llvm-project/lldb/source/Core/Scalar.cpp

3077 lines
74 KiB
C++

//===-- Scalar.cpp ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/Scalar.h"
// C Includes
// C++ Includes
#include <cinttypes>
#include <cmath>
#include <cstdio>
// Other libraries and framework includes
#include "llvm/ADT/SmallString.h"
// Project includes
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Stream.h"
#include "lldb/Host/Endian.h"
#include "lldb/Host/StringConvert.h"
#include "lldb/Interpreter/Args.h"
#include "Plugins/Process/Utility/InstructionUtils.h"
using namespace lldb;
using namespace lldb_private;
//----------------------------------------------------------------------
// Promote to max type currently follows the ANSI C rule for type
// promotion in expressions.
//----------------------------------------------------------------------
static Scalar::Type PromoteToMaxType(
const Scalar &lhs, // The const left hand side object
const Scalar &rhs, // The const right hand side object
Scalar &temp_value, // A modifiable temp value than can be used to hold
// either the promoted lhs or rhs object
const Scalar *&promoted_lhs_ptr, // Pointer to the resulting possibly
// promoted value of lhs (at most one of
// lhs/rhs will get promoted)
const Scalar *&promoted_rhs_ptr // Pointer to the resulting possibly
// promoted value of rhs (at most one of
// lhs/rhs will get promoted)
) {
Scalar result;
// Initialize the promoted values for both the right and left hand side values
// to be the objects themselves. If no promotion is needed (both right and
// left
// have the same type), then the temp_value will not get used.
promoted_lhs_ptr = &lhs;
promoted_rhs_ptr = &rhs;
// Extract the types of both the right and left hand side values
Scalar::Type lhs_type = lhs.GetType();
Scalar::Type rhs_type = rhs.GetType();
if (lhs_type > rhs_type) {
// Right hand side need to be promoted
temp_value = rhs; // Copy right hand side into the temp value
if (temp_value.Promote(lhs_type)) // Promote it
promoted_rhs_ptr =
&temp_value; // Update the pointer for the promoted right hand side
} else if (lhs_type < rhs_type) {
// Left hand side need to be promoted
temp_value = lhs; // Copy left hand side value into the temp value
if (temp_value.Promote(rhs_type)) // Promote it
promoted_lhs_ptr =
&temp_value; // Update the pointer for the promoted left hand side
}
// Make sure our type promotion worked as expected
if (promoted_lhs_ptr->GetType() == promoted_rhs_ptr->GetType())
return promoted_lhs_ptr->GetType(); // Return the resulting max type
// Return the void type (zero) if we fail to promote either of the values.
return Scalar::e_void;
}
Scalar::Scalar() : m_type(e_void), m_float((float)0) {}
Scalar::Scalar(const Scalar &rhs)
: m_type(rhs.m_type), m_integer(rhs.m_integer), m_float(rhs.m_float) {}
// Scalar::Scalar(const RegisterValue& reg) :
// m_type(e_void),
// m_data()
//{
// switch (reg.info.encoding)
// {
// case eEncodingUint: // unsigned integer
// switch (reg.info.byte_size)
// {
// case 1: m_type = e_uint; m_data.uint = reg.value.uint8; break;
// case 2: m_type = e_uint; m_data.uint = reg.value.uint16; break;
// case 4: m_type = e_uint; m_data.uint = reg.value.uint32; break;
// case 8: m_type = e_ulonglong; m_data.ulonglong = reg.value.uint64;
// break;
// break;
// }
// break;
//
// case eEncodingSint: // signed integer
// switch (reg.info.byte_size)
// {
// case 1: m_type = e_sint; m_data.sint = reg.value.sint8; break;
// case 2: m_type = e_sint; m_data.sint = reg.value.sint16; break;
// case 4: m_type = e_sint; m_data.sint = reg.value.sint32; break;
// case 8: m_type = e_slonglong; m_data.slonglong = reg.value.sint64;
// break;
// break;
// }
// break;
//
// case eEncodingIEEE754: // float
// switch (reg.info.byte_size)
// {
// case 4: m_type = e_float; m_data.flt = reg.value.float32; break;
// case 8: m_type = e_double; m_data.dbl = reg.value.float64; break;
// break;
// }
// break;
// case eEncodingVector: // vector registers
// break;
// }
//}
bool Scalar::GetData(DataExtractor &data, size_t limit_byte_size) const {
size_t byte_size = GetByteSize();
if (byte_size > 0) {
const uint8_t *bytes = reinterpret_cast<const uint8_t *>(GetBytes());
if (limit_byte_size < byte_size) {
if (endian::InlHostByteOrder() == eByteOrderLittle) {
// On little endian systems if we want fewer bytes from the
// current type we just specify fewer bytes since the LSByte
// is first...
byte_size = limit_byte_size;
} else if (endian::InlHostByteOrder() == eByteOrderBig) {
// On big endian systems if we want fewer bytes from the
// current type have to advance our initial byte pointer and
// trim down the number of bytes since the MSByte is first
bytes += byte_size - limit_byte_size;
byte_size = limit_byte_size;
}
}
data.SetData(bytes, byte_size, endian::InlHostByteOrder());
return true;
}
data.Clear();
return false;
}
const void *Scalar::GetBytes() const {
const uint64_t *apint_words;
const uint8_t *bytes;
static float_t flt_val;
static double_t dbl_val;
static uint64_t swapped_words[4];
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
bytes = reinterpret_cast<const uint8_t *>(m_integer.getRawData());
// getRawData always returns a pointer to an uint64_t. If we have a smaller
// type,
// we need to update the pointer on big-endian systems.
if (endian::InlHostByteOrder() == eByteOrderBig) {
size_t byte_size = m_integer.getBitWidth() / 8;
if (byte_size < 8)
bytes += 8 - byte_size;
}
return bytes;
case e_sint128:
case e_uint128:
apint_words = m_integer.getRawData();
// getRawData always returns a pointer to an array of two uint64_t values,
// where the least-significant word always comes first. On big-endian
// systems we need to swap the two words.
