llvm-project/flang/runtime/descriptor-io.h

371 lines
12 KiB
C++

//===-- runtime/descriptor-io.h ---------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_RUNTIME_DESCRIPTOR_IO_H_
#define FORTRAN_RUNTIME_DESCRIPTOR_IO_H_
// Implementation of I/O data list item transfers based on descriptors.
#include "cpp-type.h"
#include "descriptor.h"
#include "edit-input.h"
#include "edit-output.h"
#include "io-stmt.h"
#include "terminator.h"
#include "flang/Common/uint128.h"
namespace Fortran::runtime::io::descr {
template <typename A>
inline A &ExtractElement(IoStatementState &io, const Descriptor &descriptor,
const SubscriptValue subscripts[]) {
A *p{descriptor.Element<A>(subscripts)};
if (!p) {
io.GetIoErrorHandler().Crash("ExtractElement: subscripts out of range");
}
return *p;
}
// Per-category descriptor-based I/O templates
template <typename A, Direction DIR>
inline bool FormattedIntegerIO(
IoStatementState &io, const Descriptor &descriptor) {
std::size_t numElements{descriptor.Elements()};
SubscriptValue subscripts[maxRank];
descriptor.GetLowerBounds(subscripts);
for (std::size_t j{0}; j < numElements; ++j) {
if (auto edit{io.GetNextDataEdit()}) {
A &x{ExtractElement<A>(io, descriptor, subscripts)};
if constexpr (DIR == Direction::Output) {
if (!EditIntegerOutput(io, *edit, static_cast<std::int64_t>(x))) {
return false;
}
} else if (edit->descriptor != DataEdit::ListDirectedNullValue) {
if (!EditIntegerInput(io, *edit, reinterpret_cast<void *>(&x),
static_cast<int>(sizeof(A)))) {
return false;
}
}
if (!descriptor.IncrementSubscripts(subscripts) && j + 1 < numElements) {
io.GetIoErrorHandler().Crash(
"FormattedIntegerIO: subscripts out of bounds");
}
} else {
return false;
}
}
return true;
}
template <int KIND, Direction DIR>
inline bool FormattedRealIO(
IoStatementState &io, const Descriptor &descriptor) {
std::size_t numElements{descriptor.Elements()};
SubscriptValue subscripts[maxRank];
descriptor.GetLowerBounds(subscripts);
using RawType = typename RealOutputEditing<KIND>::BinaryFloatingPoint;
for (std::size_t j{0}; j < numElements; ++j) {
if (auto edit{io.GetNextDataEdit()}) {
RawType &x{ExtractElement<RawType>(io, descriptor, subscripts)};
if constexpr (DIR == Direction::Output) {
if (!RealOutputEditing<KIND>{io, x}.Edit(*edit)) {
return false;
}
} else if (edit->descriptor != DataEdit::ListDirectedNullValue) {
if (!EditRealInput<KIND>(io, *edit, reinterpret_cast<void *>(&x))) {
return false;
}
}
if (!descriptor.IncrementSubscripts(subscripts) && j + 1 < numElements) {
io.GetIoErrorHandler().Crash(
"FormattedRealIO: subscripts out of bounds");
}
} else {
return false;
}
}
return true;
}
template <int KIND, Direction DIR>
inline bool FormattedComplexIO(
IoStatementState &io, const Descriptor &descriptor) {
std::size_t numElements{descriptor.Elements()};
SubscriptValue subscripts[maxRank];
descriptor.GetLowerBounds(subscripts);
bool isListOutput{
io.get_if<ListDirectedStatementState<Direction::Output>>() != nullptr};
using RawType = typename RealOutputEditing<KIND>::BinaryFloatingPoint;
for (std::size_t j{0}; j < numElements; ++j) {
RawType *x{&ExtractElement<RawType>(io, descriptor, subscripts)};
if (isListOutput) {
DataEdit rEdit, iEdit;
rEdit.descriptor = DataEdit::ListDirectedRealPart;
iEdit.descriptor = DataEdit::ListDirectedImaginaryPart;
if (!RealOutputEditing<KIND>{io, x[0]}.Edit(rEdit) ||
!RealOutputEditing<KIND>{io, x[1]}.Edit(iEdit)) {
return false;
}
} else {
for (int k{0}; k < 2; ++k, ++x) {
auto edit{io.GetNextDataEdit()};
if (!edit) {
