llvm-project/llvm/tools/sancov/sancov.cpp

1195 lines
38 KiB
C++

//===-- sancov.cpp --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file is a command-line tool for reading and analyzing sanitizer
// coverage.
//===----------------------------------------------------------------------===//
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/DebugInfo/Symbolize/Symbolize.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/JSON.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/SHA1.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/SpecialCaseList.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Support/YAMLParser.h"
#include "llvm/Support/raw_ostream.h"
#include <set>
#include <vector>
using namespace llvm;
namespace {
// --------- COMMAND LINE FLAGS ---------
enum ActionType {
CoveredFunctionsAction,
HtmlReportAction,
MergeAction,
NotCoveredFunctionsAction,
PrintAction,
PrintCovPointsAction,
StatsAction,
SymbolizeAction
};
cl::opt<ActionType> Action(
cl::desc("Action (required)"), cl::Required,
cl::values(
clEnumValN(PrintAction, "print", "Print coverage addresses"),
clEnumValN(PrintCovPointsAction, "print-coverage-pcs",
"Print coverage instrumentation points addresses."),
clEnumValN(CoveredFunctionsAction, "covered-functions",
"Print all covered funcions."),
clEnumValN(NotCoveredFunctionsAction, "not-covered-functions",
"Print all not covered funcions."),
clEnumValN(StatsAction, "print-coverage-stats",
"Print coverage statistics."),
clEnumValN(HtmlReportAction, "html-report",
"REMOVED. Use -symbolize & coverage-report-server.py."),
clEnumValN(SymbolizeAction, "symbolize",
"Produces a symbolized JSON report from binary report."),
clEnumValN(MergeAction, "merge", "Merges reports.")));
static cl::list<std::string>
ClInputFiles(cl::Positional, cl::OneOrMore,
cl::desc("<action> <binary files...> <.sancov files...> "
"<.symcov files...>"));
static cl::opt<bool> ClDemangle("demangle", cl::init(true),
cl::desc("Print demangled function name."));
static cl::opt<bool>
ClSkipDeadFiles("skip-dead-files", cl::init(true),
cl::desc("Do not list dead source files in reports."));
static cl::opt<std::string> ClStripPathPrefix(
"strip_path_prefix", cl::init(""),
cl::desc("Strip this prefix from file paths in reports."));
static cl::opt<std::string>
ClBlacklist("blacklist", cl::init(""),
cl::desc("Blacklist file (sanitizer blacklist format)."));
static cl::opt<bool> ClUseDefaultBlacklist(
"use_default_blacklist", cl::init(true), cl::Hidden,
cl::desc("Controls if default blacklist should be used."));
static const char *const DefaultBlacklistStr = "fun:__sanitizer_.*\n"
"src:/usr/include/.*\n"
"src:.*/libc\\+\\+/.*\n";
// --------- FORMAT SPECIFICATION ---------
struct FileHeader {
uint32_t Bitness;
uint32_t Magic;
};
static const uint32_t BinCoverageMagic = 0xC0BFFFFF;
static const uint32_t Bitness32 = 0xFFFFFF32;
static const uint32_t Bitness64 = 0xFFFFFF64;
static const Regex SancovFileRegex("(.*)\\.[0-9]+\\.sancov");
static const Regex SymcovFileRegex(".*\\.symcov");
// --------- MAIN DATASTRUCTURES ----------
// Contents of .sancov file: list of coverage point addresses that were
// executed.
struct RawCoverage {
explicit RawCoverage(std::unique_ptr<std::set<uint64_t>> Addrs)
: Addrs(std::move(Addrs)) {}
// Read binary .sancov file.
static ErrorOr<std::unique_ptr<RawCoverage>>
read(const std::string &FileName);
std::unique_ptr<std::set<uint64_t>> Addrs;
};
// Coverage point has an opaque Id and corresponds to multiple source locations.
struct CoveragePoint {
explicit CoveragePoint(const std::string &Id) : Id(Id) {}
std::string Id;
SmallVector<DILineInfo, 1> Locs;
};
// Symcov file content: set of covered Ids plus information about all available
// coverage points.
struct SymbolizedCoverage {
// Read json .symcov file.