if (endian::InlHostByteOrder() == eByteOrderBig) {
swapped_words[0] = apint_words[1];
swapped_words[1] = apint_words[0];
apint_words = swapped_words;
}
return reinterpret_cast<const void *>(apint_words);
case e_sint256:
case e_uint256:
apint_words = m_integer.getRawData();
// getRawData always returns a pointer to an array of four uint64_t values,
// where the least-significant word always comes first. On big-endian
// systems we need to swap the four words.
if (endian::InlHostByteOrder() == eByteOrderBig) {
swapped_words[0] = apint_words[3];
swapped_words[1] = apint_words[2];
swapped_words[2] = apint_words[1];
swapped_words[3] = apint_words[0];
apint_words = swapped_words;
}
return reinterpret_cast<const void *>(apint_words);
case e_float:
flt_val = m_float.convertToFloat();
return reinterpret_cast<const void *>(&flt_val);
case e_double:
dbl_val = m_float.convertToDouble();
return reinterpret_cast<const void *>(&dbl_val);
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
apint_words = ldbl_val.getRawData();
// getRawData always returns a pointer to an array of two uint64_t values,
// where the least-significant word always comes first. On big-endian
// systems we need to swap the two words.
if (endian::InlHostByteOrder() == eByteOrderBig) {
swapped_words[0] = apint_words[1];
swapped_words[1] = apint_words[0];
apint_words = swapped_words;
}
return reinterpret_cast<const void *>(apint_words);
}
return nullptr;
}
size_t Scalar::GetByteSize() const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return (m_integer.getBitWidth() / 8);
case e_float:
return sizeof(float_t);
case e_double:
return sizeof(double_t);
case e_long_double:
return sizeof(long_double_t);
}
return 0;
}
bool Scalar::IsZero() const {
llvm::APInt zero_int = llvm::APInt::getNullValue(m_integer.getBitWidth() / 8);
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return llvm::APInt::isSameValue(zero_int, m_integer);
case e_float:
case e_double:
case e_long_double:
return m_float.isZero();
}
return false;
}
void Scalar::GetValue(Stream *s, bool show_type) const {
if (show_type)
s->Printf("(%s) ", GetTypeAsCString());
switch (m_type) {
case e_void:
break;
case e_sint:
case e_slong:
case e_slonglong:
case e_sint128:
case e_sint256:
s->PutCString(m_integer.toString(10, true));
break;
case e_uint:
case e_ulong:
case e_ulonglong:
case e_uint128:
case e_uint256:
s->PutCString(m_integer.toString(10, false));
break;
case e_float:
case e_double:
case e_long_double:
llvm::SmallString<24> string;
m_float.toString(string);
s->Printf("%s", string.c_str());
break;
}
}
const char *Scalar::GetTypeAsCString() const {
switch (m_type) {
case e_void:
return "void";
case e_sint:
return "int";
case e_uint:
return "unsigned int";
case e_slong:
return "long";
case e_ulong:
return "unsigned long";
case e_slonglong:
return "long long";
case e_ulonglong:
return "unsigned long long";
case e_sint128:
return "int128_t";
case e_uint128:
return "unsigned int128_t";
case e_sint256:
return "int256_t";
case e_uint256:
return "unsigned int256_t";
case e_float:
return "float";
case e_double:
return "double";
case e_long_double:
return "long double";
}
return "<invalid Scalar type>";
}
Scalar &Scalar::operator=(const Scalar &rhs) {
if (this != &rhs) {
m_type = rhs.m_type;
m_integer = llvm::APInt(rhs.m_integer);
m_float = rhs.m_float;
}
return *this;
}
Scalar &Scalar::operator=(const int v) {
m_type = e_sint;
m_integer = llvm::APInt(sizeof(int) * 8, v, true);
return *this;
}
Scalar &Scalar::operator=(unsigned int v) {
m_type = e_uint;
m_integer = llvm::APInt(sizeof(int) * 8, v);
return *this;
}
Scalar &Scalar::operator=(long v) {
m_type = e_slong;
m_integer = llvm::APInt(sizeof(long) * 8, v, true);
return *this;
}
Scalar &Scalar::operator=(unsigned long v) {
m_type = e_ulong;
m_integer = llvm::APInt(sizeof(long) * 8, v);
return *this;
}
Scalar &Scalar::operator=(long long v) {
m_type = e_slonglong;
m_integer = llvm::APInt(sizeof(long) * 8, v, true);
return *this;
}
Scalar &Scalar::operator=(unsigned long long v) {
m_type = e_ulonglong;
m_integer = llvm::APInt(sizeof(long long) * 8, v);
return *this;
}
Scalar &Scalar::operator=(float v) {
m_type = e_float;
m_float = llvm::APFloat(v);
return *this;
}
Scalar &Scalar::operator=(double v) {
m_type = e_double;
m_float = llvm::APFloat(v);
return *this;
}
Scalar &Scalar::operator=(long double v) {
m_type = e_long_double;
if (m_ieee_quad)
m_float = llvm::APFloat(
llvm::APFloat::IEEEquad,
llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((type128 *)&v)->x));
else
m_float = llvm::APFloat(
llvm::APFloat::x87DoubleExtended,
llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((type128 *)&v)->x));
return *this;
}
Scalar &Scalar::operator=(llvm::APInt rhs) {
m_integer = llvm::APInt(rhs);
switch (m_integer.getBitWidth()) {
case 8:
case 16:
case 32:
if (m_integer.isSignedIntN(sizeof(sint_t) * 8))
m_type = e_sint;
else
m_type = e_uint;
break;
case 64:
if (m_integer.isSignedIntN(sizeof(slonglong_t) * 8))
m_type = e_slonglong;
else
m_type = e_ulonglong;
break;
case 128:
if (m_integer.isSignedIntN(BITWIDTH_INT128))
m_type = e_sint128;
else
m_type = e_uint128;
break;
case 256:
if (m_integer.isSignedIntN(BITWIDTH_INT256))
m_type = e_sint256;
else
m_type = e_uint256;
break;
}
return *this;
}
Scalar::~Scalar() = default;
bool Scalar::Promote(Scalar::Type type) {
bool success = false;
switch (m_type) {
case e_void:
break;
case e_sint:
switch (type) {
case e_void:
break;
case e_sint:
success = true;
break;
case e_uint:
m_integer = m_integer.sextOrTrunc(sizeof(uint_t) * 8);
success = true;
break;
case e_slong:
m_integer = m_integer.sextOrTrunc(sizeof(slong_t) * 8);
success = true;
break;
case e_ulong:
m_integer = m_integer.sextOrTrunc(sizeof(ulong_t) * 8);
success = true;
break;
case e_slonglong:
m_integer = m_integer.sextOrTrunc(sizeof(slonglong_t) * 8);
success = true;
break;
case e_ulonglong:
m_integer = m_integer.sextOrTrunc(sizeof(ulonglong_t) * 8);
success = true;
break;
case e_sint128:
case e_uint128:
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128);
success = true;
break;
