forked from OSchip/llvm-project
684 lines
26 KiB
C++
684 lines
26 KiB
C++
//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit Constant Expr nodes as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "CGObjCRuntime.h"
|
|
#include "clang/AST/APValue.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN ConstExprEmitter :
|
|
public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
|
|
CodeGenModule &CGM;
|
|
CodeGenFunction *CGF;
|
|
public:
|
|
ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf)
|
|
: CGM(cgm), CGF(cgf) {
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
llvm::Constant *VisitStmt(Stmt *S) {
|
|
CGM.ErrorUnsupported(S, "constant expression");
|
|
QualType T = cast<Expr>(S)->getType();
|
|
return llvm::UndefValue::get(CGM.getTypes().ConvertType(T));
|
|
}
|
|
|
|
llvm::Constant *VisitParenExpr(ParenExpr *PE) {
|
|
return Visit(PE->getSubExpr());
|
|
}
|
|
|
|
llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
|
|
return Visit(E->getInitializer());
|
|
}
|
|
|
|
llvm::Constant *VisitCastExpr(CastExpr* E) {
|
|
// GCC cast to union extension
|
|
if (E->getType()->isUnionType()) {
|
|
const llvm::Type *Ty = ConvertType(E->getType());
|
|
return EmitUnion(CGM.EmitConstantExpr(E->getSubExpr(), CGF), Ty);
|
|
}
|
|
|
|
llvm::Constant *C = Visit(E->getSubExpr());
|
|
|
|
return EmitConversion(C, E->getSubExpr()->getType(), E->getType());
|
|
}
|
|
|
|
llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
|
|
return Visit(DAE->getExpr());
|
|
}
|
|
|
|
llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) {
|
|
std::vector<llvm::Constant*> Elts;
|
|
const llvm::ArrayType *AType =
|
|
cast<llvm::ArrayType>(ConvertType(ILE->getType()));
|
|
unsigned NumInitElements = ILE->getNumInits();
|
|
// FIXME: Check for wide strings
|
|
if (NumInitElements > 0 && isa<StringLiteral>(ILE->getInit(0)) &&
|
|
ILE->getType()->getArrayElementTypeNoTypeQual()->isCharType())
|
|
return Visit(ILE->getInit(0));
|
|
const llvm::Type *ElemTy = AType->getElementType();
|
|
unsigned NumElements = AType->getNumElements();
|
|
|
|
// Initialising an array requires us to automatically
|
|
// initialise any elements that have not been initialised explicitly
|
|
unsigned NumInitableElts = std::min(NumInitElements, NumElements);
|
|
|
|
// Copy initializer elements.
|
|
unsigned i = 0;
|
|
bool RewriteType = false;
|
|
for (; i < NumInitableElts; ++i) {
|
|
llvm::Constant *C = CGM.EmitConstantExpr(ILE->getInit(i), CGF);
|
|
RewriteType |= (C->getType() != ElemTy);
|
|
Elts.push_back(C);
|
|
}
|
|
|
|
// Initialize remaining array elements.