static std::unique_ptr<SymbolizedCoverage> read(const std::string &InputFile);
std::set<std::string> CoveredIds;
std::string BinaryHash;
std::vector<CoveragePoint> Points;
};
struct CoverageStats {
size_t AllPoints;
size_t CovPoints;
size_t AllFns;
size_t CovFns;
};
// --------- ERROR HANDLING ---------
static void fail(const llvm::Twine &E) {
errs() << "ERROR: " << E << "\n";
exit(1);
}
static void failIf(bool B, const llvm::Twine &E) {
if (B)
fail(E);
}
static void failIfError(std::error_code Error) {
if (!Error)
return;
errs() << "ERROR: " << Error.message() << "(" << Error.value() << ")\n";
exit(1);
}
template <typename T> static void failIfError(const ErrorOr<T> &E) {
failIfError(E.getError());
}
static void failIfError(Error Err) {
if (Err) {
logAllUnhandledErrors(std::move(Err), errs(), "ERROR: ");
exit(1);
}
}
template <typename T> static void failIfError(Expected<T> &E) {
failIfError(E.takeError());
}
static void failIfNotEmpty(const llvm::Twine &E) {
if (E.str().empty())
return;
fail(E);
}
template <typename T>
static void failIfEmpty(const std::unique_ptr<T> &Ptr,
const std::string &Message) {
if (Ptr.get())
return;
fail(Message);
}
// ----------- Coverage I/O ----------
template <typename T>
static void readInts(const char *Start, const char *End,
std::set<uint64_t> *Ints) {
const T *S = reinterpret_cast<const T *>(Start);
const T *E = reinterpret_cast<const T *>(End);
std::copy(S, E, std::inserter(*Ints, Ints->end()));
}
ErrorOr<std::unique_ptr<RawCoverage>>
RawCoverage::read(const std::string &FileName) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
MemoryBuffer::getFile(FileName);
if (!BufOrErr)
return BufOrErr.getError();
std::unique_ptr<MemoryBuffer> Buf = std::move(BufOrErr.get());
if (Buf->getBufferSize() < 8) {
errs() << "File too small (<8): " << Buf->getBufferSize() << '\n';
return make_error_code(errc::illegal_byte_sequence);
}
const FileHeader *Header =
reinterpret_cast<const FileHeader *>(Buf->getBufferStart());
if (Header->Magic != BinCoverageMagic) {
errs() << "Wrong magic: " << Header->Magic << '\n';
return make_error_code(errc::illegal_byte_sequence);
}
auto Addrs = std::make_unique<std::set<uint64_t>>();
switch (Header->Bitness) {
case Bitness64:
readInts<uint64_t>(Buf->getBufferStart() + 8, Buf->getBufferEnd(),
Addrs.get());
break;
case Bitness32:
readInts<uint32_t>(Buf->getBufferStart() + 8, Buf->getBufferEnd(),
Addrs.get());
break;
default:
errs() << "Unsupported bitness: " << Header->Bitness << '\n';
return make_error_code(errc::illegal_byte_sequence);
}
// Ignore slots that are zero, so a runtime implementation is not required
// to compactify the data.
Addrs->erase(0);
return std::unique_ptr<RawCoverage>(new RawCoverage(std::move(Addrs)));
}
// Print coverage addresses.
raw_ostream &operator<<(raw_ostream &OS, const RawCoverage &CoverageData) {
for (auto Addr : *CoverageData.Addrs) {
OS << "0x";
OS.write_hex(Addr);
OS << "\n";
}
return OS;
}
static raw_ostream &operator<<(raw_ostream &OS, const CoverageStats &Stats) {
OS << "all-edges: " << Stats.AllPoints << "\n";
OS << "cov-edges: " << Stats.CovPoints << "\n";
OS << "all-functions: " << Stats.AllFns << "\n";
OS << "cov-functions: " << Stats.CovFns << "\n";
return OS;
}
// Output symbolized information for coverage points in JSON.
// Format:
// {
// '<file_name>' : {
// '<function_name>' : {
// '<point_id'> : '<line_number>:'<column_number'.
// ....
// }
// }
// }
static void operator<<(json::OStream &W,
const std::vector<CoveragePoint> &Points) {
// Group points by file.
std::map<std::string, std::vector<const CoveragePoint *>> PointsByFile;
for (const auto &Point : Points) {
for (const DILineInfo &Loc : Point.Locs) {
PointsByFile[Loc.FileName].push_back(&Point);
}
}
for (const auto &P : PointsByFile) {
std::string FileName = P.first;
std::map<std::string, std::vector<const CoveragePoint *>> PointsByFn;
for (auto PointPtr : P.second) {
for (const DILineInfo &Loc : PointPtr->Locs) {
PointsByFn[Loc.FunctionName].push_back(PointPtr);
}
}
W.attributeObject(P.first, [&] {
// Group points by function.
for (const auto &P : PointsByFn) {
std::string FunctionName = P.first;
std::set<std::string> WrittenIds;
W.attributeObject(FunctionName, [&] {
for (const CoveragePoint *Point : P.second) {
for (const auto &Loc : Point->Locs) {
if (Loc.FileName != FileName || Loc.FunctionName != FunctionName)
continue;
if (WrittenIds.find(Point->Id) != WrittenIds.end())
continue;
// Output <point_id> : "<line>:<col>".