case e_sint256:
case e_uint256:
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if (m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_uint:
switch (type) {
case e_void:
case e_sint:
break;
case e_uint:
success = true;
break;
case e_slong:
m_integer = m_integer.zextOrTrunc(sizeof(slong_t) * 8);
success = true;
break;
case e_ulong:
m_integer = m_integer.zextOrTrunc(sizeof(ulong_t) * 8);
success = true;
break;
case e_slonglong:
m_integer = m_integer.zextOrTrunc(sizeof(slonglong_t) * 8);
success = true;
break;
case e_ulonglong:
m_integer = m_integer.zextOrTrunc(sizeof(ulonglong_t) * 8);
success = true;
break;
case e_sint128:
case e_uint128:
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128);
success = true;
break;
case e_sint256:
case e_uint256:
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if (m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_slong:
switch (type) {
case e_void:
case e_sint:
case e_uint:
break;
case e_slong:
success = true;
break;
case e_ulong:
m_integer = m_integer.sextOrTrunc(sizeof(ulong_t) * 8);
success = true;
break;
case e_slonglong:
m_integer = m_integer.sextOrTrunc(sizeof(slonglong_t) * 8);
success = true;
break;
case e_ulonglong:
m_integer = m_integer.sextOrTrunc(sizeof(ulonglong_t) * 8);
success = true;
break;
case e_sint128:
case e_uint128:
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128);
success = true;
break;
case e_sint256:
case e_uint256:
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if (m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_ulong:
switch (type) {
case e_void:
case e_sint:
case e_uint:
case e_slong:
break;
case e_ulong:
success = true;
break;
case e_slonglong:
m_integer = m_integer.zextOrTrunc(sizeof(slonglong_t) * 8);
success = true;
break;
case e_ulonglong:
m_integer = m_integer.zextOrTrunc(sizeof(ulonglong_t) * 8);
success = true;
break;
case e_sint128:
case e_uint128:
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128);
success = true;
break;
case e_sint256:
case e_uint256:
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if (m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_slonglong:
switch (type) {
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
break;
case e_slonglong:
success = true;
break;
case e_ulonglong:
m_integer = m_integer.sextOrTrunc(sizeof(ulonglong_t) * 8);
success = true;
break;
case e_sint128:
case e_uint128:
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128);
success = true;
break;
case e_sint256:
case e_uint256:
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if (m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_ulonglong:
switch (type) {
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
break;
case e_ulonglong:
success = true;
break;
case e_sint128:
case e_uint128:
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128);
success = true;
break;
case e_sint256:
case e_uint256:
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if (m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_sint128:
switch (type) {
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
break;
case e_sint128:
success = true;
break;
case e_uint128:
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128);
success = true;
break;
case e_sint256:
case e_uint256:
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if (m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_uint128:
switch (type) {
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
break;
case e_uint128:
success = true;
break;
case e_sint256:
case e_uint256:
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if (m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_sint256:
switch (type) {
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
break;
case e_sint256:
success = true;
break;
case e_uint256:
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if (m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_uint256:
switch (type) {
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
break;
case e_uint256:
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if (m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_float:
switch (type) {
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
break;
case e_float:
success = true;
break;
case e_double:
m_float = llvm::APFloat((float_t)m_float.convertToFloat());
success = true;
break;
case e_long_double:
if (m_ieee_quad)
m_float =
llvm::APFloat(llvm::APFloat::IEEEquad, m_float.bitcastToAPInt());
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended,
m_float.bitcastToAPInt());
success = true;
break;
}
break;
case e_double:
switch (type) {
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
case e_float:
break;
case e_double:
success = true;
break;
case e_long_double:
if (m_ieee_quad)
m_float =
llvm::APFloat(llvm::APFloat::IEEEquad, m_float.bitcastToAPInt());
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended,
m_float.bitcastToAPInt());
success = true;
break;
}
break;
case e_long_double:
switch (type) {
case e_void:
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
case e_float:
case e_double:
break;
case e_long_double:
success = true;
break;
}
break;
}
if (success)
m_type = type;
return success;
}
const char *Scalar::GetValueTypeAsCString(Scalar::Type type) {
switch (type) {
case e_void:
return "void";
case e_sint:
return "int";
case e_uint:
return "unsigned int";
case e_slong:
return "long";
case e_ulong:
return "unsigned long";
case e_slonglong:
return "long long";
case e_ulonglong:
return "unsigned long long";
case e_float:
return "float";
case e_double:
return "double";
case e_long_double:
return "long double";
case e_sint128:
return "int128_t";
case e_uint128:
return "uint128_t";
case e_sint256:
return "int256_t";
case e_uint256:
return "uint256_t";
}
return "???";
}
Scalar::Type
Scalar::GetValueTypeForSignedIntegerWithByteSize(size_t byte_size) {
if (byte_size <= sizeof(sint_t))
return e_sint;
if (byte_size <= sizeof(slong_t))
return e_slong;
if (byte_size <= sizeof(slonglong_t))
return e_slonglong;
return e_void;
}
Scalar::Type
Scalar::GetValueTypeForUnsignedIntegerWithByteSize(size_t byte_size) {
