llvm-project/clang/lib/Parse/ParsePragma.cpp

3727 lines
128 KiB
C++

//===--- ParsePragma.cpp - Language specific pragma parsing ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the language specific #pragma handlers.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/Basic/PragmaKinds.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/Token.h"
#include "clang/Parse/LoopHint.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/Parser.h"
#include "clang/Parse/RAIIObjectsForParser.h"
#include "clang/Sema/Scope.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringSwitch.h"
using namespace clang;
namespace {
struct PragmaAlignHandler : public PragmaHandler {
explicit PragmaAlignHandler() : PragmaHandler("align") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaGCCVisibilityHandler : public PragmaHandler {
explicit PragmaGCCVisibilityHandler() : PragmaHandler("visibility") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaOptionsHandler : public PragmaHandler {
explicit PragmaOptionsHandler() : PragmaHandler("options") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaPackHandler : public PragmaHandler {
explicit PragmaPackHandler() : PragmaHandler("pack") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaClangSectionHandler : public PragmaHandler {
explicit PragmaClangSectionHandler(Sema &S)
: PragmaHandler("section"), Actions(S) {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
private:
Sema &Actions;
};
struct PragmaMSStructHandler : public PragmaHandler {
explicit PragmaMSStructHandler() : PragmaHandler("ms_struct") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaUnusedHandler : public PragmaHandler {
PragmaUnusedHandler() : PragmaHandler("unused") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaWeakHandler : public PragmaHandler {
explicit PragmaWeakHandler() : PragmaHandler("weak") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaRedefineExtnameHandler : public PragmaHandler {
explicit PragmaRedefineExtnameHandler() : PragmaHandler("redefine_extname") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaOpenCLExtensionHandler : public PragmaHandler {
PragmaOpenCLExtensionHandler() : PragmaHandler("EXTENSION") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaFPContractHandler : public PragmaHandler {
PragmaFPContractHandler() : PragmaHandler("FP_CONTRACT") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
// Pragma STDC implementations.
/// PragmaSTDC_FENV_ACCESSHandler - "\#pragma STDC FENV_ACCESS ...".
struct PragmaSTDC_FENV_ACCESSHandler : public PragmaHandler {
PragmaSTDC_FENV_ACCESSHandler() : PragmaHandler("FENV_ACCESS") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &Tok) override {
Token PragmaName = Tok;
if (!PP.getTargetInfo().hasStrictFP() && !PP.getLangOpts().ExpStrictFP) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_fp_ignored)
<< PragmaName.getIdentifierInfo()->getName();
return;
}
tok::OnOffSwitch OOS;
if (PP.LexOnOffSwitch(OOS))
return;
MutableArrayRef<Token> Toks(PP.getPreprocessorAllocator().Allocate<Token>(1),
1);
Toks[0].startToken();
Toks[0].setKind(tok::annot_pragma_fenv_access);
Toks[0].setLocation(Tok.getLocation());
Toks[0].setAnnotationEndLoc(Tok.getLocation());
Toks[0].setAnnotationValue(reinterpret_cast<void*>(
static_cast<uintptr_t>(OOS)));
PP.EnterTokenStream(Toks, /*DisableMacroExpansion=*/true,
/*IsReinject=*/false);
}
};
/// PragmaSTDC_CX_LIMITED_RANGEHandler - "\#pragma STDC CX_LIMITED_RANGE ...".
struct PragmaSTDC_CX_LIMITED_RANGEHandler : public PragmaHandler {
PragmaSTDC_CX_LIMITED_RANGEHandler() : PragmaHandler("CX_LIMITED_RANGE") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &Tok) override {
tok::OnOffSwitch OOS;
PP.LexOnOffSwitch(OOS);
}
};
/// Handler for "\#pragma STDC FENV_ROUND ...".
struct PragmaSTDC_FENV_ROUNDHandler : public PragmaHandler {
PragmaSTDC_FENV_ROUNDHandler() : PragmaHandler("FENV_ROUND") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &Tok) override;
};
/// PragmaSTDC_UnknownHandler - "\#pragma STDC ...".
struct PragmaSTDC_UnknownHandler : public PragmaHandler {
PragmaSTDC_UnknownHandler() = default;
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &UnknownTok) override {
// C99 6.10.6p2, unknown forms are not allowed.