|
|
for (; i < NumElements; ++i)
|
|
Elts.push_back(llvm::Constant::getNullValue(ElemTy));
|
|
|
|
if (RewriteType) {
|
|
// FIXME: Try to avoid packing the array
|
|
std::vector<const llvm::Type*> Types;
|
|
for (unsigned i = 0; i < Elts.size(); ++i)
|
|
Types.push_back(Elts[i]->getType());
|
|
const llvm::StructType *SType = llvm::StructType::get(Types, true);
|
|
return llvm::ConstantStruct::get(SType, Elts);
|
|
}
|
|
|
|
return llvm::ConstantArray::get(AType, Elts);
|
|
}
|
|
|
|
void InsertBitfieldIntoStruct(std::vector<llvm::Constant*>& Elts,
|
|
FieldDecl* Field, Expr* E) {
|
|
// Calculate the value to insert
|
|
llvm::Constant *C = CGM.EmitConstantExpr(E, CGF);
|
|
llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C);
|
|
if (!CI) {
|
|
CGM.ErrorUnsupported(E, "bitfield initialization");
|
|
return;
|
|
}
|
|
llvm::APInt V = CI->getValue();
|
|
|
|
// Calculate information about the relevant field
|
|
const llvm::Type* Ty = CI->getType();
|
|
const llvm::TargetData &TD = CGM.getTypes().getTargetData();
|
|
unsigned size = TD.getTypePaddedSizeInBits(Ty);
|
|
unsigned fieldOffset = CGM.getTypes().getLLVMFieldNo(Field) * size;
|
|
CodeGenTypes::BitFieldInfo bitFieldInfo =
|
|
CGM.getTypes().getBitFieldInfo(Field);
|
|
fieldOffset += bitFieldInfo.Begin;
|
|
|
|
// Find where to start the insertion
|
|
// FIXME: This is O(n^2) in the number of bit-fields!
|
|
// FIXME: This won't work if the struct isn't completely packed!
|
|
unsigned offset = 0, i = 0;
|
|
while (offset < (fieldOffset & -8))
|
|
offset += TD.getTypePaddedSizeInBits(Elts[i++]->getType());
|
|
|
|
// Advance over 0 sized elements (must terminate in bounds since
|
|
// the bitfield must have a size).
|
|
while (TD.getTypePaddedSizeInBits(Elts[i]->getType()) == 0)
|
|
++i;
|
|
|
|
// Promote the size of V if necessary
|
|
// FIXME: This should never occur, but currently it can because
|
|
// initializer constants are cast to bool, and because clang is
|
|
// not enforcing bitfield width limits.
|
|
if (bitFieldInfo.Size > V.getBitWidth())
|
|
V.zext(bitFieldInfo.Size);
|
|
|
|
// Insert the bits into the struct
|
|
// FIXME: This algorthm is only correct on X86!
|
|
// FIXME: THis algorthm assumes bit-fields only have byte-size elements!
|
|
unsigned bitsToInsert = bitFieldInfo.Size;
|
|
unsigned curBits = std::min(8 - (fieldOffset & 7), bitsToInsert);
|
|
unsigned byte = V.getLoBits(curBits).getZExtValue() << (fieldOffset & 7);
|
|
do {
|
|
llvm::Constant* byteC = llvm::ConstantInt::get(llvm::Type::Int8Ty, byte);
|
|
Elts[i] = llvm::ConstantExpr::getOr(Elts[i], byteC);
|
|
++i;
|
|
V = V.lshr(curBits);
|
|
bitsToInsert -= curBits;
|
|
|
|
if (!bitsToInsert)
|
|
break;
|
|
|
|
curBits = bitsToInsert > 8 ? 8 : bitsToInsert;
|
|
byte = V.getLoBits(curBits).getZExtValue();
|
|
} while (true);
|
|
}
|
|
|
|
llvm::Constant *EmitStructInitialization(InitListExpr *ILE) {
|
|
const llvm::StructType *SType =
|
|
cast<llvm::StructType>(ConvertType(ILE->getType()));
|
|
RecordDecl *RD = ILE->getType()->getAsRecordType()->getDecl();
|
|
std::vector<llvm::Constant*> Elts;
|
|
|
|
// Initialize the whole structure to zero.
|
|
for (unsigned i = 0; i < SType->getNumElements(); ++i) {
|
|
const llvm::Type *FieldTy = SType->getElementType(i);
|
|
Elts.push_back(llvm::Constant::getNullValue(FieldTy));
|
|
}
|
|
|
|
// Copy initializer elements. Skip padding fields.