WrittenIds.insert(Point->Id);
W.attribute(Point->Id,
(utostr(Loc.Line) + ":" + utostr(Loc.Column)));
}
}
});
}
});
}
}
static void operator<<(json::OStream &W, const SymbolizedCoverage &C) {
W.object([&] {
W.attributeArray("covered-points", [&] {
for (const std::string &P : C.CoveredIds) {
W.value(P);
}
});
W.attribute("binary-hash", C.BinaryHash);
W.attributeObject("point-symbol-info", [&] { W << C.Points; });
});
}
static std::string parseScalarString(yaml::Node *N) {
SmallString<64> StringStorage;
yaml::ScalarNode *S = dyn_cast<yaml::ScalarNode>(N);
failIf(!S, "expected string");
return std::string(S->getValue(StringStorage));
}
std::unique_ptr<SymbolizedCoverage>
SymbolizedCoverage::read(const std::string &InputFile) {
auto Coverage(std::make_unique<SymbolizedCoverage>());
std::map<std::string, CoveragePoint> Points;
ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
MemoryBuffer::getFile(InputFile);
failIfError(BufOrErr);
SourceMgr SM;
yaml::Stream S(**BufOrErr, SM);
yaml::document_iterator DI = S.begin();
failIf(DI == S.end(), "empty document: " + InputFile);
yaml::Node *Root = DI->getRoot();
failIf(!Root, "expecting root node: " + InputFile);
yaml::MappingNode *Top = dyn_cast<yaml::MappingNode>(Root);
failIf(!Top, "expecting mapping node: " + InputFile);
for (auto &KVNode : *Top) {
auto Key = parseScalarString(KVNode.getKey());
if (Key == "covered-points") {
yaml::SequenceNode *Points =
dyn_cast<yaml::SequenceNode>(KVNode.getValue());
failIf(!Points, "expected array: " + InputFile);
for (auto I = Points->begin(), E = Points->end(); I != E; ++I) {
Coverage->CoveredIds.insert(parseScalarString(&*I));
}
} else if (Key == "binary-hash") {
Coverage->BinaryHash = parseScalarString(KVNode.getValue());
} else if (Key == "point-symbol-info") {
yaml::MappingNode *PointSymbolInfo =
dyn_cast<yaml::MappingNode>(KVNode.getValue());
failIf(!PointSymbolInfo, "expected mapping node: " + InputFile);
for (auto &FileKVNode : *PointSymbolInfo) {
auto Filename = parseScalarString(FileKVNode.getKey());
yaml::MappingNode *FileInfo =
dyn_cast<yaml::MappingNode>(FileKVNode.getValue());
failIf(!FileInfo, "expected mapping node: " + InputFile);
for (auto &FunctionKVNode : *FileInfo) {
auto FunctionName = parseScalarString(FunctionKVNode.getKey());
yaml::MappingNode *FunctionInfo =
dyn_cast<yaml::MappingNode>(FunctionKVNode.getValue());
failIf(!FunctionInfo, "expected mapping node: " + InputFile);
for (auto &PointKVNode : *FunctionInfo) {
auto PointId = parseScalarString(PointKVNode.getKey());
auto Loc = parseScalarString(PointKVNode.getValue());
size_t ColonPos = Loc.find(':');
failIf(ColonPos == std::string::npos, "expected ':': " + InputFile);
auto LineStr = Loc.substr(0, ColonPos);
auto ColStr = Loc.substr(ColonPos + 1, Loc.size());
if (Points.find(PointId) == Points.end())
Points.insert(std::make_pair(PointId, CoveragePoint(PointId)));
DILineInfo LineInfo;
LineInfo.FileName = Filename;
LineInfo.FunctionName = FunctionName;
char *End;
LineInfo.Line = std::strtoul(LineStr.c_str(), &End, 10);
LineInfo.Column = std::strtoul(ColStr.c_str(), &End, 10);
CoveragePoint *CoveragePoint = &Points.find(PointId)->second;
CoveragePoint->Locs.push_back(LineInfo);
}
}
}
} else {
errs() << "Ignoring unknown key: " << Key << "\n";
}
}
for (auto &KV : Points) {
Coverage->Points.push_back(KV.second);
}
return Coverage;
}
// ---------- MAIN FUNCTIONALITY ----------
std::string stripPathPrefix(std::string Path) {
if (ClStripPathPrefix.empty())
return Path;
size_t Pos = Path.find(ClStripPathPrefix);
if (Pos == std::string::npos)
return Path;
return Path.substr(Pos + ClStripPathPrefix.size());
}
static std::unique_ptr<symbolize::LLVMSymbolizer> createSymbolizer() {
symbolize::LLVMSymbolizer::Options SymbolizerOptions;
SymbolizerOptions.Demangle = ClDemangle;
SymbolizerOptions.UseSymbolTable = true;
return std::unique_ptr<symbolize::LLVMSymbolizer>(
new symbolize::LLVMSymbolizer(SymbolizerOptions));
}
static std::string normalizeFilename(const std::string &FileName) {
SmallString<256> S(FileName);
sys::path::remove_dots(S, /* remove_dot_dot */ true);