PP.Diag(UnknownTok, diag::ext_stdc_pragma_ignored);
}
};
struct PragmaFPHandler : public PragmaHandler {
PragmaFPHandler() : PragmaHandler("fp") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaNoOpenMPHandler : public PragmaHandler {
PragmaNoOpenMPHandler() : PragmaHandler("omp") { }
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaOpenMPHandler : public PragmaHandler {
PragmaOpenMPHandler() : PragmaHandler("omp") { }
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
/// PragmaCommentHandler - "\#pragma comment ...".
struct PragmaCommentHandler : public PragmaHandler {
PragmaCommentHandler(Sema &Actions)
: PragmaHandler("comment"), Actions(Actions) {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
private:
Sema &Actions;
};
struct PragmaDetectMismatchHandler : public PragmaHandler {
PragmaDetectMismatchHandler(Sema &Actions)
: PragmaHandler("detect_mismatch"), Actions(Actions) {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
private:
Sema &Actions;
};
struct PragmaFloatControlHandler : public PragmaHandler {
PragmaFloatControlHandler(Sema &Actions)
: PragmaHandler("float_control") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaMSPointersToMembers : public PragmaHandler {
explicit PragmaMSPointersToMembers() : PragmaHandler("pointers_to_members") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaMSVtorDisp : public PragmaHandler {
explicit PragmaMSVtorDisp() : PragmaHandler("vtordisp") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaMSPragma : public PragmaHandler {
explicit PragmaMSPragma(const char *name) : PragmaHandler(name) {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
/// PragmaOptimizeHandler - "\#pragma clang optimize on/off".
struct PragmaOptimizeHandler : public PragmaHandler {
PragmaOptimizeHandler(Sema &S)
: PragmaHandler("optimize"), Actions(S) {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
private:
Sema &Actions;
};
struct PragmaLoopHintHandler : public PragmaHandler {
PragmaLoopHintHandler() : PragmaHandler("loop") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaUnrollHintHandler : public PragmaHandler {
PragmaUnrollHintHandler(const char *name) : PragmaHandler(name) {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaMSRuntimeChecksHandler : public EmptyPragmaHandler {
PragmaMSRuntimeChecksHandler() : EmptyPragmaHandler("runtime_checks") {}
};
struct PragmaMSIntrinsicHandler : public PragmaHandler {
PragmaMSIntrinsicHandler() : PragmaHandler("intrinsic") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaMSOptimizeHandler : public PragmaHandler {
PragmaMSOptimizeHandler() : PragmaHandler("optimize") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaForceCUDAHostDeviceHandler : public PragmaHandler {
PragmaForceCUDAHostDeviceHandler(Sema &Actions)
: PragmaHandler("force_cuda_host_device"), Actions(Actions) {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
private:
Sema &Actions;
};
/// PragmaAttributeHandler - "\#pragma clang attribute ...".
struct PragmaAttributeHandler : public PragmaHandler {
PragmaAttributeHandler(AttributeFactory &AttrFactory)
: PragmaHandler("attribute"), AttributesForPragmaAttribute(AttrFactory) {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
/// A pool of attributes that were parsed in \#pragma clang attribute.