if (byte_size <= sizeof(uint_t))
return e_uint;
if (byte_size <= sizeof(ulong_t))
return e_ulong;
if (byte_size <= sizeof(ulonglong_t))
return e_ulonglong;
return e_void;
}
Scalar::Type Scalar::GetValueTypeForFloatWithByteSize(size_t byte_size) {
if (byte_size == sizeof(float_t))
return e_float;
if (byte_size == sizeof(double_t))
return e_double;
if (byte_size == sizeof(long_double_t))
return e_long_double;
return e_void;
}
bool Scalar::Cast(Scalar::Type type) {
bool success = false;
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
switch (type) {
case e_void:
break;
case e_sint:
m_integer = m_integer.sextOrTrunc(sizeof(sint_t) * 8);
success = true;
break;
case e_uint:
m_integer = m_integer.zextOrTrunc(sizeof(sint_t) * 8);
success = true;
break;
case e_slong:
m_integer = m_integer.sextOrTrunc(sizeof(slong_t) * 8);
success = true;
break;
case e_ulong:
m_integer = m_integer.zextOrTrunc(sizeof(slong_t) * 8);
success = true;
break;
case e_slonglong:
m_integer = m_integer.sextOrTrunc(sizeof(slonglong_t) * 8);
success = true;
break;
case e_ulonglong:
m_integer = m_integer.zextOrTrunc(sizeof(slonglong_t) * 8);
success = true;
break;
case e_sint128:
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128);
success = true;
break;
case e_uint128:
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128);
success = true;
break;
case e_sint256:
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_uint256:
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_integer.bitsToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_integer.bitsToDouble());
success = true;
break;
case e_long_double:
if (m_ieee_quad)
m_float = llvm::APFloat(llvm::APFloat::IEEEquad, m_integer);
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended, m_integer);
success = true;
break;
}
break;
case e_float:
switch (type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer = m_float.bitcastToAPInt();
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_float.convertToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_float.convertToFloat());
success = true;
break;
case e_long_double:
if (m_ieee_quad)
m_float =
llvm::APFloat(llvm::APFloat::IEEEquad, m_float.bitcastToAPInt());
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended,
m_float.bitcastToAPInt());
success = true;
break;
}
break;
case e_double:
switch (type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer = m_float.bitcastToAPInt();
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_float.convertToDouble());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_float.convertToDouble());
success = true;
break;
case e_long_double:
if (m_ieee_quad)
m_float =
llvm::APFloat(llvm::APFloat::IEEEquad, m_float.bitcastToAPInt());
else
m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended,
m_float.bitcastToAPInt());
success = true;
break;
}
break;
case e_long_double:
switch (type) {
case e_void:
break;
case e_sint:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.sextOrTrunc(sizeof(sint_t) * 8);
success = true;
break;
case e_uint:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.zextOrTrunc(sizeof(sint_t) * 8);
success = true;
break;
case e_slong:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.sextOrTrunc(sizeof(slong_t) * 8);
success = true;
break;
case e_ulong:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.zextOrTrunc(sizeof(slong_t) * 8);
success = true;
break;
case e_slonglong:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.sextOrTrunc(sizeof(slonglong_t) * 8);
success = true;
break;
case e_ulonglong:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.zextOrTrunc(sizeof(slonglong_t) * 8);
success = true;
break;
case e_sint128:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128);
success = true;
break;
case e_uint128:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128);
success = true;
break;
case e_sint256:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_uint256:
m_integer = m_float.bitcastToAPInt();
m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256);
success = true;
break;
case e_float:
m_float = llvm::APFloat(m_float.convertToFloat());
success = true;
break;
case e_double:
m_float = llvm::APFloat(m_float.convertToFloat());
success = true;
break;
case e_long_double:
success = true;
break;
}
break;
}
if (success)
m_type = type;
return success;
}
bool Scalar::MakeSigned() {
bool success = false;
switch (m_type) {
case e_void:
break;
case e_sint:
success = true;
break;
case e_uint:
m_type = e_sint;
success = true;
break;
case e_slong:
success = true;
break;
case e_ulong:
m_type = e_slong;
success = true;
break;
case e_slonglong:
success = true;
break;
case e_ulonglong:
m_type = e_slonglong;
success = true;
break;
case e_sint128:
success = true;
break;
case e_uint128:
m_type = e_sint128;
success = true;
break;
case e_sint256:
success = true;
break;
case e_uint256:
m_type = e_sint256;
success = true;
break;
case e_float:
success = true;
break;
case e_double:
success = true;
break;
case e_long_double:
success = true;
break;
}
return success;
}
bool Scalar::MakeUnsigned() {
bool success = false;
switch (m_type) {
case e_void:
break;
case e_sint:
success = true;
break;
case e_uint:
m_type = e_uint;
success = true;
break;
case e_slong:
success = true;
break;
case e_ulong:
m_type = e_ulong;
success = true;
break;
case e_slonglong:
success = true;
break;
case e_ulonglong:
m_type = e_ulonglong;
success = true;
break;
case e_sint128:
success = true;
break;
case e_uint128:
m_type = e_uint128;
success = true;
break;
case e_sint256:
success = true;
break;
case e_uint256:
m_type = e_uint256;
success = true;
break;
case e_float:
success = true;
break;
case e_double:
success = true;
break;
case e_long_double:
success = true;
break;
}
return success;
}
signed char Scalar::SChar(char fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return (schar_t)(m_integer.sextOrTrunc(sizeof(schar_t) * 8)).getSExtValue();
case e_float:
return (schar_t)m_float.convertToFloat();
case e_double:
return (schar_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (schar_t)(ldbl_val.sextOrTrunc(sizeof(schar_t) * 8)).getSExtValue();