return stripPathPrefix(sys::path::convert_to_slash(std::string(S)));
}
class Blacklists {
public:
Blacklists()
: DefaultBlacklist(createDefaultBlacklist()),
UserBlacklist(createUserBlacklist()) {}
bool isBlacklisted(const DILineInfo &I) {
if (DefaultBlacklist &&
DefaultBlacklist->inSection("sancov", "fun", I.FunctionName))
return true;
if (DefaultBlacklist &&
DefaultBlacklist->inSection("sancov", "src", I.FileName))
return true;
if (UserBlacklist &&
UserBlacklist->inSection("sancov", "fun", I.FunctionName))
return true;
if (UserBlacklist && UserBlacklist->inSection("sancov", "src", I.FileName))
return true;
return false;
}
private:
static std::unique_ptr<SpecialCaseList> createDefaultBlacklist() {
if (!ClUseDefaultBlacklist)
return std::unique_ptr<SpecialCaseList>();
std::unique_ptr<MemoryBuffer> MB =
MemoryBuffer::getMemBuffer(DefaultBlacklistStr);
std::string Error;
auto Blacklist = SpecialCaseList::create(MB.get(), Error);
failIfNotEmpty(Error);
return Blacklist;
}
static std::unique_ptr<SpecialCaseList> createUserBlacklist() {
if (ClBlacklist.empty())
return std::unique_ptr<SpecialCaseList>();
return SpecialCaseList::createOrDie({{ClBlacklist}},
*vfs::getRealFileSystem());
}
std::unique_ptr<SpecialCaseList> DefaultBlacklist;
std::unique_ptr<SpecialCaseList> UserBlacklist;
};
static std::vector<CoveragePoint>
getCoveragePoints(const std::string &ObjectFile,
const std::set<uint64_t> &Addrs,
const std::set<uint64_t> &CoveredAddrs) {
std::vector<CoveragePoint> Result;
auto Symbolizer(createSymbolizer());
Blacklists B;
std::set<std::string> CoveredFiles;
if (ClSkipDeadFiles) {
for (auto Addr : CoveredAddrs) {
// TODO: it would be neccessary to set proper section index here.
// object::SectionedAddress::UndefSection works for only absolute
// addresses.
object::SectionedAddress ModuleAddress = {
Addr, object::SectionedAddress::UndefSection};
auto LineInfo = Symbolizer->symbolizeCode(ObjectFile, ModuleAddress);
failIfError(LineInfo);
CoveredFiles.insert(LineInfo->FileName);
auto InliningInfo =
Symbolizer->symbolizeInlinedCode(ObjectFile, ModuleAddress);
failIfError(InliningInfo);
for (uint32_t I = 0; I < InliningInfo->getNumberOfFrames(); ++I) {
auto FrameInfo = InliningInfo->getFrame(I);
CoveredFiles.insert(FrameInfo.FileName);
}
}
}
for (auto Addr : Addrs) {
std::set<DILineInfo> Infos; // deduplicate debug info.
// TODO: it would be neccessary to set proper section index here.
// object::SectionedAddress::UndefSection works for only absolute addresses.
object::SectionedAddress ModuleAddress = {
Addr, object::SectionedAddress::UndefSection};
auto LineInfo = Symbolizer->symbolizeCode(ObjectFile, ModuleAddress);
failIfError(LineInfo);
if (ClSkipDeadFiles &&
CoveredFiles.find(LineInfo->FileName) == CoveredFiles.end())
continue;
LineInfo->FileName = normalizeFilename(LineInfo->FileName);
if (B.isBlacklisted(*LineInfo))
continue;
auto Id = utohexstr(Addr, true);
auto Point = CoveragePoint(Id);
Infos.insert(*LineInfo);
Point.Locs.push_back(*LineInfo);
auto InliningInfo =
Symbolizer->symbolizeInlinedCode(ObjectFile, ModuleAddress);
failIfError(InliningInfo);
for (uint32_t I = 0; I < InliningInfo->getNumberOfFrames(); ++I) {
auto FrameInfo = InliningInfo->getFrame(I);
if (ClSkipDeadFiles &&
CoveredFiles.find(FrameInfo.FileName) == CoveredFiles.end())
continue;
FrameInfo.FileName = normalizeFilename(FrameInfo.FileName);
if (B.isBlacklisted(FrameInfo))
continue;
if (Infos.find(FrameInfo) == Infos.end()) {
Infos.insert(FrameInfo);
Point.Locs.push_back(FrameInfo);
}
}
Result.push_back(Point);
}
return Result;
}
static bool isCoveragePointSymbol(StringRef Name) {
return Name == "__sanitizer_cov" || Name == "__sanitizer_cov_with_check" ||
Name == "__sanitizer_cov_trace_func_enter" ||
Name == "__sanitizer_cov_trace_pc_guard" ||
// Mac has '___' prefix
Name == "___sanitizer_cov" || Name == "___sanitizer_cov_with_check" ||
Name == "___sanitizer_cov_trace_func_enter" ||
Name == "___sanitizer_cov_trace_pc_guard";
}
// Locate __sanitizer_cov* function addresses inside the stubs table on MachO.