ParsedAttributes AttributesForPragmaAttribute;
};
struct PragmaMaxTokensHereHandler : public PragmaHandler {
PragmaMaxTokensHereHandler() : PragmaHandler("max_tokens_here") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
struct PragmaMaxTokensTotalHandler : public PragmaHandler {
PragmaMaxTokensTotalHandler() : PragmaHandler("max_tokens_total") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducer Introducer,
Token &FirstToken) override;
};
void markAsReinjectedForRelexing(llvm::MutableArrayRef<clang::Token> Toks) {
for (auto &T : Toks)
T.setFlag(clang::Token::IsReinjected);
}
} // end namespace
void Parser::initializePragmaHandlers() {
AlignHandler = std::make_unique<PragmaAlignHandler>();
PP.AddPragmaHandler(AlignHandler.get());
GCCVisibilityHandler = std::make_unique<PragmaGCCVisibilityHandler>();
PP.AddPragmaHandler("GCC", GCCVisibilityHandler.get());
OptionsHandler = std::make_unique<PragmaOptionsHandler>();
PP.AddPragmaHandler(OptionsHandler.get());
PackHandler = std::make_unique<PragmaPackHandler>();
PP.AddPragmaHandler(PackHandler.get());
MSStructHandler = std::make_unique<PragmaMSStructHandler>();
PP.AddPragmaHandler(MSStructHandler.get());
UnusedHandler = std::make_unique<PragmaUnusedHandler>();
PP.AddPragmaHandler(UnusedHandler.get());
WeakHandler = std::make_unique<PragmaWeakHandler>();
PP.AddPragmaHandler(WeakHandler.get());
RedefineExtnameHandler = std::make_unique<PragmaRedefineExtnameHandler>();
PP.AddPragmaHandler(RedefineExtnameHandler.get());
FPContractHandler = std::make_unique<PragmaFPContractHandler>();
PP.AddPragmaHandler("STDC", FPContractHandler.get());
STDCFenvAccessHandler = std::make_unique<PragmaSTDC_FENV_ACCESSHandler>();
PP.AddPragmaHandler("STDC", STDCFenvAccessHandler.get());
STDCFenvRoundHandler = std::make_unique<PragmaSTDC_FENV_ROUNDHandler>();
PP.AddPragmaHandler("STDC", STDCFenvRoundHandler.get());
STDCCXLIMITHandler = std::make_unique<PragmaSTDC_CX_LIMITED_RANGEHandler>();
PP.AddPragmaHandler("STDC", STDCCXLIMITHandler.get());
STDCUnknownHandler = std::make_unique<PragmaSTDC_UnknownHandler>();
PP.AddPragmaHandler("STDC", STDCUnknownHandler.get());
PCSectionHandler = std::make_unique<PragmaClangSectionHandler>(Actions);
PP.AddPragmaHandler("clang", PCSectionHandler.get());
if (getLangOpts().OpenCL) {
OpenCLExtensionHandler = std::make_unique<PragmaOpenCLExtensionHandler>();
PP.AddPragmaHandler("OPENCL", OpenCLExtensionHandler.get());
PP.AddPragmaHandler("OPENCL", FPContractHandler.get());
}
if (getLangOpts().OpenMP)
OpenMPHandler = std::make_unique<PragmaOpenMPHandler>();
else
OpenMPHandler = std::make_unique<PragmaNoOpenMPHandler>();
PP.AddPragmaHandler(OpenMPHandler.get());
if (getLangOpts().MicrosoftExt ||
getTargetInfo().getTriple().isOSBinFormatELF()) {
MSCommentHandler = std::make_unique<PragmaCommentHandler>(Actions);
PP.AddPragmaHandler(MSCommentHandler.get());
}
FloatControlHandler = std::make_unique<PragmaFloatControlHandler>(Actions);