|
|
unsigned EltNo = 0; // Element no in ILE
|
|
int FieldNo = 0; // Field no in RecordDecl
|
|
bool RewriteType = false;
|
|
for (RecordDecl::field_iterator Field = RD->field_begin(),
|
|
FieldEnd = RD->field_end();
|
|
EltNo < ILE->getNumInits() && Field != FieldEnd; ++Field) {
|
|
FieldNo++;
|
|
if (!Field->getIdentifier())
|
|
continue;
|
|
|
|
if (Field->isBitField()) {
|
|
InsertBitfieldIntoStruct(Elts, *Field, ILE->getInit(EltNo));
|
|
} else {
|
|
unsigned FieldNo = CGM.getTypes().getLLVMFieldNo(*Field);
|
|
llvm::Constant *C = CGM.EmitConstantExpr(ILE->getInit(EltNo), CGF);
|
|
RewriteType |= (C->getType() != Elts[FieldNo]->getType());
|
|
Elts[FieldNo] = C;
|
|
}
|
|
EltNo++;
|
|
}
|
|
|
|
if (RewriteType) {
|
|
// FIXME: Make this work for non-packed structs
|
|
assert(SType->isPacked() && "Cannot recreate unpacked structs");
|
|
std::vector<const llvm::Type*> Types;
|
|
for (unsigned i = 0; i < Elts.size(); ++i)
|
|
Types.push_back(Elts[i]->getType());
|
|
SType = llvm::StructType::get(Types, true);
|
|
}
|
|
|
|
return llvm::ConstantStruct::get(SType, Elts);
|
|
}
|
|
|
|
llvm::Constant *EmitUnion(llvm::Constant *C, const llvm::Type *Ty) {
|
|
// Build a struct with the union sub-element as the first member,
|
|
// and padded to the appropriate size
|
|
std::vector<llvm::Constant*> Elts;
|
|
std::vector<const llvm::Type*> Types;
|
|
Elts.push_back(C);
|
|
Types.push_back(C->getType());
|
|
unsigned CurSize = CGM.getTargetData().getTypePaddedSize(C->getType());
|
|
unsigned TotalSize = CGM.getTargetData().getTypePaddedSize(Ty);
|
|
while (CurSize < TotalSize) {
|
|
Elts.push_back(llvm::Constant::getNullValue(llvm::Type::Int8Ty));
|
|
Types.push_back(llvm::Type::Int8Ty);
|
|
CurSize++;
|
|
}
|
|
|
|
// This always generates a packed struct
|
|
// FIXME: Try to generate an unpacked struct when we can
|
|
llvm::StructType* STy = llvm::StructType::get(Types, true);
|
|
return llvm::ConstantStruct::get(STy, Elts);
|
|
}
|
|
|
|
llvm::Constant *EmitUnionInitialization(InitListExpr *ILE) {
|
|
const llvm::Type *Ty = ConvertType(ILE->getType());
|
|
|
|
// If this is an empty initializer list, we value-initialize the
|
|
// union.
|
|
if (ILE->getNumInits() == 0)
|
|
return llvm::Constant::getNullValue(Ty);
|
|
|
|
FieldDecl* curField = ILE->getInitializedFieldInUnion();
|
|
if (!curField) {
|
|
// There's no field to initialize, so value-initialize the union.
|
|
#ifndef NDEBUG
|
|
// Make sure that it's really an empty and not a failure of
|
|
// semantic analysis.
