llvm-project/clang/lib/ASTMatchers/ASTMatchersInternal.cpp

509 lines
17 KiB
C++

//===--- ASTMatchersInternal.cpp - Structural query framework -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implements the base layer of the matcher framework.
//
//===----------------------------------------------------------------------===//
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/ASTMatchers/ASTMatchersInternal.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/ManagedStatic.h"
namespace clang {
namespace ast_matchers {
namespace internal {
bool NotUnaryOperator(const ast_type_traits::DynTypedNode &DynNode,
ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder,
ArrayRef<DynTypedMatcher> InnerMatchers);
bool AllOfVariadicOperator(const ast_type_traits::DynTypedNode &DynNode,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder,
ArrayRef<DynTypedMatcher> InnerMatchers);
bool EachOfVariadicOperator(const ast_type_traits::DynTypedNode &DynNode,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder,
ArrayRef<DynTypedMatcher> InnerMatchers);
bool AnyOfVariadicOperator(const ast_type_traits::DynTypedNode &DynNode,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder,
ArrayRef<DynTypedMatcher> InnerMatchers);
void BoundNodesTreeBuilder::visitMatches(Visitor *ResultVisitor) {
if (Bindings.empty())
Bindings.push_back(BoundNodesMap());
for (BoundNodesMap &Binding : Bindings) {
ResultVisitor->visitMatch(BoundNodes(Binding));
}
}
namespace {
typedef bool (*VariadicOperatorFunction)(
const ast_type_traits::DynTypedNode &DynNode, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder, ArrayRef<DynTypedMatcher> InnerMatchers);
template <VariadicOperatorFunction Func>
class VariadicMatcher : public DynMatcherInterface {
public:
VariadicMatcher(std::vector<DynTypedMatcher> InnerMatchers)
: InnerMatchers(std::move(InnerMatchers)) {}
bool dynMatches(const ast_type_traits::DynTypedNode &DynNode,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const override {
return Func(DynNode, Finder, Builder, InnerMatchers);
}
private:
std::vector<DynTypedMatcher> InnerMatchers;
};
class IdDynMatcher : public DynMatcherInterface {
public:
IdDynMatcher(StringRef ID,
IntrusiveRefCntPtr<DynMatcherInterface> InnerMatcher)
: ID(ID), InnerMatcher(std::move(InnerMatcher)) {}
bool dynMatches(const ast_type_traits::DynTypedNode &DynNode,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const override {
bool Result = InnerMatcher->dynMatches(DynNode, Finder, Builder);
if (Result) Builder->setBinding(ID, DynNode);
return Result;
}
private:
const std::string ID;
const IntrusiveRefCntPtr<DynMatcherInterface> InnerMatcher;
};
/// \brief A matcher that always returns true.
///
/// We only ever need one instance of this matcher, so we create a global one
/// and reuse it to reduce the overhead of the matcher and increase the chance
/// of cache hits.
class TrueMatcherImpl : public DynMatcherInterface {
public:
TrueMatcherImpl() {
Retain(); // Reference count will never become zero.
}
bool dynMatches(const ast_type_traits::DynTypedNode &, ASTMatchFinder *,
BoundNodesTreeBuilder *) const override {
return true;
}
};
static llvm::ManagedStatic<TrueMatcherImpl> TrueMatcherInstance;
} // namespace
DynTypedMatcher DynTypedMatcher::constructVariadic(
DynTypedMatcher::VariadicOperator Op,
ast_type_traits::ASTNodeKind SupportedKind,
std::vector<DynTypedMatcher> InnerMatchers) {
assert(InnerMatchers.size() > 0 && "Array must not be empty.");
assert(std::all_of(InnerMatchers.begin(), InnerMatchers.end(),
[SupportedKind](const DynTypedMatcher &M) {
return M.canConvertTo(SupportedKind);
}) &&
"InnerMatchers must be convertible to SupportedKind!");
// We must relax the restrict kind here.
// The different operators might deal differently with a mismatch.