static void findMachOIndirectCovFunctions(const object::MachOObjectFile &O,
std::set<uint64_t> *Result) {
MachO::dysymtab_command Dysymtab = O.getDysymtabLoadCommand();
MachO::symtab_command Symtab = O.getSymtabLoadCommand();
for (const auto &Load : O.load_commands()) {
if (Load.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 Seg = O.getSegment64LoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section_64 Sec = O.getSection64(Load, J);
uint32_t SectionType = Sec.flags & MachO::SECTION_TYPE;
if (SectionType == MachO::S_SYMBOL_STUBS) {
uint32_t Stride = Sec.reserved2;
uint32_t Cnt = Sec.size / Stride;
uint32_t N = Sec.reserved1;
for (uint32_t J = 0; J < Cnt && N + J < Dysymtab.nindirectsyms; J++) {
uint32_t IndirectSymbol =
O.getIndirectSymbolTableEntry(Dysymtab, N + J);
uint64_t Addr = Sec.addr + J * Stride;
if (IndirectSymbol < Symtab.nsyms) {
object::SymbolRef Symbol = *(O.getSymbolByIndex(IndirectSymbol));
Expected<StringRef> Name = Symbol.getName();
failIfError(Name);
if (isCoveragePointSymbol(Name.get())) {
Result->insert(Addr);
}
}
}
}
}
}
if (Load.C.cmd == MachO::LC_SEGMENT) {
errs() << "ERROR: 32 bit MachO binaries not supported\n";
}
}
}
// Locate __sanitizer_cov* function addresses that are used for coverage
// reporting.
static std::set<uint64_t>
findSanitizerCovFunctions(const object::ObjectFile &O) {
std::set<uint64_t> Result;
for (const object::SymbolRef &Symbol : O.symbols()) {
Expected<uint64_t> AddressOrErr = Symbol.getAddress();
failIfError(AddressOrErr);
uint64_t Address = AddressOrErr.get();
Expected<StringRef> NameOrErr = Symbol.getName();
failIfError(NameOrErr);
StringRef Name = NameOrErr.get();
Expected<uint32_t> FlagsOrErr = Symbol.getFlags();
// TODO: Test this error.
failIfError(FlagsOrErr);
uint32_t Flags = FlagsOrErr.get();
if (!(Flags & object::BasicSymbolRef::SF_Undefined) &&
isCoveragePointSymbol(Name)) {
Result.insert(Address);
}
}
if (const auto *CO = dyn_cast<object::COFFObjectFile>(&O)) {
for (const object::ExportDirectoryEntryRef &Export :
CO->export_directories()) {
uint32_t RVA;
failIfError(Export.getExportRVA(RVA));
StringRef Name;
failIfError(Export.getSymbolName(Name));
if (isCoveragePointSymbol(Name))
Result.insert(CO->getImageBase() + RVA);
}
}
if (const auto *MO = dyn_cast<object::MachOObjectFile>(&O)) {
findMachOIndirectCovFunctions(*MO, &Result);
}
return Result;
}
static uint64_t getPreviousInstructionPc(uint64_t PC,
Triple TheTriple) {
if (TheTriple.isARM()) {
return (PC - 3) & (~1);
} else if (TheTriple.isAArch64()) {
return PC - 4;
} else if (TheTriple.isMIPS()) {
return PC - 8;
} else {
return PC - 1;
}
}
// Locate addresses of all coverage points in a file. Coverage point
// is defined as the 'address of instruction following __sanitizer_cov
// call - 1'.
static void getObjectCoveragePoints(const object::ObjectFile &O,
std::set<uint64_t> *Addrs) {
Triple TheTriple("unknown-unknown-unknown");
TheTriple.setArch(Triple::ArchType(O.getArch()));
auto TripleName = TheTriple.getTriple();
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
failIfNotEmpty(Error);
std::unique_ptr<const MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, "", ""));
failIfEmpty(STI, "no subtarget info for target " + TripleName);
std::unique_ptr<const MCRegisterInfo> MRI(
TheTarget->createMCRegInfo(TripleName));
failIfEmpty(MRI, "no register info for target " + TripleName);
MCTargetOptions MCOptions;
std::unique_ptr<const MCAsmInfo> AsmInfo(
TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
failIfEmpty(AsmInfo, "no asm info for target " + TripleName);
MCContext Ctx(TheTriple, AsmInfo.get(), MRI.get(), STI.get());
std::unique_ptr<MCDisassembler> DisAsm(
TheTarget->createMCDisassembler(*STI, Ctx));
failIfEmpty(DisAsm, "no disassembler info for target " + TripleName);
std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
failIfEmpty(MII, "no instruction info for target " + TripleName);
std::unique_ptr<const MCInstrAnalysis> MIA(
TheTarget->createMCInstrAnalysis(MII.get()));
failIfEmpty(MIA, "no instruction analysis info for target " + TripleName);
auto SanCovAddrs = findSanitizerCovFunctions(O);
if (SanCovAddrs.empty())
fail("__sanitizer_cov* functions not found");
for (object::SectionRef Section : O.sections()) {
if (Section.isVirtual() || !Section.isText()) // llvm-objdump does the same.