}
return fail_value;
}
unsigned char Scalar::UChar(unsigned char fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return (uchar_t)(m_integer.zextOrTrunc(sizeof(uchar_t) * 8)).getZExtValue();
case e_float:
return (uchar_t)m_float.convertToFloat();
case e_double:
return (uchar_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (uchar_t)(ldbl_val.zextOrTrunc(sizeof(uchar_t) * 8)).getZExtValue();
}
return fail_value;
}
short Scalar::SShort(short fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return (sshort_t)(m_integer.sextOrTrunc(sizeof(sshort_t) * 8))
.getSExtValue();
case e_float:
return (sshort_t)m_float.convertToFloat();
case e_double:
return (sshort_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (sshort_t)(ldbl_val.sextOrTrunc(sizeof(sshort_t) * 8))
.getSExtValue();
}
return fail_value;
}
unsigned short Scalar::UShort(unsigned short fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return (ushort_t)(m_integer.zextOrTrunc(sizeof(ushort_t) * 8))
.getZExtValue();
case e_float:
return (ushort_t)m_float.convertToFloat();
case e_double:
return (ushort_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (ushort_t)(ldbl_val.zextOrTrunc(sizeof(ushort_t) * 8))
.getZExtValue();
}
return fail_value;
}
int Scalar::SInt(int fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return (sint_t)(m_integer.sextOrTrunc(sizeof(sint_t) * 8)).getSExtValue();
case e_float:
return (sint_t)m_float.convertToFloat();
case e_double:
return (sint_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (sint_t)(ldbl_val.sextOrTrunc(sizeof(sint_t) * 8)).getSExtValue();
}
return fail_value;
}
unsigned int Scalar::UInt(unsigned int fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return (uint_t)(m_integer.zextOrTrunc(sizeof(uint_t) * 8)).getZExtValue();
case e_float:
return (uint_t)m_float.convertToFloat();
case e_double:
return (uint_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (uint_t)(ldbl_val.zextOrTrunc(sizeof(uint_t) * 8)).getZExtValue();
}
return fail_value;
}
long Scalar::SLong(long fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return (slong_t)(m_integer.sextOrTrunc(sizeof(slong_t) * 8)).getSExtValue();
case e_float:
return (slong_t)m_float.convertToFloat();
case e_double:
return (slong_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (slong_t)(ldbl_val.sextOrTrunc(sizeof(slong_t) * 8)).getSExtValue();
}
return fail_value;
}
unsigned long Scalar::ULong(unsigned long fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return (ulong_t)(m_integer.zextOrTrunc(sizeof(ulong_t) * 8)).getZExtValue();
case e_float:
return (ulong_t)m_float.convertToFloat();
case e_double:
return (ulong_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (ulong_t)(ldbl_val.zextOrTrunc(sizeof(ulong_t) * 8)).getZExtValue();
}
return fail_value;
}
long long Scalar::SLongLong(long long fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return (slonglong_t)(m_integer.sextOrTrunc(sizeof(slonglong_t) * 8))
.getSExtValue();
case e_float:
return (slonglong_t)m_float.convertToFloat();
case e_double:
return (slonglong_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (slonglong_t)(ldbl_val.sextOrTrunc(sizeof(slonglong_t) * 8))
.getSExtValue();
}
return fail_value;
}
unsigned long long Scalar::ULongLong(unsigned long long fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return (ulonglong_t)(m_integer.zextOrTrunc(sizeof(ulonglong_t) * 8))
.getZExtValue();
case e_float:
return (ulonglong_t)m_float.convertToFloat();
case e_double:
return (ulonglong_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (ulonglong_t)(ldbl_val.zextOrTrunc(sizeof(ulonglong_t) * 8))
.getZExtValue();
}
return fail_value;
}
llvm::APInt Scalar::SInt128(llvm::APInt &fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer;
case e_float:
case e_double:
case e_long_double:
return m_float.bitcastToAPInt();
}
return fail_value;
}
llvm::APInt Scalar::UInt128(const llvm::APInt &fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer;
case e_float:
case e_double:
case e_long_double:
return m_float.bitcastToAPInt();
}
return fail_value;
}
llvm::APInt Scalar::SInt256(llvm::APInt &fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer;
case e_float:
case e_double:
case e_long_double:
return m_float.bitcastToAPInt();
}
return fail_value;
}
llvm::APInt Scalar::UInt256(const llvm::APInt &fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer;
case e_float:
case e_double:
case e_long_double:
return m_float.bitcastToAPInt();
}
return fail_value;
}
float Scalar::Float(float fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer.bitsToFloat();
case e_float:
return m_float.convertToFloat();
case e_double:
return (float_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return ldbl_val.bitsToFloat();
}
return fail_value;
}
double Scalar::Double(double fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return m_integer.bitsToDouble();
case e_float:
return (double_t)m_float.convertToFloat();
case e_double:
return m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return ldbl_val.bitsToFloat();
}
return fail_value;
}
long double Scalar::LongDouble(long double fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
return (long_double_t)m_integer.bitsToDouble();
case e_float:
return (long_double_t)m_float.convertToFloat();
case e_double:
return (long_double_t)m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return (long_double_t)ldbl_val.bitsToDouble();
}
return fail_value;
}
Scalar &Scalar::operator+=(const Scalar &rhs) {
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((m_type = PromoteToMaxType(*this, rhs, temp_value, a, b)) !=
Scalar::e_void) {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer = a->m_integer + b->m_integer;
break;
case e_float:
case e_double:
case e_long_double:
m_float = a->m_float + b->m_float;
break;
}
}
return *this;
}
Scalar &Scalar::operator<<=(const Scalar &rhs) {
switch (m_type) {
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
switch (rhs.m_type) {
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer = m_integer << rhs.m_integer;