PP.AddPragmaHandler(FloatControlHandler.get());
if (getLangOpts().MicrosoftExt) {
MSDetectMismatchHandler =
std::make_unique<PragmaDetectMismatchHandler>(Actions);
PP.AddPragmaHandler(MSDetectMismatchHandler.get());
MSPointersToMembers = std::make_unique<PragmaMSPointersToMembers>();
PP.AddPragmaHandler(MSPointersToMembers.get());
MSVtorDisp = std::make_unique<PragmaMSVtorDisp>();
PP.AddPragmaHandler(MSVtorDisp.get());
MSInitSeg = std::make_unique<PragmaMSPragma>("init_seg");
PP.AddPragmaHandler(MSInitSeg.get());
MSDataSeg = std::make_unique<PragmaMSPragma>("data_seg");
PP.AddPragmaHandler(MSDataSeg.get());
MSBSSSeg = std::make_unique<PragmaMSPragma>("bss_seg");
PP.AddPragmaHandler(MSBSSSeg.get());
MSConstSeg = std::make_unique<PragmaMSPragma>("const_seg");
PP.AddPragmaHandler(MSConstSeg.get());
MSCodeSeg = std::make_unique<PragmaMSPragma>("code_seg");
PP.AddPragmaHandler(MSCodeSeg.get());
MSSection = std::make_unique<PragmaMSPragma>("section");
PP.AddPragmaHandler(MSSection.get());
MSRuntimeChecks = std::make_unique<PragmaMSRuntimeChecksHandler>();
PP.AddPragmaHandler(MSRuntimeChecks.get());
MSIntrinsic = std::make_unique<PragmaMSIntrinsicHandler>();
PP.AddPragmaHandler(MSIntrinsic.get());
MSOptimize = std::make_unique<PragmaMSOptimizeHandler>();
PP.AddPragmaHandler(MSOptimize.get());
}
if (getLangOpts().CUDA) {
CUDAForceHostDeviceHandler =
std::make_unique<PragmaForceCUDAHostDeviceHandler>(Actions);
PP.AddPragmaHandler("clang", CUDAForceHostDeviceHandler.get());
}
OptimizeHandler = std::make_unique<PragmaOptimizeHandler>(Actions);
PP.AddPragmaHandler("clang", OptimizeHandler.get());
LoopHintHandler = std::make_unique<PragmaLoopHintHandler>();
PP.AddPragmaHandler("clang", LoopHintHandler.get());
UnrollHintHandler = std::make_unique<PragmaUnrollHintHandler>("unroll");
PP.AddPragmaHandler(UnrollHintHandler.get());
PP.AddPragmaHandler("GCC", UnrollHintHandler.get());
NoUnrollHintHandler = std::make_unique<PragmaUnrollHintHandler>("nounroll");
PP.AddPragmaHandler(NoUnrollHintHandler.get());
PP.AddPragmaHandler("GCC", NoUnrollHintHandler.get());
UnrollAndJamHintHandler =
std::make_unique<PragmaUnrollHintHandler>("unroll_and_jam");
PP.AddPragmaHandler(UnrollAndJamHintHandler.get());
NoUnrollAndJamHintHandler =
std::make_unique<PragmaUnrollHintHandler>("nounroll_and_jam");
PP.AddPragmaHandler(NoUnrollAndJamHintHandler.get());
FPHandler = std::make_unique<PragmaFPHandler>();
PP.AddPragmaHandler("clang", FPHandler.get());
AttributePragmaHandler =
std::make_unique<PragmaAttributeHandler>(AttrFactory);
PP.AddPragmaHandler("clang", AttributePragmaHandler.get());
MaxTokensHerePragmaHandler = std::make_unique<PragmaMaxTokensHereHandler>();
PP.AddPragmaHandler("clang", MaxTokensHerePragmaHandler.get());
MaxTokensTotalPragmaHandler = std::make_unique<PragmaMaxTokensTotalHandler>();
PP.AddPragmaHandler("clang", MaxTokensTotalPragmaHandler.get());
}
void Parser::resetPragmaHandlers() {
// Remove the pragma handlers we installed.