|
|
RecordDecl *RD = ILE->getType()->getAsRecordType()->getDecl();
|
|
for (RecordDecl::field_iterator Field = RD->field_begin(),
|
|
FieldEnd = RD->field_end();
|
|
Field != FieldEnd; ++Field)
|
|
assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
|
|
#endif
|
|
return llvm::Constant::getNullValue(Ty);
|
|
}
|
|
|
|
if (curField->isBitField()) {
|
|
// Create a dummy struct for bit-field insertion
|
|
unsigned NumElts = CGM.getTargetData().getTypePaddedSize(Ty) / 8;
|
|
llvm::Constant* NV = llvm::Constant::getNullValue(llvm::Type::Int8Ty);
|
|
std::vector<llvm::Constant*> Elts(NumElts, NV);
|
|
|
|
InsertBitfieldIntoStruct(Elts, curField, ILE->getInit(0));
|
|
const llvm::ArrayType *RetTy =
|
|
llvm::ArrayType::get(NV->getType(), NumElts);
|
|
return llvm::ConstantArray::get(RetTy, Elts);
|
|
}
|
|
|
|
return EmitUnion(CGM.EmitConstantExpr(ILE->getInit(0), CGF), Ty);
|
|
}
|
|
|
|
llvm::Constant *EmitVectorInitialization(InitListExpr *ILE) {
|
|
const llvm::VectorType *VType =
|
|
cast<llvm::VectorType>(ConvertType(ILE->getType()));
|
|
const llvm::Type *ElemTy = VType->getElementType();
|
|
std::vector<llvm::Constant*> Elts;
|
|
unsigned NumElements = VType->getNumElements();
|
|
unsigned NumInitElements = ILE->getNumInits();
|
|
|
|
unsigned NumInitableElts = std::min(NumInitElements, NumElements);
|
|
|
|
// Copy initializer elements.
|
|
unsigned i = 0;
|
|
for (; i < NumInitableElts; ++i) {
|
|
llvm::Constant *C = CGM.EmitConstantExpr(ILE->getInit(i), CGF);
|
|
Elts.push_back(C);
|
|
}
|
|
|
|
for (; i < NumElements; ++i)
|
|
Elts.push_back(llvm::Constant::getNullValue(ElemTy));
|
|
|
|
return llvm::ConstantVector::get(VType, Elts);
|
|
}
|
|
|
|
llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) {
|
|
const llvm::Type* RetTy = CGM.getTypes().ConvertType(E->getType());
|
|
return llvm::Constant::getNullValue(RetTy);
|
|
}
|
|
|
|
llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
|
|
if (ILE->getType()->isScalarType()) {
|
|
// We have a scalar in braces. Just use the first element.
|
|
if (ILE->getNumInits() > 0)
|
|
return CGM.EmitConstantExpr(ILE->getInit(0), CGF);
|
|
|
|
const llvm::Type* RetTy = CGM.getTypes().ConvertType(ILE->getType());
|
|
return llvm::Constant::getNullValue(RetTy);
|
|
}
|
|
|
|
if (ILE->getType()->isArrayType())
|
|
return EmitArrayInitialization(ILE);
|
|
|
|
if (ILE->getType()->isStructureType())
|
|
return EmitStructInitialization(ILE);
|
|
|
|
if (ILE->getType()->isUnionType())
|
|
return EmitUnionInitialization(ILE);
|
|
|
|
if (ILE->getType()->isVectorType())
|
|
return EmitVectorInitialization(ILE);
|
|
|
|
assert(0 && "Unable to handle InitListExpr");
|
|
// Get rid of control reaches end of void function warning.
|
|
// Not reached.
|
|
return 0;
|
|
}
|
|
|
|
llvm::Constant *VisitImplicitCastExpr(ImplicitCastExpr *ICExpr) {
|
|
Expr* SExpr = ICExpr->getSubExpr();
|
|
QualType SType = SExpr->getType();
|
|
llvm::Constant *C; // the intermediate expression
|
|
QualType T; // the type of the intermediate expression
|
|
if (SType->isArrayType()) {
|
|
// Arrays decay to a pointer to the first element
|
|
// VLAs would require special handling, but they can't occur here
|
|
C = EmitLValue(SExpr);
|
|
llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
|
|
llvm::Constant *Ops[] = {Idx0, Idx0};
|
|
C = llvm::ConstantExpr::getGetElementPtr(C, Ops, 2);
|
|
T = CGM.getContext().getArrayDecayedType(SType);
|
|
} else if (SType->isFunctionType()) {
|
|
// Function types decay to a pointer to the function
|
|
C = EmitLValue(SExpr);
|
|
T = CGM.getContext().getPointerType(SType);
|
|
} else {
|
|
C = Visit(SExpr);
|
|
T = SType;
|
|
}
|
|
|
|
// Perform the conversion; note that an implicit cast can both promote
|
|
// and convert an array/function
|
|
return EmitConversion(C, T, ICExpr->getType());
|
|
}
|
|
|
|
llvm::Constant *VisitStringLiteral(StringLiteral *E) {
|
|
assert(!E->getType()->isPointerType() && "Strings are always arrays");
|
|
|
|
// Otherwise this must be a string initializing an array in a static
|
|
// initializer. Don't emit it as the address of the string, emit the string
|
|
// data itself as an inline array.