// Make it the same as SupportedKind, since that is the broadest type we are
// allowed to accept.
auto RestrictKind = SupportedKind;
switch (Op) {
case VO_AllOf:
// In the case of allOf() we must pass all the checks, so making
// RestrictKind the most restrictive can save us time. This way we reject
// invalid types earlier and we can elide the kind checks inside the
// matcher.
for (auto &IM : InnerMatchers) {
RestrictKind = ast_type_traits::ASTNodeKind::getMostDerivedType(
RestrictKind, IM.RestrictKind);
}
return DynTypedMatcher(
SupportedKind, RestrictKind,
new VariadicMatcher<AllOfVariadicOperator>(std::move(InnerMatchers)));
case VO_AnyOf:
return DynTypedMatcher(
SupportedKind, RestrictKind,
new VariadicMatcher<AnyOfVariadicOperator>(std::move(InnerMatchers)));
case VO_EachOf:
return DynTypedMatcher(
SupportedKind, RestrictKind,
new VariadicMatcher<EachOfVariadicOperator>(std::move(InnerMatchers)));
case VO_UnaryNot:
// FIXME: Implement the Not operator to take a single matcher instead of a
// vector.
return DynTypedMatcher(
SupportedKind, RestrictKind,
new VariadicMatcher<NotUnaryOperator>(std::move(InnerMatchers)));
}
llvm_unreachable("Invalid Op value.");
}
DynTypedMatcher DynTypedMatcher::trueMatcher(
ast_type_traits::ASTNodeKind NodeKind) {
return DynTypedMatcher(NodeKind, NodeKind, &*TrueMatcherInstance);
}
bool DynTypedMatcher::canMatchNodesOfKind(
ast_type_traits::ASTNodeKind Kind) const {
return RestrictKind.isBaseOf(Kind);
}
DynTypedMatcher DynTypedMatcher::dynCastTo(
const ast_type_traits::ASTNodeKind Kind) const {
auto Copy = *this;
Copy.SupportedKind = Kind;
Copy.RestrictKind =
ast_type_traits::ASTNodeKind::getMostDerivedType(Kind, RestrictKind);
return Copy;
}
bool DynTypedMatcher::matches(const ast_type_traits::DynTypedNode &DynNode,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const {
if (RestrictKind.isBaseOf(DynNode.getNodeKind()) &&
Implementation->dynMatches(DynNode, Finder, Builder)) {
return true;
}
// Delete all bindings when a matcher does not match.
// This prevents unexpected exposure of bound nodes in unmatches
// branches of the match tree.
Builder->removeBindings([](const BoundNodesMap &) { return true; });
return false;
}
bool DynTypedMatcher::matchesNoKindCheck(
const ast_type_traits::DynTypedNode &DynNode, ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder) const {
assert(RestrictKind.isBaseOf(DynNode.getNodeKind()));
if (Implementation->dynMatches(DynNode, Finder, Builder)) {
return true;
}
// Delete all bindings when a matcher does not match.
// This prevents unexpected exposure of bound nodes in unmatches
// branches of the match tree.
Builder->removeBindings([](const BoundNodesMap &) { return true; });
return false;
}
llvm::Optional<DynTypedMatcher> DynTypedMatcher::tryBind(StringRef ID) const {
if (!AllowBind) return llvm::None;
auto Result = *this;
Result.Implementation =
new IdDynMatcher(ID, std::move(Result.Implementation));
return std::move(Result);
}
bool DynTypedMatcher::canConvertTo(ast_type_traits::ASTNodeKind To) const {
const auto From = getSupportedKind();
auto QualKind = ast_type_traits::ASTNodeKind::getFromNodeKind<QualType>();
auto TypeKind = ast_type_traits::ASTNodeKind::getFromNodeKind<Type>();
/// Mimic the implicit conversions of Matcher<>.
/// - From Matcher<Type> to Matcher<QualType>
if (From.isSame(TypeKind) && To.isSame(QualKind)) return true;
/// - From Matcher<Base> to Matcher<Derived>
return From.isBaseOf(To);
}
void BoundNodesTreeBuilder::addMatch(const BoundNodesTreeBuilder &Other) {
Bindings.append(Other.Bindings.begin(), Other.Bindings.end());
}
bool NotUnaryOperator(const ast_type_traits::DynTypedNode &DynNode,
ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder,
ArrayRef<DynTypedMatcher> InnerMatchers) {
if (InnerMatchers.size() != 1)
return false;
// The 'unless' matcher will always discard the result:
// If the inner matcher doesn't match, unless returns true,
// but the inner matcher cannot have bound anything.