return false;
} else if constexpr (DIR == Direction::Output) {
if (!RealOutputEditing<KIND>{io, *x}.Edit(*edit)) {
return false;
}
} else if (edit->descriptor == DataEdit::ListDirectedNullValue) {
break;
} else if (!EditRealInput<KIND>(
io, *edit, reinterpret_cast<void *>(x))) {
return false;
}
}
}
if (!descriptor.IncrementSubscripts(subscripts) && j + 1 < numElements) {
io.GetIoErrorHandler().Crash(
"FormattedComplexIO: subscripts out of bounds");
}
}
return true;
}
template <typename A, Direction DIR>
inline bool FormattedCharacterIO(
IoStatementState &io, const Descriptor &descriptor) {
std::size_t numElements{descriptor.Elements()};
SubscriptValue subscripts[maxRank];
descriptor.GetLowerBounds(subscripts);
std::size_t length{descriptor.ElementBytes() / sizeof(A)};
auto *listOutput{io.get_if<ListDirectedStatementState<Direction::Output>>()};
for (std::size_t j{0}; j < numElements; ++j) {
A *x{&ExtractElement<A>(io, descriptor, subscripts)};
if (listOutput) {
if (!ListDirectedDefaultCharacterOutput(io, *listOutput, x, length)) {
return false;
}
} else if (auto edit{io.GetNextDataEdit()}) {
if constexpr (DIR == Direction::Output) {
if (!EditDefaultCharacterOutput(io, *edit, x, length)) {
return false;
}
} else {
if (edit->descriptor != DataEdit::ListDirectedNullValue) {
if (!EditDefaultCharacterInput(io, *edit, x, length)) {
return false;
}
}
}
} else {
return false;
}
if (!descriptor.IncrementSubscripts(subscripts) && j + 1 < numElements) {
io.GetIoErrorHandler().Crash(
"FormattedCharacterIO: subscripts out of bounds");
}
}
return true;
}
template <typename A, Direction DIR>
inline bool FormattedLogicalIO(
IoStatementState &io, const Descriptor &descriptor) {
std::size_t numElements{descriptor.Elements()};
SubscriptValue subscripts[maxRank];
descriptor.GetLowerBounds(subscripts);
auto *listOutput{io.get_if<ListDirectedStatementState<Direction::Output>>()};
for (std::size_t j{0}; j < numElements; ++j) {
A &x{ExtractElement<A>(io, descriptor, subscripts)};
if (listOutput) {
if (!ListDirectedLogicalOutput(io, *listOutput, x != 0)) {
return false;
}
} else if (auto edit{io.GetNextDataEdit()}) {
if constexpr (DIR == Direction::Output) {
if (!EditLogicalOutput(io, *edit, x != 0)) {
return false;
}
} else {
if (edit->descriptor != DataEdit::ListDirectedNullValue) {
bool truth{};
if (EditLogicalInput(io, *edit, truth)) {
x = truth;
} else {
return false;
}
}
}
} else {
return false;
}
if (!descriptor.IncrementSubscripts(subscripts) && j + 1 < numElements) {
io.GetIoErrorHandler().Crash(
"FormattedLogicalIO: subscripts out of bounds");
}
}
return true;
}
template <Direction DIR>
static bool DescriptorIO(IoStatementState &io, const Descriptor &descriptor) {
if (!io.get_if<IoDirectionState<DIR>>()) {
io.GetIoErrorHandler().Crash(
"DescriptorIO() called for wrong I/O direction");
return false;
}
if constexpr (DIR == Direction::Input) {
if (!io.BeginReadingRecord()) {
return false;
}
}
if (auto *unf{io.get_if<UnformattedIoStatementState<DIR>>()}) {
std::size_t elementBytes{descriptor.ElementBytes()};
SubscriptValue subscripts[maxRank];
descriptor.GetLowerBounds(subscripts);
std::size_t numElements{descriptor.Elements()};
if (descriptor.IsContiguous()) { // contiguous unformatted I/O
char &x{ExtractElement<char>(io, descriptor, subscripts)};
auto totalBytes{numElements * elementBytes};
if constexpr (DIR == Direction::Output) {
return unf->Emit(&x, totalBytes, elementBytes);
} else {
return unf->Receive(&x, totalBytes, elementBytes);
}
} else { // non-contiguous unformatted I/O