continue;
uint64_t SectionAddr = Section.getAddress();
uint64_t SectSize = Section.getSize();
if (!SectSize)
continue;
Expected<StringRef> BytesStr = Section.getContents();
failIfError(BytesStr);
ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(*BytesStr);
for (uint64_t Index = 0, Size = 0; Index < Section.getSize();
Index += Size) {
MCInst Inst;
if (!DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
SectionAddr + Index, nulls())) {
if (Size == 0)
Size = 1;
continue;
}
uint64_t Addr = Index + SectionAddr;
// Sanitizer coverage uses the address of the next instruction - 1.
uint64_t CovPoint = getPreviousInstructionPc(Addr + Size, TheTriple);
uint64_t Target;
if (MIA->isCall(Inst) &&
MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target) &&
SanCovAddrs.find(Target) != SanCovAddrs.end())
Addrs->insert(CovPoint);
}
}
}
static void
visitObjectFiles(const object::Archive &A,
function_ref<void(const object::ObjectFile &)> Fn) {
Error Err = Error::success();
for (auto &C : A.children(Err)) {
Expected<std::unique_ptr<object::Binary>> ChildOrErr = C.getAsBinary();
failIfError(ChildOrErr);
if (auto *O = dyn_cast<object::ObjectFile>(&*ChildOrErr.get()))
Fn(*O);
else
failIfError(object::object_error::invalid_file_type);
}
failIfError(std::move(Err));
}
static void
visitObjectFiles(const std::string &FileName,
function_ref<void(const object::ObjectFile &)> Fn) {
Expected<object::OwningBinary<object::Binary>> BinaryOrErr =
object::createBinary(FileName);
if (!BinaryOrErr)
failIfError(BinaryOrErr);
object::Binary &Binary = *BinaryOrErr.get().getBinary();
if (object::Archive *A = dyn_cast<object::Archive>(&Binary))
visitObjectFiles(*A, Fn);
else if (object::ObjectFile *O = dyn_cast<object::ObjectFile>(&Binary))
Fn(*O);
else
failIfError(object::object_error::invalid_file_type);
}
static std::set<uint64_t>
findSanitizerCovFunctions(const std::string &FileName) {
std::set<uint64_t> Result;
visitObjectFiles(FileName, [&](const object::ObjectFile &O) {
auto Addrs = findSanitizerCovFunctions(O);
Result.insert(Addrs.begin(), Addrs.end());
});
return Result;
}
// Locate addresses of all coverage points in a file. Coverage point
// is defined as the 'address of instruction following __sanitizer_cov
// call - 1'.
static std::set<uint64_t> findCoveragePointAddrs(const std::string &FileName) {
std::set<uint64_t> Result;
visitObjectFiles(FileName, [&](const object::ObjectFile &O) {
getObjectCoveragePoints(O, &Result);
});
return Result;
}
static void printCovPoints(const std::string &ObjFile, raw_ostream &OS) {
for (uint64_t Addr : findCoveragePointAddrs(ObjFile)) {
OS << "0x";
OS.write_hex(Addr);
OS << "\n";
}
}
static ErrorOr<bool> isCoverageFile(const std::string &FileName) {
auto ShortFileName = llvm::sys::path::filename(FileName);
if (!SancovFileRegex.match(ShortFileName))
return false;
ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
MemoryBuffer::getFile(FileName);
if (!BufOrErr) {
errs() << "Warning: " << BufOrErr.getError().message() << "("
<< BufOrErr.getError().value()
<< "), filename: " << llvm::sys::path::filename(FileName) << "\n";
return BufOrErr.getError();
}
std::unique_ptr<MemoryBuffer> Buf = std::move(BufOrErr.get());
if (Buf->getBufferSize() < 8) {
return false;
}
const FileHeader *Header =
reinterpret_cast<const FileHeader *>(Buf->getBufferStart());
return Header->Magic == BinCoverageMagic;
}
static bool isSymbolizedCoverageFile(const std::string &FileName) {
auto ShortFileName = llvm::sys::path::filename(FileName);
return SymcovFileRegex.match(ShortFileName);
}
static std::unique_ptr<SymbolizedCoverage>
symbolize(const RawCoverage &Data, const std::string ObjectFile) {
auto Coverage = std::make_unique<SymbolizedCoverage>();
ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
MemoryBuffer::getFile(ObjectFile);
failIfError(BufOrErr);
SHA1 Hasher;
Hasher.update((*BufOrErr)->getBuffer());
Coverage->BinaryHash = toHex(Hasher.final());
Blacklists B;
auto Symbolizer(createSymbolizer());
for (uint64_t Addr : *Data.Addrs) {
// TODO: it would be neccessary to set proper section index here.