|
|
return llvm::ConstantArray::get(CGM.GetStringForStringLiteral(E), false);
|
|
}
|
|
|
|
llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) {
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
|
|
// Utility methods
|
|
const llvm::Type *ConvertType(QualType T) {
|
|
return CGM.getTypes().ConvertType(T);
|
|
}
|
|
|
|
llvm::Constant *EmitConversionToBool(llvm::Constant *Src, QualType SrcType) {
|
|
assert(SrcType->isCanonical() && "EmitConversion strips typedefs");
|
|
|
|
if (SrcType->isRealFloatingType()) {
|
|
// Compare against 0.0 for fp scalars.
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(Src->getType());
|
|
return llvm::ConstantExpr::getFCmp(llvm::FCmpInst::FCMP_UNE, Src, Zero);
|
|
}
|
|
|
|
assert((SrcType->isIntegerType() || SrcType->isPointerType()) &&
|
|
"Unknown scalar type to convert");
|
|
|
|
// Compare against an integer or pointer null.
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(Src->getType());
|
|
return llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_NE, Src, Zero);
|
|
}
|
|
|
|
llvm::Constant *EmitConversion(llvm::Constant *Src, QualType SrcType,
|
|
QualType DstType) {
|
|
SrcType = CGM.getContext().getCanonicalType(SrcType);
|
|
DstType = CGM.getContext().getCanonicalType(DstType);
|
|
if (SrcType == DstType) return Src;
|
|
|
|
// Handle conversions to bool first, they are special: comparisons against 0.
|
|
if (DstType->isBooleanType())
|
|
return EmitConversionToBool(Src, SrcType);
|
|
|
|
const llvm::Type *DstTy = ConvertType(DstType);
|
|
|
|
// Ignore conversions like int -> uint.
|
|
if (Src->getType() == DstTy)
|
|
return Src;
|
|
|
|
// Handle pointer conversions next: pointers can only be converted to/from
|
|
// other pointers and integers.
|
|
if (isa<llvm::PointerType>(DstTy)) {
|
|
// The source value may be an integer, or a pointer.
|
|
if (isa<llvm::PointerType>(Src->getType()))
|
|
return llvm::ConstantExpr::getBitCast(Src, DstTy);
|
|
assert(SrcType->isIntegerType() &&"Not ptr->ptr or int->ptr conversion?");
|
|
return llvm::ConstantExpr::getIntToPtr(Src, DstTy);
|
|
}
|
|
|
|
if (isa<llvm::PointerType>(Src->getType())) {
|
|
// Must be an ptr to int cast.