for (std::size_t j{0}; j < numElements; ++j) {
char &x{ExtractElement<char>(io, descriptor, subscripts)};
if constexpr (DIR == Direction::Output) {
if (!unf->Emit(&x, elementBytes, elementBytes)) {
return false;
}
} else {
if (!unf->Receive(&x, elementBytes, elementBytes)) {
return false;
}
}
if (!descriptor.IncrementSubscripts(subscripts) &&
j + 1 < numElements) {
io.GetIoErrorHandler().Crash(
"DescriptorIO: subscripts out of bounds");
}
}
return true;
}
} else if (auto catAndKind{descriptor.type().GetCategoryAndKind()}) {
int kind{catAndKind->second};
switch (catAndKind->first) {
case TypeCategory::Integer:
switch (kind) {
case 1:
return FormattedIntegerIO<CppTypeFor<TypeCategory::Integer, 1>, DIR>(
io, descriptor);
case 2:
return FormattedIntegerIO<CppTypeFor<TypeCategory::Integer, 2>, DIR>(
io, descriptor);
case 4:
return FormattedIntegerIO<CppTypeFor<TypeCategory::Integer, 4>, DIR>(
io, descriptor);
case 8:
return FormattedIntegerIO<CppTypeFor<TypeCategory::Integer, 8>, DIR>(
io, descriptor);
case 16:
return FormattedIntegerIO<CppTypeFor<TypeCategory::Integer, 16>, DIR>(
io, descriptor);
default:
io.GetIoErrorHandler().Crash(
"DescriptorIO: Unimplemented INTEGER kind (%d) in descriptor",
kind);
return false;
}
case TypeCategory::Real:
switch (kind) {
case 2:
return FormattedRealIO<2, DIR>(io, descriptor);
case 3:
return FormattedRealIO<3, DIR>(io, descriptor);
case 4:
return FormattedRealIO<4, DIR>(io, descriptor);
case 8:
return FormattedRealIO<8, DIR>(io, descriptor);
case 10:
return FormattedRealIO<10, DIR>(io, descriptor);
// TODO: case double/double
case 16:
return FormattedRealIO<16, DIR>(io, descriptor);
default:
io.GetIoErrorHandler().Crash(
"DescriptorIO: Unimplemented REAL kind (%d) in descriptor", kind);
return false;
}
case TypeCategory::Complex:
switch (kind) {
case 2:
return FormattedComplexIO<2, DIR>(io, descriptor);
case 3:
return FormattedComplexIO<3, DIR>(io, descriptor);
case 4:
return FormattedComplexIO<4, DIR>(io, descriptor);
case 8:
return FormattedComplexIO<8, DIR>(io, descriptor);
case 10:
return FormattedComplexIO<10, DIR>(io, descriptor);
// TODO: case double/double
case 16:
return FormattedComplexIO<16, DIR>(io, descriptor);
default:
io.GetIoErrorHandler().Crash(
"DescriptorIO: Unimplemented COMPLEX kind (%d) in descriptor",
kind);
return false;
}
case TypeCategory::Character:
switch (kind) {
case 1:
return FormattedCharacterIO<char, DIR>(io, descriptor);
// TODO cases 2, 4
default:
io.GetIoErrorHandler().Crash(
"DescriptorIO: Unimplemented CHARACTER kind (%d) in descriptor",
kind);
return false;
}
case TypeCategory::Logical:
switch (kind) {
case 1:
return FormattedLogicalIO<CppTypeFor<TypeCategory::Integer, 1>, DIR>(
io, descriptor);
case 2:
return FormattedLogicalIO<CppTypeFor<TypeCategory::Integer, 2>, DIR>(
io, descriptor);
case 4:
return FormattedLogicalIO<CppTypeFor<TypeCategory::Integer, 4>, DIR>(
io, descriptor);
case 8:
return FormattedLogicalIO<CppTypeFor<TypeCategory::Integer, 8>, DIR>(
io, descriptor);
default:
io.GetIoErrorHandler().Crash(
"DescriptorIO: Unimplemented LOGICAL kind (%d) in descriptor",
kind);
return false;
}
case TypeCategory::Derived:
io.GetIoErrorHandler().Crash(
"DescriptorIO: Unimplemented: derived type I/O",
static_cast<int>(descriptor.type().raw()));
return false;
}
}
io.GetIoErrorHandler().Crash("DescriptorIO: Bad type code (%d) in descriptor",
static_cast<int>(descriptor.type().raw()));
return false;
}
} // namespace Fortran::runtime::io::descr
#endif // FORTRAN_RUNTIME_DESCRIPTOR_IO_H_