break;
}
break;
}
return *this;
}
bool Scalar::ShiftRightLogical(const Scalar &rhs) {
switch (m_type) {
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
switch (rhs.m_type) {
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer = m_integer.lshr(rhs.m_integer);
break;
}
break;
}
return m_type != e_void;
}
Scalar &Scalar::operator>>=(const Scalar &rhs) {
switch (m_type) {
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
switch (rhs.m_type) {
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer = m_integer.ashr(rhs.m_integer);
break;
}
break;
}
return *this;
}
Scalar &Scalar::operator&=(const Scalar &rhs) {
switch (m_type) {
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
switch (rhs.m_type) {
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer &= rhs.m_integer;
break;
}
break;
}
return *this;
}
bool Scalar::AbsoluteValue() {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_slong:
case e_slonglong:
case e_sint128:
case e_sint256:
if (m_integer.isNegative())
m_integer = -m_integer;
return true;
case e_uint:
case e_ulong:
case e_ulonglong:
return true;
case e_uint128:
case e_uint256:
case e_float:
case e_double:
case e_long_double:
m_float.clearSign();
return true;
}
return false;
}
bool Scalar::UnaryNegate() {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer = -m_integer;
return true;
case e_float:
case e_double:
case e_long_double:
m_float.changeSign();
return true;
}
return false;
}
bool Scalar::OnesComplement() {
switch (m_type) {
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer = ~m_integer;
return true;
case e_void:
case e_float:
case e_double:
case e_long_double:
break;
}
return false;
}
const Scalar lldb_private::operator+(const Scalar &lhs, const Scalar &rhs) {
Scalar result;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
Scalar::e_void) {
switch (result.m_type) {
case Scalar::e_void:
break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer + b->m_integer;
break;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result.m_float = a->m_float + b->m_float;
break;
}
}
return result;
}
const Scalar lldb_private::operator-(const Scalar &lhs, const Scalar &rhs) {
Scalar result;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
Scalar::e_void) {
switch (result.m_type) {
case Scalar::e_void:
break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer - b->m_integer;
break;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result.m_float = a->m_float - b->m_float;
break;
}
}
return result;
}
const Scalar lldb_private::operator/(const Scalar &lhs, const Scalar &rhs) {
Scalar result;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
Scalar::e_void) {
switch (result.m_type) {
case Scalar::e_void:
break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
if (b->m_integer != 0) {
result.m_integer = a->m_integer.sdiv(b->m_integer);
return result;
}
break;
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
if (b->m_integer != 0) {
result.m_integer = a->m_integer.udiv(b->m_integer);
return result;
}
break;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
if (b->m_float.isZero()) {
result.m_float = a->m_float / b->m_float;
return result;
}
break;
}
}
// For division only, the only way it should make it here is if a promotion
// failed,
// or if we are trying to do a divide by zero.
result.m_type = Scalar::e_void;
return result;
}
const Scalar lldb_private::operator*(const Scalar &lhs, const Scalar &rhs) {
Scalar result;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
Scalar::e_void) {
switch (result.m_type) {
case Scalar::e_void:
break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer * b->m_integer;
break;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result.m_float = a->m_float * b->m_float;
break;
}
}
return result;
}
const Scalar lldb_private::operator&(const Scalar &lhs, const Scalar &rhs) {
Scalar result;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
Scalar::e_void) {
switch (result.m_type) {
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer & b->m_integer;
break;
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
// No bitwise AND on floats, doubles of long doubles
result.m_type = Scalar::e_void;
break;
}
}
return result;
}
const Scalar lldb_private::operator|(const Scalar &lhs, const Scalar &rhs) {
Scalar result;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
Scalar::e_void) {
switch (result.m_type) {
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer | b->m_integer;
break;
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
// No bitwise AND on floats, doubles of long doubles
result.m_type = Scalar::e_void;
break;
}
}
return result;
}
const Scalar lldb_private::operator%(const Scalar &lhs, const Scalar &rhs) {
Scalar result;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
Scalar::e_void) {
switch (result.m_type) {
default:
break;
case Scalar::e_void:
break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
if (b->m_integer != 0) {
result.m_integer = a->m_integer.srem(b->m_integer);
return result;
}
break;
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
if (b->m_integer != 0) {
result.m_integer = a->m_integer.urem(b->m_integer);
return result;
}
break;
}
}
result.m_type = Scalar::e_void;
return result;
}
const Scalar lldb_private::operator^(const Scalar &lhs, const Scalar &rhs) {
Scalar result;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
Scalar::e_void) {
switch (result.m_type) {
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
result.m_integer = a->m_integer ^ b->m_integer;
break;
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
// No bitwise AND on floats, doubles of long doubles
result.m_type = Scalar::e_void;
break;
}
}
return result;
}
const Scalar lldb_private::operator<<(const Scalar &lhs, const Scalar &rhs) {
Scalar result = lhs;
result <<= rhs;
return result;
}
const Scalar lldb_private::operator>>(const Scalar &lhs, const Scalar &rhs) {
Scalar result = lhs;
result >>= rhs;
return result;
}
Error Scalar::SetValueFromCString(const char *value_str, Encoding encoding,
size_t byte_size) {