|
|
assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
|
|
return llvm::ConstantExpr::getPtrToInt(Src, DstTy);
|
|
}
|
|
|
|
// A scalar source can be splatted to a vector of the same element type
|
|
if (isa<llvm::VectorType>(DstTy) && !isa<VectorType>(SrcType)) {
|
|
assert((cast<llvm::VectorType>(DstTy)->getElementType()
|
|
== Src->getType()) &&
|
|
"Vector element type must match scalar type to splat.");
|
|
unsigned NumElements = DstType->getAsVectorType()->getNumElements();
|
|
llvm::SmallVector<llvm::Constant*, 16> Elements;
|
|
for (unsigned i = 0; i < NumElements; i++)
|
|
Elements.push_back(Src);
|
|
|
|
return llvm::ConstantVector::get(&Elements[0], NumElements);
|
|
}
|
|
|
|
if (isa<llvm::VectorType>(Src->getType()) ||
|
|
isa<llvm::VectorType>(DstTy)) {
|
|
return llvm::ConstantExpr::getBitCast(Src, DstTy);
|
|
}
|
|
|
|
// Finally, we have the arithmetic types: real int/float.
|
|
if (isa<llvm::IntegerType>(Src->getType())) {
|
|
bool InputSigned = SrcType->isSignedIntegerType();
|
|
if (isa<llvm::IntegerType>(DstTy))
|
|
return llvm::ConstantExpr::getIntegerCast(Src, DstTy, InputSigned);
|
|
else if (InputSigned)
|
|
return llvm::ConstantExpr::getSIToFP(Src, DstTy);
|
|
else
|
|
return llvm::ConstantExpr::getUIToFP(Src, DstTy);
|
|
}
|
|
|
|
assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
|
|
if (isa<llvm::IntegerType>(DstTy)) {
|
|
if (DstType->isSignedIntegerType())
|
|
return llvm::ConstantExpr::getFPToSI(Src, DstTy);
|
|
else
|
|
return llvm::ConstantExpr::getFPToUI(Src, DstTy);
|
|
}
|
|
|
|
assert(DstTy->isFloatingPoint() && "Unknown real conversion");
|
|
if (DstTy->getTypeID() < Src->getType()->getTypeID())
|
|
return llvm::ConstantExpr::getFPTrunc(Src, DstTy);
|
|
else
|
|
return llvm::ConstantExpr::getFPExtend(Src, DstTy);
|
|
}
|
|
|
|
public:
|
|
llvm::Constant *EmitLValue(Expr *E) {
|
|
switch (E->getStmtClass()) {
|
|
default: break;
|
|
case Expr::ParenExprClass:
|
|
// Elide parenthesis
|
|
return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
|
|
case Expr::CompoundLiteralExprClass: {
|
|
// Note that due to the nature of compound literals, this is guaranteed
|
|
// to be the only use of the variable, so we just generate it here.
|
|
CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
|
|
llvm::Constant* C = Visit(CLE->getInitializer());
|
|
C = new llvm::GlobalVariable(C->getType(),E->getType().isConstQualified(),
|
|
llvm::GlobalValue::InternalLinkage,
|
|
C, ".compoundliteral", &CGM.getModule());
|
|
return C;
|
|
}
|
|
case Expr::DeclRefExprClass:
|
|
case Expr::QualifiedDeclRefExprClass: {
|
|
NamedDecl *Decl = cast<DeclRefExpr>(E)->getDecl();
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
|
|
return CGM.GetAddrOfFunction(FD);
|
|
if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) {
|
|
if (VD->isFileVarDecl())
|
|
return CGM.GetAddrOfGlobalVar(VD);
|
|
else if (VD->isBlockVarDecl()) {
|
|
assert(CGF && "Can't access static local vars without CGF");
|
|
return CGF->GetAddrOfStaticLocalVar(VD);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Expr::MemberExprClass: {
|
|
MemberExpr* ME = cast<MemberExpr>(E);
|
|
llvm::Constant *Base;
|
|
if (ME->isArrow())
|
|
Base = Visit(ME->getBase());
|
|
else
|
|
Base = EmitLValue(ME->getBase());
|
|
|
|
FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
|
|
// FIXME: Handle other kinds of member expressions.