PP.RemovePragmaHandler(AlignHandler.get());
AlignHandler.reset();
PP.RemovePragmaHandler("GCC", GCCVisibilityHandler.get());
GCCVisibilityHandler.reset();
PP.RemovePragmaHandler(OptionsHandler.get());
OptionsHandler.reset();
PP.RemovePragmaHandler(PackHandler.get());
PackHandler.reset();
PP.RemovePragmaHandler(MSStructHandler.get());
MSStructHandler.reset();
PP.RemovePragmaHandler(UnusedHandler.get());
UnusedHandler.reset();
PP.RemovePragmaHandler(WeakHandler.get());
WeakHandler.reset();
PP.RemovePragmaHandler(RedefineExtnameHandler.get());
RedefineExtnameHandler.reset();
if (getLangOpts().OpenCL) {
PP.RemovePragmaHandler("OPENCL", OpenCLExtensionHandler.get());
OpenCLExtensionHandler.reset();
PP.RemovePragmaHandler("OPENCL", FPContractHandler.get());
}
PP.RemovePragmaHandler(OpenMPHandler.get());
OpenMPHandler.reset();
if (getLangOpts().MicrosoftExt ||
getTargetInfo().getTriple().isOSBinFormatELF()) {
PP.RemovePragmaHandler(MSCommentHandler.get());
MSCommentHandler.reset();
}
PP.RemovePragmaHandler("clang", PCSectionHandler.get());
PCSectionHandler.reset();
PP.RemovePragmaHandler(FloatControlHandler.get());
FloatControlHandler.reset();
if (getLangOpts().MicrosoftExt) {
PP.RemovePragmaHandler(MSDetectMismatchHandler.get());
MSDetectMismatchHandler.reset();
PP.RemovePragmaHandler(MSPointersToMembers.get());
MSPointersToMembers.reset();
PP.RemovePragmaHandler(MSVtorDisp.get());
MSVtorDisp.reset();
PP.RemovePragmaHandler(MSInitSeg.get());
MSInitSeg.reset();
PP.RemovePragmaHandler(MSDataSeg.get());
MSDataSeg.reset();
PP.RemovePragmaHandler(MSBSSSeg.get());
MSBSSSeg.reset();
PP.RemovePragmaHandler(MSConstSeg.get());
MSConstSeg.reset();
PP.RemovePragmaHandler(MSCodeSeg.get());
MSCodeSeg.reset();
PP.RemovePragmaHandler(MSSection.get());
MSSection.reset();
PP.RemovePragmaHandler(MSRuntimeChecks.get());
MSRuntimeChecks.reset();
PP.RemovePragmaHandler(MSIntrinsic.get());
MSIntrinsic.reset();
PP.RemovePragmaHandler(MSOptimize.get());
MSOptimize.reset();
}
if (getLangOpts().CUDA) {
PP.RemovePragmaHandler("clang", CUDAForceHostDeviceHandler.get());
CUDAForceHostDeviceHandler.reset();
}
PP.RemovePragmaHandler("STDC", FPContractHandler.get());
FPContractHandler.reset();
PP.RemovePragmaHandler("STDC", STDCFenvAccessHandler.get());
STDCFenvAccessHandler.reset();
PP.RemovePragmaHandler("STDC", STDCFenvRoundHandler.get());
STDCFenvRoundHandler.reset();
PP.RemovePragmaHandler("STDC", STDCCXLIMITHandler.get());
STDCCXLIMITHandler.reset();
PP.RemovePragmaHandler("STDC", STDCUnknownHandler.get());
STDCUnknownHandler.reset();
PP.RemovePragmaHandler("clang", OptimizeHandler.get());
OptimizeHandler.reset();
PP.RemovePragmaHandler("clang", LoopHintHandler.get());
LoopHintHandler.reset();
PP.RemovePragmaHandler(UnrollHintHandler.get());
PP.RemovePragmaHandler("GCC", UnrollHintHandler.get());
UnrollHintHandler.reset();
PP.RemovePragmaHandler(NoUnrollHintHandler.get());
PP.RemovePragmaHandler("GCC", NoUnrollHintHandler.get());
NoUnrollHintHandler.reset();
PP.RemovePragmaHandler(UnrollAndJamHintHandler.get());
UnrollAndJamHintHandler.reset();
PP.RemovePragmaHandler(NoUnrollAndJamHintHandler.get());
NoUnrollAndJamHintHandler.reset();
PP.RemovePragmaHandler("clang", FPHandler.get());
FPHandler.reset();
PP.RemovePragmaHandler("clang", AttributePragmaHandler.get());
AttributePragmaHandler.reset();
PP.RemovePragmaHandler("clang", MaxTokensHerePragmaHandler.get());
MaxTokensHerePragmaHandler.reset();
PP.RemovePragmaHandler("clang", MaxTokensTotalPragmaHandler.get());
MaxTokensTotalPragmaHandler.reset();
}
/// Handle the annotation token produced for #pragma unused(...)