Error error;
if (value_str == nullptr || value_str[0] == '\0') {
error.SetErrorString("Invalid c-string value string.");
return error;
}
bool success = false;
switch (encoding) {
case eEncodingInvalid:
error.SetErrorString("Invalid encoding.");
break;
case eEncodingUint:
if (byte_size <= sizeof(unsigned long long)) {
uint64_t uval64 =
StringConvert::ToUInt64(value_str, UINT64_MAX, 0, &success);
if (!success)
error.SetErrorStringWithFormat(
"'%s' is not a valid unsigned integer string value", value_str);
else if (!UIntValueIsValidForSize(uval64, byte_size))
error.SetErrorStringWithFormat("value 0x%" PRIx64
" is too large to fit in a %" PRIu64
" byte unsigned integer value",
uval64, (uint64_t)byte_size);
else {
m_type = Scalar::GetValueTypeForUnsignedIntegerWithByteSize(byte_size);
switch (m_type) {
case e_uint:
m_integer = llvm::APInt(sizeof(uint_t) * 8, uval64, false);
break;
case e_ulong:
m_integer = llvm::APInt(sizeof(ulong_t) * 8, uval64, false);
break;
case e_ulonglong:
m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, uval64, false);
break;
default:
error.SetErrorStringWithFormat(
"unsupported unsigned integer byte size: %" PRIu64 "",
(uint64_t)byte_size);
break;
}
}
} else {
error.SetErrorStringWithFormat(
"unsupported unsigned integer byte size: %" PRIu64 "",
(uint64_t)byte_size);
return error;
}
break;
case eEncodingSint:
if (byte_size <= sizeof(long long)) {
uint64_t sval64 =
StringConvert::ToSInt64(value_str, INT64_MAX, 0, &success);
if (!success)
error.SetErrorStringWithFormat(
"'%s' is not a valid signed integer string value", value_str);
else if (!SIntValueIsValidForSize(sval64, byte_size))
error.SetErrorStringWithFormat("value 0x%" PRIx64
" is too large to fit in a %" PRIu64
" byte signed integer value",
sval64, (uint64_t)byte_size);
else {
m_type = Scalar::GetValueTypeForSignedIntegerWithByteSize(byte_size);
switch (m_type) {
case e_sint:
m_integer = llvm::APInt(sizeof(sint_t) * 8, sval64, true);
break;
case e_slong:
m_integer = llvm::APInt(sizeof(slong_t) * 8, sval64, true);
break;
case e_slonglong:
m_integer = llvm::APInt(sizeof(slonglong_t) * 8, sval64, true);
break;
default:
error.SetErrorStringWithFormat(
"unsupported signed integer byte size: %" PRIu64 "",
(uint64_t)byte_size);
break;
}
}
} else {
error.SetErrorStringWithFormat(
"unsupported signed integer byte size: %" PRIu64 "",
(uint64_t)byte_size);
return error;
}
break;
case eEncodingIEEE754:
static float f_val;
static double d_val;
static long double l_val;
if (byte_size == sizeof(float)) {
if (::sscanf(value_str, "%f", &f_val) == 1) {
m_float = llvm::APFloat(f_val);
m_type = e_float;
} else
error.SetErrorStringWithFormat("'%s' is not a valid float string value",
value_str);
} else if (byte_size == sizeof(double)) {
if (::sscanf(value_str, "%lf", &d_val) == 1) {
m_float = llvm::APFloat(d_val);
m_type = e_double;
} else
error.SetErrorStringWithFormat("'%s' is not a valid float string value",
value_str);
} else if (byte_size == sizeof(long double)) {
if (::sscanf(value_str, "%Lf", &l_val) == 1) {
m_float =
llvm::APFloat(llvm::APFloat::x87DoubleExtended,
llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128,
((type128 *)&l_val)->x));
m_type = e_long_double;
} else
error.SetErrorStringWithFormat("'%s' is not a valid float string value",
value_str);
} else {
error.SetErrorStringWithFormat("unsupported float byte size: %" PRIu64 "",
(uint64_t)byte_size);
return error;
}
break;
case eEncodingVector:
error.SetErrorString("vector encoding unsupported.");
break;
}
if (error.Fail())
m_type = e_void;
return error;
}
Error Scalar::SetValueFromData(DataExtractor &data, lldb::Encoding encoding,
size_t byte_size) {
Error error;
type128 int128;
type256 int256;
switch (encoding) {
case lldb::eEncodingInvalid:
error.SetErrorString("invalid encoding");
break;
case lldb::eEncodingVector:
error.SetErrorString("vector encoding unsupported");
break;
case lldb::eEncodingUint: {
lldb::offset_t offset = 0;
switch (byte_size) {
case 1:
operator=((uint8_t)data.GetU8(&offset));
break;
case 2:
operator=((uint16_t)data.GetU16(&offset));
break;
case 4:
operator=((uint32_t)data.GetU32(&offset));
break;
case 8:
operator=((uint64_t)data.GetU64(&offset));
break;
case 16:
if (data.GetByteOrder() == eByteOrderBig) {
int128.x[1] = (uint64_t)data.GetU64(&offset);
int128.x[0] = (uint64_t)data.GetU64(&offset);
} else {
int128.x[0] = (uint64_t)data.GetU64(&offset);
int128.x[1] = (uint64_t)data.GetU64(&offset);
}
operator=(llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, int128.x));
break;
case 32:
if (data.GetByteOrder() == eByteOrderBig) {
int256.x[3] = (uint64_t)data.GetU64(&offset);
int256.x[2] = (uint64_t)data.GetU64(&offset);
int256.x[1] = (uint64_t)data.GetU64(&offset);
int256.x[0] = (uint64_t)data.GetU64(&offset);
} else {
int256.x[0] = (uint64_t)data.GetU64(&offset);
int256.x[1] = (uint64_t)data.GetU64(&offset);
int256.x[2] = (uint64_t)data.GetU64(&offset);
int256.x[3] = (uint64_t)data.GetU64(&offset);
}
operator=(llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, int256.x));
break;
default:
error.SetErrorStringWithFormat(
"unsupported unsigned integer byte size: %" PRIu64 "",
(uint64_t)byte_size);
break;
}
} break;
case lldb::eEncodingSint: {
lldb::offset_t offset = 0;
switch (byte_size) {
case 1:
operator=((int8_t)data.GetU8(&offset));
break;
case 2:
operator=((int16_t)data.GetU16(&offset));
break;
case 4:
operator=((int32_t)data.GetU32(&offset));
break;
case 8:
operator=((int64_t)data.GetU64(&offset));
break;
case 16:
if (data.GetByteOrder() == eByteOrderBig) {
int128.x[1] = (uint64_t)data.GetU64(&offset);
int128.x[0] = (uint64_t)data.GetU64(&offset);
} else {
int128.x[0] = (uint64_t)data.GetU64(&offset);
int128.x[1] = (uint64_t)data.GetU64(&offset);
}
operator=(llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, int128.x));
break;
case 32:
if (data.GetByteOrder() == eByteOrderBig) {
int256.x[3] = (uint64_t)data.GetU64(&offset);
int256.x[2] = (uint64_t)data.GetU64(&offset);
int256.x[1] = (uint64_t)data.GetU64(&offset);
int256.x[0] = (uint64_t)data.GetU64(&offset);
} else {