// If the inner matcher matches, the result is false, and
// any possible binding will be discarded.
// We still need to hand in all the bound nodes up to this
// point so the inner matcher can depend on bound nodes,
// and we need to actively discard the bound nodes, otherwise
// the inner matcher will reset the bound nodes if it doesn't
// match, but this would be inversed by 'unless'.
BoundNodesTreeBuilder Discard(*Builder);
return !InnerMatchers[0].matches(DynNode, Finder, &Discard);
}
bool AllOfVariadicOperator(const ast_type_traits::DynTypedNode &DynNode,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder,
ArrayRef<DynTypedMatcher> InnerMatchers) {
// allOf leads to one matcher for each alternative in the first
// matcher combined with each alternative in the second matcher.
// Thus, we can reuse the same Builder.
for (const DynTypedMatcher &InnerMatcher : InnerMatchers) {
if (!InnerMatcher.matchesNoKindCheck(DynNode, Finder, Builder))
return false;
}
return true;
}
bool EachOfVariadicOperator(const ast_type_traits::DynTypedNode &DynNode,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder,
ArrayRef<DynTypedMatcher> InnerMatchers) {
BoundNodesTreeBuilder Result;
bool Matched = false;
for (const DynTypedMatcher &InnerMatcher : InnerMatchers) {
BoundNodesTreeBuilder BuilderInner(*Builder);
if (InnerMatcher.matches(DynNode, Finder, &BuilderInner)) {
Matched = true;
Result.addMatch(BuilderInner);
}
}
*Builder = std::move(Result);
return Matched;
}
bool AnyOfVariadicOperator(const ast_type_traits::DynTypedNode &DynNode,
ASTMatchFinder *Finder,
BoundNodesTreeBuilder *Builder,
ArrayRef<DynTypedMatcher> InnerMatchers) {
for (const DynTypedMatcher &InnerMatcher : InnerMatchers) {
BoundNodesTreeBuilder Result = *Builder;
if (InnerMatcher.matches(DynNode, Finder, &Result)) {
*Builder = std::move(Result);
return true;
}
}
return false;
}
Matcher<NamedDecl> hasAnyNameFunc(ArrayRef<const StringRef *> NameRefs) {
std::vector<std::string> Names;
for (auto *Name : NameRefs)
Names.emplace_back(*Name);
return internal::Matcher<NamedDecl>(
new internal::HasNameMatcher(std::move(Names)));
}
HasNameMatcher::HasNameMatcher(std::vector<std::string> N)
: UseUnqualifiedMatch(std::all_of(
N.begin(), N.end(),
[](StringRef Name) { return Name.find("::") == Name.npos; })),
Names(std::move(N)) {
#ifndef NDEBUG
for (StringRef Name : Names)
assert(!Name.empty());
#endif
}
namespace {
bool consumeNameSuffix(StringRef &FullName, StringRef Suffix) {
StringRef Name = FullName;
if (!Name.endswith(Suffix))
return false;
Name = Name.drop_back(Suffix.size());
if (!Name.empty()) {
if (!Name.endswith("::"))
return false;
Name = Name.drop_back(2);
}
FullName = Name;
return true;
}
StringRef getNodeName(const NamedDecl &Node, llvm::SmallString<128> &Scratch) {
// Simple name.
if (Node.getIdentifier())
return Node.getName();
if (Node.getDeclName()) {
// Name needs to be constructed.
Scratch.clear();
llvm::raw_svector_ostream OS(Scratch);
Node.printName(OS);
return OS.str();
}
return "(anonymous)";
}
StringRef getNodeName(const RecordDecl &Node, llvm::SmallString<128> &Scratch) {
if (Node.getIdentifier()) {
return Node.getName();
}
Scratch.clear();
return ("(anonymous " + Node.getKindName() + ")").toStringRef(Scratch);
}
StringRef getNodeName(const NamespaceDecl &Node,
llvm::SmallString<128> &Scratch) {
return Node.isAnonymousNamespace() ? "(anonymous namespace)" : Node.getName();
}
class PatternSet {
public:
PatternSet(ArrayRef<std::string> Names) {
for (StringRef Name : Names)
Patterns.push_back({Name, Name.startswith("::")});
}
/// Consumes the name suffix from each pattern in the set and removes the ones
/// that didn't match.