// object::SectionedAddress::UndefSection works for only absolute addresses.
auto LineInfo = Symbolizer->symbolizeCode(
ObjectFile, {Addr, object::SectionedAddress::UndefSection});
failIfError(LineInfo);
if (B.isBlacklisted(*LineInfo))
continue;
Coverage->CoveredIds.insert(utohexstr(Addr, true));
}
std::set<uint64_t> AllAddrs = findCoveragePointAddrs(ObjectFile);
if (!std::includes(AllAddrs.begin(), AllAddrs.end(), Data.Addrs->begin(),
Data.Addrs->end())) {
fail("Coverage points in binary and .sancov file do not match.");
}
Coverage->Points = getCoveragePoints(ObjectFile, AllAddrs, *Data.Addrs);
return Coverage;
}
struct FileFn {
bool operator<(const FileFn &RHS) const {
return std::tie(FileName, FunctionName) <
std::tie(RHS.FileName, RHS.FunctionName);
}
std::string FileName;
std::string FunctionName;
};
static std::set<FileFn>
computeFunctions(const std::vector<CoveragePoint> &Points) {
std::set<FileFn> Fns;
for (const auto &Point : Points) {
for (const auto &Loc : Point.Locs) {
Fns.insert(FileFn{Loc.FileName, Loc.FunctionName});
}
}
return Fns;
}
static std::set<FileFn>
computeNotCoveredFunctions(const SymbolizedCoverage &Coverage) {
auto Fns = computeFunctions(Coverage.Points);
for (const auto &Point : Coverage.Points) {
if (Coverage.CoveredIds.find(Point.Id) == Coverage.CoveredIds.end())
continue;
for (const auto &Loc : Point.Locs) {
Fns.erase(FileFn{Loc.FileName, Loc.FunctionName});
}
}
return Fns;
}
static std::set<FileFn>
computeCoveredFunctions(const SymbolizedCoverage &Coverage) {
auto AllFns = computeFunctions(Coverage.Points);
std::set<FileFn> Result;
for (const auto &Point : Coverage.Points) {
if (Coverage.CoveredIds.find(Point.Id) == Coverage.CoveredIds.end())
continue;
for (const auto &Loc : Point.Locs) {
Result.insert(FileFn{Loc.FileName, Loc.FunctionName});
}
}
return Result;
}
typedef std::map<FileFn, std::pair<uint32_t, uint32_t>> FunctionLocs;
// finds first location in a file for each function.
static FunctionLocs resolveFunctions(const SymbolizedCoverage &Coverage,
const std::set<FileFn> &Fns) {
FunctionLocs Result;
for (const auto &Point : Coverage.Points) {
for (const auto &Loc : Point.Locs) {
FileFn Fn = FileFn{Loc.FileName, Loc.FunctionName};
if (Fns.find(Fn) == Fns.end())
continue;
auto P = std::make_pair(Loc.Line, Loc.Column);
auto I = Result.find(Fn);
if (I == Result.end() || I->second > P) {
Result[Fn] = P;
}
}
}
return Result;
}
static void printFunctionLocs(const FunctionLocs &FnLocs, raw_ostream &OS) {
for (const auto &P : FnLocs) {
OS << stripPathPrefix(P.first.FileName) << ":" << P.second.first << " "
<< P.first.FunctionName << "\n";
}
}
CoverageStats computeStats(const SymbolizedCoverage &Coverage) {
CoverageStats Stats = {Coverage.Points.size(), Coverage.CoveredIds.size(),
computeFunctions(Coverage.Points).size(),
computeCoveredFunctions(Coverage).size()};
return Stats;
}
// Print list of covered functions.
// Line format: <file_name>:<line> <function_name>
static void printCoveredFunctions(const SymbolizedCoverage &CovData,
raw_ostream &OS) {
auto CoveredFns = computeCoveredFunctions(CovData);
printFunctionLocs(resolveFunctions(CovData, CoveredFns), OS);
}
// Print list of not covered functions.
// Line format: <file_name>:<line> <function_name>
static void printNotCoveredFunctions(const SymbolizedCoverage &CovData,
raw_ostream &OS) {
auto NotCoveredFns = computeNotCoveredFunctions(CovData);
printFunctionLocs(resolveFunctions(CovData, NotCoveredFns), OS);
}
// Read list of files and merges their coverage info.
static void readAndPrintRawCoverage(const std::vector<std::string> &FileNames,
raw_ostream &OS) {
std::vector<std::unique_ptr<RawCoverage>> Covs;
for (const auto &FileName : FileNames) {
auto Cov = RawCoverage::read(FileName);
if (!Cov)
continue;
OS << *Cov.get();
}
}
static std::unique_ptr<SymbolizedCoverage>
merge(const std::vector<std::unique_ptr<SymbolizedCoverage>> &Coverages) {
if (Coverages.empty())
return nullptr;
auto Result = std::make_unique<SymbolizedCoverage>();
for (size_t I = 0; I < Coverages.size(); ++I) {
const SymbolizedCoverage &Coverage = *Coverages[I];
std::string Prefix;
if (Coverages.size() > 1) {
// prefix is not needed when there's only one file.
