumentLoc &ArgLoc :
E->getTemplateArgsAsWritten()->arguments()) {
TA |= ArgLoc.getArgument().getDependence() & InterestingDeps;
if (TA == InterestingDeps)
break;
}
ExprDependence D =
ValueDependent ? ExprDependence::Value : ExprDependence::None;
return D | toExprDependence(TA);
}
ExprDependence clang::computeDependence(ObjCArrayLiteral *E) {
auto D = ExprDependence::None;
Expr **Elements = E->getElements();
for (unsigned I = 0, N = E->getNumElements(); I != N; ++I)
D |= turnTypeToValueDependence(Elements[I]->getDependence());
return D;
}
ExprDependence clang::computeDependence(ObjCDictionaryLiteral *E) {
auto Deps = ExprDependence::None;
for (unsigned I = 0, N = E->getNumElements(); I < N; ++I) {
auto KV = E->getKeyValueElement(I);
auto KVDeps = turnTypeToValueDependence(KV.Key->getDependence() |
KV.Value->getDependence());
if (KV.EllipsisLoc.isValid())
KVDeps &= ~ExprDependence::UnexpandedPack;
Deps |= KVDeps;
}
return Deps;
}
ExprDependence clang::computeDependence(ObjCMessageExpr *E) {
auto D = ExprDependence::None;
if (auto *R = E->getInstanceReceiver())
D |= R->getDependence();
else
D |= toExprDependenceForImpliedType(E->getType()->getDependence());
for (auto *A : E->arguments())
D |= A->getDependence();
return D;
}