/// Return true if there are still any patterns left.
bool consumeNameSuffix(StringRef NodeName, bool CanSkip) {
for (size_t I = 0; I < Patterns.size();) {
if (internal::consumeNameSuffix(Patterns[I].P, NodeName) ||
CanSkip) {
++I;
} else {
Patterns.erase(Patterns.begin() + I);
}
}
return !Patterns.empty();
}
/// Check if any of the patterns are a match.
/// A match will be a pattern that was fully consumed, that also matches the
/// 'fully qualified' requirement.
bool foundMatch(bool AllowFullyQualified) const {
for (auto& P: Patterns)
if (P.P.empty() && (AllowFullyQualified || !P.IsFullyQualified))
return true;
return false;
}
private:
struct Pattern {
StringRef P;
bool IsFullyQualified;
};
llvm::SmallVector<Pattern, 8> Patterns;
};
} // namespace
bool HasNameMatcher::matchesNodeUnqualified(const NamedDecl &Node) const {
assert(UseUnqualifiedMatch);
llvm::SmallString<128> Scratch;
StringRef NodeName = getNodeName(Node, Scratch);
return std::any_of(Names.begin(), Names.end(), [&](StringRef Name) {
return consumeNameSuffix(Name, NodeName) && Name.empty();
});
}
bool HasNameMatcher::matchesNodeFullFast(const NamedDecl &Node) const {
PatternSet Patterns(Names);
llvm::SmallString<128> Scratch;
// This function is copied and adapted from NamedDecl::printQualifiedName()
// By matching each part individually we optimize in a couple of ways:
// - We can exit early on the first failure.
// - We can skip inline/anonymous namespaces without another pass.
// - We print one name at a time, reducing the chance of overflowing the
// inlined space of the SmallString.
// First, match the name.
if (!Patterns.consumeNameSuffix(getNodeName(Node, Scratch),
/*CanSkip=*/false))
return false;
// Try to match each declaration context.
// We are allowed to skip anonymous and inline namespaces if they don't match.
const DeclContext *Ctx = Node.getDeclContext();
if (Ctx->isFunctionOrMethod())
return Patterns.foundMatch(/*AllowFullyQualified=*/false);
for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
if (Patterns.foundMatch(/*AllowFullyQualified=*/false))
return true;
if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
// If it matches (or we can skip it), continue.
if (Patterns.consumeNameSuffix(getNodeName(*ND, Scratch),
/*CanSkip=*/ND->isAnonymousNamespace() ||
ND->isInline()))
continue;
return false;
}
if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
if (!isa<ClassTemplateSpecializationDecl>(Ctx)) {
if (Patterns.consumeNameSuffix(getNodeName(*RD, Scratch),
/*CanSkip=*/false))
continue;
return false;
}
}
// We don't know how to deal with this DeclContext.
// Fallback to the slow version of the code.
return matchesNodeFullSlow(Node);
}
return Patterns.foundMatch(/*AllowFullyQualified=*/true);
}
bool HasNameMatcher::matchesNodeFullSlow(const NamedDecl &Node) const {
const bool SkipUnwrittenCases[] = {false, true};
for (bool SkipUnwritten : SkipUnwrittenCases) {
llvm::SmallString<128> NodeName = StringRef("::");
llvm::raw_svector_ostream OS(NodeName);
if (SkipUnwritten) {
PrintingPolicy Policy = Node.getASTContext().getPrintingPolicy();
Policy.SuppressUnwrittenScope = true;
Node.printQualifiedName(OS, Policy);
} else {
Node.printQualifiedName(OS);
}
const StringRef FullName = OS.str();
for (const StringRef Pattern : Names) {
if (Pattern.startswith("::")) {
if (FullName == Pattern)
return true;
} else if (FullName.endswith(Pattern) &&
FullName.drop_back(Pattern.size()).endswith("::")) {
return true;
}
}
}
return false;
}
bool HasNameMatcher::matchesNode(const NamedDecl &Node) const {
assert(matchesNodeFullFast(Node) == matchesNodeFullSlow(Node));
if (UseUnqualifiedMatch) {
assert(matchesNodeUnqualified(Node) == matchesNodeFullFast(Node));
return matchesNodeUnqualified(Node);
}
return matchesNodeFullFast(Node);
}
} // end namespace internal
} // end namespace ast_matchers
} // end namespace clang