Prefix = utostr(I);
}
for (const auto &Id : Coverage.CoveredIds) {
Result->CoveredIds.insert(Prefix + Id);
}
for (const auto &CovPoint : Coverage.Points) {
CoveragePoint NewPoint(CovPoint);
NewPoint.Id = Prefix + CovPoint.Id;
Result->Points.push_back(NewPoint);
}
}
if (Coverages.size() == 1) {
Result->BinaryHash = Coverages[0]->BinaryHash;
}
return Result;
}
static std::unique_ptr<SymbolizedCoverage>
readSymbolizeAndMergeCmdArguments(std::vector<std::string> FileNames) {
std::vector<std::unique_ptr<SymbolizedCoverage>> Coverages;
{
// Short name => file name.
std::map<std::string, std::string> ObjFiles;
std::string FirstObjFile;
std::set<std::string> CovFiles;
// Partition input values into coverage/object files.
for (const auto &FileName : FileNames) {
if (isSymbolizedCoverageFile(FileName)) {
Coverages.push_back(SymbolizedCoverage::read(FileName));
}
auto ErrorOrIsCoverage = isCoverageFile(FileName);
if (!ErrorOrIsCoverage)
continue;
if (ErrorOrIsCoverage.get()) {
CovFiles.insert(FileName);
} else {
auto ShortFileName = llvm::sys::path::filename(FileName);
if (ObjFiles.find(std::string(ShortFileName)) != ObjFiles.end()) {
fail("Duplicate binary file with a short name: " + ShortFileName);
}
ObjFiles[std::string(ShortFileName)] = FileName;
if (FirstObjFile.empty())
FirstObjFile = FileName;
}
}
SmallVector<StringRef, 2> Components;
// Object file => list of corresponding coverage file names.
std::map<std::string, std::vector<std::string>> CoverageByObjFile;
for (const auto &FileName : CovFiles) {
auto ShortFileName = llvm::sys::path::filename(FileName);
auto Ok = SancovFileRegex.match(ShortFileName, &Components);
if (!Ok) {
fail("Can't match coverage file name against "
"<module_name>.<pid>.sancov pattern: " +
FileName);
}
auto Iter = ObjFiles.find(std::string(Components[1]));
if (Iter == ObjFiles.end()) {
fail("Object file for coverage not found: " + FileName);
}
CoverageByObjFile[Iter->second].push_back(FileName);
};
for (const auto &Pair : ObjFiles) {
auto FileName = Pair.second;
if (CoverageByObjFile.find(FileName) == CoverageByObjFile.end())
errs() << "WARNING: No coverage file for " << FileName << "\n";
}
// Read raw coverage and symbolize it.
for (const auto &Pair : CoverageByObjFile) {
if (findSanitizerCovFunctions(Pair.first).empty()) {
errs()
<< "WARNING: Ignoring " << Pair.first
<< " and its coverage because __sanitizer_cov* functions were not "
"found.\n";
continue;
}
for (const std::string &CoverageFile : Pair.second) {
auto DataOrError = RawCoverage::read(CoverageFile);
failIfError(DataOrError);
Coverages.push_back(symbolize(*DataOrError.get(), Pair.first));
}
}
}
return merge(Coverages);
}
} // namespace
int main(int Argc, char **Argv) {
llvm::InitLLVM X(Argc, Argv);
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllDisassemblers();
cl::ParseCommandLineOptions(Argc, Argv,
"Sanitizer Coverage Processing Tool (sancov)\n\n"
" This tool can extract various coverage-related information from: \n"
" coverage-instrumented binary files, raw .sancov files and their "
"symbolized .symcov version.\n"
" Depending on chosen action the tool expects different input files:\n"
" -print-coverage-pcs - coverage-instrumented binary files\n"
" -print-coverage - .sancov files\n"
" <other actions> - .sancov files & corresponding binary "
"files, .symcov files\n"
);
// -print doesn't need object files.
if (Action == PrintAction) {
readAndPrintRawCoverage(ClInputFiles, outs());
return 0;
} else if (Action == PrintCovPointsAction) {
// -print-coverage-points doesn't need coverage files.
for (const std::string &ObjFile : ClInputFiles) {
printCovPoints(ObjFile, outs());
}
return 0;
}
auto Coverage = readSymbolizeAndMergeCmdArguments(ClInputFiles);
failIf(!Coverage, "No valid coverage files given.");
switch (Action) {
case CoveredFunctionsAction: {
printCoveredFunctions(*Coverage, outs());
return 0;
}
case NotCoveredFunctionsAction: {
printNotCoveredFunctions(*Coverage, outs());
return 0;
}
case StatsAction: {
outs() << computeStats(*Coverage);
return 0;
}
case MergeAction:
case SymbolizeAction: { // merge & symbolize are synonims.
json::OStream W(outs(), 2);
W << *Coverage;
return 0;
}
case HtmlReportAction:
errs() << "-html-report option is removed: "
"use -symbolize & coverage-report-server.py instead\n";
return 1;
case PrintAction:
case PrintCovPointsAction:
llvm_unreachable("unsupported action");
}
}