|
|
assert(Field && "No code generation for non-field member expressions");
|
|
unsigned FieldNumber = CGM.getTypes().getLLVMFieldNo(Field);
|
|
llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
|
|
llvm::Constant *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty,
|
|
FieldNumber);
|
|
llvm::Value *Ops[] = {Zero, Idx};
|
|
return llvm::ConstantExpr::getGetElementPtr(Base, Ops, 2);
|
|
}
|
|
case Expr::ArraySubscriptExprClass: {
|
|
ArraySubscriptExpr* ASExpr = cast<ArraySubscriptExpr>(E);
|
|
llvm::Constant *Base = Visit(ASExpr->getBase());
|
|
llvm::Constant *Index = Visit(ASExpr->getIdx());
|
|
assert(!ASExpr->getBase()->getType()->isVectorType() &&
|
|
"Taking the address of a vector component is illegal!");
|
|
return llvm::ConstantExpr::getGetElementPtr(Base, &Index, 1);
|
|
}
|
|
case Expr::StringLiteralClass:
|
|
return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E));
|
|
case Expr::ObjCStringLiteralClass: {
|
|
ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E);
|
|
std::string S(SL->getString()->getStrData(),
|
|
SL->getString()->getByteLength());
|
|
llvm::Constant *C = CGM.getObjCRuntime().GenerateConstantString(S);
|
|
return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
|
|
}
|
|
case Expr::UnaryOperatorClass: {
|
|
UnaryOperator *Exp = cast<UnaryOperator>(E);
|
|
switch (Exp->getOpcode()) {
|
|
default: break;
|
|
case UnaryOperator::Extension:
|
|
// Extension is just a wrapper for expressions
|
|
return EmitLValue(Exp->getSubExpr());
|
|
case UnaryOperator::Real:
|
|
case UnaryOperator::Imag: {
|
|
// The address of __real or __imag is just a GEP off the address
|
|
// of the internal expression
|
|
llvm::Constant* C = EmitLValue(Exp->getSubExpr());
|
|
llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
|
|
llvm::Constant *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty,
|
|
Exp->getOpcode() == UnaryOperator::Imag);
|
|
llvm::Value *Ops[] = {Zero, Idx};
|
|
return llvm::ConstantExpr::getGetElementPtr(C, Ops, 2);
|
|
}
|
|
case UnaryOperator::Deref:
|
|
// The address of a deref is just the value of the expression
|
|
return Visit(Exp->getSubExpr());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Expr::PredefinedExprClass: {
|
|
// __func__/__FUNCTION__ -> "". __PRETTY_FUNCTION__ -> "top level".
|
|
std::string Str;
|
|
if (cast<PredefinedExpr>(E)->getIdentType() ==
|
|
PredefinedExpr::PrettyFunction)
|
|
Str = "top level";
|
|
|
|
return CGM.GetAddrOfConstantCString(Str, ".tmp");
|
|
}
|
|
case Expr::AddrLabelExprClass: {
|
|
assert(CGF && "Invalid address of label expression outside function.");
|
|
unsigned id = CGF->GetIDForAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel());
|
|
llvm::Constant *C = llvm::ConstantInt::get(llvm::Type::Int32Ty, id);
|
|
return llvm::ConstantExpr::getIntToPtr(C, ConvertType(E->getType()));
|
|
}
|
|
case Expr::CallExprClass: {
|
|
CallExpr* CE = cast<CallExpr>(E);
|
|
if (CE->isBuiltinCall() != Builtin::BI__builtin___CFStringMakeConstantString)
|
|
break;
|
|
const Expr *Arg = CE->getArg(0)->IgnoreParenCasts();
|
|
const StringLiteral *Literal = cast<StringLiteral>(Arg);
|
|
std::string S(Literal->getStrData(), Literal->getByteLength());
|
|
return CGM.GetAddrOfConstantCFString(S);
|
|
}
|
|
}
|
|
CGM.ErrorUnsupported(E, "constant l-value expression");
|
|
llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
|
|
return llvm::UndefValue::get(Ty);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace.