int256.x[0] = (uint64_t)data.GetU64(&offset);
int256.x[1] = (uint64_t)data.GetU64(&offset);
int256.x[2] = (uint64_t)data.GetU64(&offset);
int256.x[3] = (uint64_t)data.GetU64(&offset);
}
operator=(llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, int256.x));
break;
default:
error.SetErrorStringWithFormat(
"unsupported signed integer byte size: %" PRIu64 "",
(uint64_t)byte_size);
break;
}
} break;
case lldb::eEncodingIEEE754: {
lldb::offset_t offset = 0;
if (byte_size == sizeof(float))
operator=((float)data.GetFloat(&offset));
else if (byte_size == sizeof(double))
operator=((double)data.GetDouble(&offset));
else if (byte_size == sizeof(long double))
operator=((long double)data.GetLongDouble(&offset));
else
error.SetErrorStringWithFormat("unsupported float byte size: %" PRIu64 "",
(uint64_t)byte_size);
} break;
}
return error;
}
bool Scalar::SignExtend(uint32_t sign_bit_pos) {
const uint32_t max_bit_pos = GetByteSize() * 8;
if (sign_bit_pos < max_bit_pos) {
switch (m_type) {
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
return false;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
if (max_bit_pos == sign_bit_pos)
return true;
else if (sign_bit_pos < (max_bit_pos - 1)) {
llvm::APInt sign_bit = llvm::APInt::getSignBit(sign_bit_pos + 1);
llvm::APInt bitwize_and = m_integer & sign_bit;
if (bitwize_and.getBoolValue()) {
const llvm::APInt mask =
~(sign_bit) + llvm::APInt(m_integer.getBitWidth(), 1);
m_integer |= mask;
}
return true;
}
break;
}
}
return false;
}
size_t Scalar::GetAsMemoryData(void *dst, size_t dst_len,
lldb::ByteOrder dst_byte_order,
Error &error) const {
// Get a data extractor that points to the native scalar data
DataExtractor data;
if (!GetData(data)) {
error.SetErrorString("invalid scalar value");
return 0;
}
const size_t src_len = data.GetByteSize();
// Prepare a memory buffer that contains some or all of the register value
const size_t bytes_copied =
data.CopyByteOrderedData(0, // src offset
src_len, // src length
dst, // dst buffer
dst_len, // dst length
dst_byte_order); // dst byte order
if (bytes_copied == 0)
error.SetErrorString("failed to copy data");
return bytes_copied;
}
bool Scalar::ExtractBitfield(uint32_t bit_size, uint32_t bit_offset) {
if (bit_size == 0)
return true;
switch (m_type) {
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
m_integer = m_integer.ashr(bit_offset)
.sextOrTrunc(bit_size)
.sextOrSelf(8 * GetByteSize());
return true;
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
m_integer = m_integer.lshr(bit_offset)
.zextOrTrunc(bit_size)
.zextOrSelf(8 * GetByteSize());
return true;
}
return false;
}
bool lldb_private::operator==(const Scalar &lhs, const Scalar &rhs) {
// If either entry is void then we can just compare the types
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return lhs.m_type == rhs.m_type;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) {
case Scalar::e_void:
break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
return a->m_integer == b->m_integer;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if (result == llvm::APFloat::cmpEqual)
return true;
}
return false;
}
bool lldb_private::operator!=(const Scalar &lhs, const Scalar &rhs) {
// If either entry is void then we can just compare the types
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return lhs.m_type != rhs.m_type;
Scalar
temp_value; // A temp value that might get a copy of either promoted value
const Scalar *a;
const Scalar *b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) {
case Scalar::e_void:
break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
return a->m_integer != b->m_integer;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if (result != llvm::APFloat::cmpEqual)
return true;
}
return true;
}
bool lldb_private::operator<(const Scalar &lhs, const Scalar &rhs) {
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) {
case Scalar::e_void:
break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
return a->m_integer.slt(b->m_integer);
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
return a->m_integer.ult(b->m_integer);
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if (result == llvm::APFloat::cmpLessThan)
return true;
}
return false;
}
bool lldb_private::operator<=(const Scalar &lhs, const Scalar &rhs) {
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) {
case Scalar::e_void:
break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
return a->m_integer.sle(b->m_integer);
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
return a->m_integer.ule(b->m_integer);
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if (result == llvm::APFloat::cmpLessThan ||
result == llvm::APFloat::cmpEqual)
return true;
}
return false;
}
bool lldb_private::operator>(const Scalar &lhs, const Scalar &rhs) {
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) {
case Scalar::e_void:
break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
return a->m_integer.sgt(b->m_integer);
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
return a->m_integer.ugt(b->m_integer);
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if (result == llvm::APFloat::cmpGreaterThan)
return true;
}
return false;
}
bool lldb_private::operator>=(const Scalar &lhs, const Scalar &rhs) {
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) {
case Scalar::e_void:
break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
return a->m_integer.sge(b->m_integer);
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
return a->m_integer.uge(b->m_integer);
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if (result == llvm::APFloat::cmpGreaterThan ||
result == llvm::APFloat::cmpEqual)
return true;
}
return false;
}
bool Scalar::ClearBit(uint32_t bit) {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer.clearBit(bit);
return true;
case e_float:
case e_double:
case e_long_double:
break;
}
return false;
}
bool Scalar::SetBit(uint32_t bit) {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
m_integer.setBit(bit);
return true;
case e_float:
case e_double:
case e_long_double:
break;
}
return false;
}