Go to file
Joseph Huber cd0dd8ece8 [OpenMP] Adding flags for disabling the following optimizations: Deglobalization SPMDization State machine rewrites Folding
This work provides four flags to disable four different sets of OpenMP optimizations. These flags take effect in llvm/lib/Transforms/IPO/OpenMPOpt.cpp and include the following:
 - openmp-opt-disable-deglobalization: Defaults to false, adding this flag sets the variable DisableOpenMPOptDeglobalization to true. This prevents AA registration for HeapToStack and HeapToShared.
 - openmp-opt-disable-spmdization: Defaults to false, adding this flag sets the variable DisableOpenMPOptSPMDization to true. This indicates a pessimistic fixpoint in changeToSPMDMode.
 - openmp-opt-disable-folding: Defaults to false, adding this flag sets the variable DisableOpenMPOptFolding to true. This indicates a pessimistic fixpoint in the attributor init for AAFoldRuntimeCall.
 - openmp-opt-disable-state-machine-rewrite: Defaults to false, adding this flag sets the variable DisableOpenMPOptStateMachineRewrite to true. This first prevents changes to the state machine in rewriteDeviceCodeStateMachine by returning before changes are made, and if a custom state machine is built in buildCustomStateMachine, stops by returning a pessimistic fixpoint.

Reviewed By: jhuber6

Differential Revision: https://reviews.llvm.org/D106802
2021-07-29 19:28:31 -04:00
.github Removing the main to master sync GitHub workflow. 2021-01-28 12:18:25 -08:00
clang Revert "[AIX] Pass the -b option to linker on AIX" 2021-07-29 19:40:25 +00:00
clang-tools-extra Replace LLVM_ATTRIBUTE_NORETURN with C++11 [[noreturn]]. NFC 2021-07-29 09:59:45 -07:00
compiler-rt [GWP-ASan] Add version header. 2021-07-29 14:52:37 -07:00
cross-project-tests [cross-project-tests] Add/update check-* targets for cross-project-tests 2021-06-28 11:31:41 +01:00
flang Fix unit test checks for the scalar cases of all/any intrinsics. I 2021-07-29 15:07:19 -07:00
libc [libc] rewrite aarch64 memcmp implementation 2021-07-29 14:41:12 +00:00
libclc libclc: Add -cl-no-stdinc to clang flags on clang >=13 2021-07-15 10:43:26 +10:00
libcxx [libc++][NFC] Make private header generation CMake comment more consistent 2021-07-29 14:17:04 -04:00
libcxxabi [runtimes] Always build libc++, libc++abi and libunwind with -fPIC 2021-07-27 14:19:05 -04:00
libunwind Bump the trunk major version to 14 2021-07-27 21:58:25 -07:00
lld [ELF] Add -Bsymbolic-non-weak-functions 2021-07-29 14:46:53 -07:00
lldb Make testcase more robust against codegen changes 2021-07-29 16:23:13 -07:00
llvm [OpenMP] Adding flags for disabling the following optimizations: Deglobalization SPMDization State machine rewrites Folding 2021-07-29 19:28:31 -04:00
mlir [mlir] Set insertion point of vector constant to the top of the vectorized loop body 2021-07-29 15:42:23 -07:00
openmp [OpenMP] libomp: Add new experimental barrier: two-level distributed barrier 2021-07-29 14:09:26 -05:00
parallel-libs Reapply "Try enabling -Wsuggest-override again, using add_compile_options instead of add_compile_definitions for disabling it in unittests/ directories." 2020-07-22 17:50:19 -07:00
polly Bump the trunk major version to 14 2021-07-27 21:58:25 -07:00
pstl Bump the trunk major version to 14 2021-07-27 21:58:25 -07:00
runtimes [runtimes] Add the libc project to the list of runtimes. 2021-03-23 17:33:03 +00:00
utils [mlir] NFC: split MemRef to SPIR-V conversion into their own files 2021-07-29 16:34:10 -04:00
.arcconfig Add modern arc config for default "onto" branch 2021-02-22 11:58:13 -08:00
.arclint PR46997: don't run clang-format on clang's testcases. 2020-08-04 17:53:25 -07:00
.clang-format Revert "Title: [RISCV] Add missing part of instruction vmsge {u}. VX Review By: craig.topper Differential Revision : https://reviews.llvm.org/D100115" 2021-04-14 08:04:37 +01:00
.clang-tidy .clang-tidy: Disable misc-no-recursion in general/across the monorepo 2021-06-08 08:31:33 -07:00
.git-blame-ignore-revs [lldb] Add 9494c510af to .git-blame-ignore-revs 2021-06-10 09:29:59 -07:00
.gitignore [NFC] Add CMakeUserPresets.json filename to .gitignore 2021-01-22 12:45:29 +01:00
.mailmap mailmap: add mappings for myself 2021-06-23 15:11:15 -07:00
CONTRIBUTING.md
README.md [RFC][debuginfo-test] Rename debug-info lit tests for general purposes 2021-06-28 11:31:40 +01:00
SECURITY.md [docs] Describe reporting security issues on the chromium tracker. 2021-05-19 15:21:50 -07:00

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or cross-project-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.