|
|
|
|
llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E,
|
|
CodeGenFunction *CGF) {
|
|
QualType type = Context.getCanonicalType(E->getType());
|
|
|
|
Expr::EvalResult Result;
|
|
|
|
if (E->Evaluate(Result, Context)) {
|
|
assert(!Result.HasSideEffects &&
|
|
"Constant expr should not have any side effects!");
|
|
switch (Result.Val.getKind()) {
|
|
case APValue::Uninitialized:
|
|
assert(0 && "Constant expressions should be uninitialized.");
|
|
return llvm::UndefValue::get(getTypes().ConvertType(type));
|
|
case APValue::LValue: {
|
|
llvm::Constant *Offset =
|
|
llvm::ConstantInt::get(llvm::Type::Int64Ty,
|
|
Result.Val.getLValueOffset());
|
|
|
|
if (const Expr *LVBase = Result.Val.getLValueBase()) {
|
|
llvm::Constant *C =
|
|
ConstExprEmitter(*this, CGF).EmitLValue(const_cast<Expr*>(LVBase));
|
|
|
|
const llvm::Type *Type =
|
|
llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
|
|
const llvm::Type *DestType = getTypes().ConvertTypeForMem(E->getType());
|
|
|
|
// FIXME: It's a little ugly that we need to cast to a pointer,
|
|
// apply the GEP and then cast back.
|
|
C = llvm::ConstantExpr::getBitCast(C, Type);
|
|
C = llvm::ConstantExpr::getGetElementPtr(C, &Offset, 1);
|
|
|
|
return llvm::ConstantExpr::getBitCast(C, DestType);
|
|
}
|
|
|
|
return llvm::ConstantExpr::getIntToPtr(Offset,
|
|
getTypes().ConvertType(type));
|
|
}
|
|
case APValue::Int: {
|
|
llvm::Constant *C = llvm::ConstantInt::get(Result.Val.getInt());
|
|
|
|
if (C->getType() == llvm::Type::Int1Ty) {
|
|
const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
|
|
C = llvm::ConstantExpr::getZExt(C, BoolTy);
|
|
}
|
|
return C;
|
|
}
|
|
case APValue::ComplexInt: {
|
|
llvm::Constant *Complex[2];
|
|
|
|
Complex[0] = llvm::ConstantInt::get(Result.Val.getComplexIntReal());
|
|
Complex[1] = llvm::ConstantInt::get(Result.Val.getComplexIntImag());
|
|
|
|
return llvm::ConstantStruct::get(Complex, 2);
|
|
}
|
|
case APValue::Float:
|
|
return llvm::ConstantFP::get(Result.Val.getFloat());
|
|
case APValue::ComplexFloat: {
|
|
llvm::Constant *Complex[2];
|
|
|
|
Complex[0] = llvm::ConstantFP::get(Result.Val.getComplexFloatReal());
|
|
Complex[1] = llvm::ConstantFP::get(Result.Val.getComplexFloatImag());
|
|
|
|
return llvm::ConstantStruct::get(Complex, 2);
|
|
}
|
|
case APValue::Vector: {
|
|
llvm::SmallVector<llvm::Constant *, 4> Inits;
|
|
unsigned NumElts = Result.Val.getVectorLength();
|
|
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
APValue &Elt = Result.Val.getVectorElt(i);
|
|
if (Elt.isInt())
|
|
Inits.push_back(llvm::ConstantInt::get(Elt.getInt()));
|
|
else
|
|
Inits.push_back(llvm::ConstantFP::get(Elt.getFloat()));
|
|
}
|
|
return llvm::ConstantVector::get(&Inits[0], Inits.size());
|
|
}
|
|
}
|
|
}
|
|
|
|
llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
|
|
if (C->getType() == llvm::Type::Int1Ty) {
|
|
const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
|
|
C = llvm::ConstantExpr::getZExt(C, BoolTy);
|
|
}
|
|
return C;
|
|
}
|