///
/// Each annot_pragma_unused is followed by the argument token so e.g.
/// "#pragma unused(x,y)" becomes:
/// annot_pragma_unused 'x' annot_pragma_unused 'y'
void Parser::HandlePragmaUnused() {
assert(Tok.is(tok::annot_pragma_unused));
SourceLocation UnusedLoc = ConsumeAnnotationToken();
Actions.ActOnPragmaUnused(Tok, getCurScope(), UnusedLoc);
ConsumeToken(); // The argument token.
}
void Parser::HandlePragmaVisibility() {
assert(Tok.is(tok::annot_pragma_vis));
const IdentifierInfo *VisType =
static_cast<IdentifierInfo *>(Tok.getAnnotationValue());
SourceLocation VisLoc = ConsumeAnnotationToken();
Actions.ActOnPragmaVisibility(VisType, VisLoc);
}
namespace {
struct PragmaPackInfo {
Sema::PragmaMsStackAction Action;
StringRef SlotLabel;
Token Alignment;
};
} // end anonymous namespace
void Parser::HandlePragmaPack() {
assert(Tok.is(tok::annot_pragma_pack));
PragmaPackInfo *Info =
static_cast<PragmaPackInfo *>(Tok.getAnnotationValue());
SourceLocation PragmaLoc = Tok.getLocation();
ExprResult Alignment;
if (Info->Alignment.is(tok::numeric_constant)) {
Alignment = Actions.ActOnNumericConstant(Info->Alignment);
if (Alignment.isInvalid()) {
ConsumeAnnotationToken();
return;
}
}
Actions.ActOnPragmaPack(PragmaLoc, Info->Action, Info->SlotLabel,
Alignment.get());
// Consume the token after processing the pragma to enable pragma-specific
// #include warnings.
ConsumeAnnotationToken();
}
void Parser::HandlePragmaMSStruct() {
assert(Tok.is(tok::annot_pragma_msstruct));
PragmaMSStructKind Kind = static_cast<PragmaMSStructKind>(
reinterpret_cast<uintptr_t>(Tok.getAnnotationValue()));
Actions.ActOnPragmaMSStruct(Kind);
ConsumeAnnotationToken();
}
void Parser::HandlePragmaAlign() {
assert(Tok.is(tok::annot_pragma_align));
Sema::PragmaOptionsAlignKind Kind =
static_cast<Sema::PragmaOptionsAlignKind>(
reinterpret_cast<uintptr_t>(Tok.getAnnotationValue()));
Actions.ActOnPragmaOptionsAlign(Kind, Tok.getLocation());
// Consume the token after processing the pragma to enable pragma-specific
// #include warnings.
ConsumeAnnotationToken();
}
void Parser::HandlePragmaDump() {
assert(Tok.is(tok::annot_pragma_dump));
IdentifierInfo *II =
reinterpret_cast<IdentifierInfo *>(Tok.getAnnotationValue());
Actions.ActOnPragmaDump(getCurScope(), Tok.getLocation(), II);
ConsumeAnnotationToken();
}
void Parser::HandlePragmaWeak() {
assert(Tok.is(tok::annot_pragma_weak));
SourceLocation PragmaLoc = ConsumeAnnotationToken();
Actions.ActOnPragmaWeakID(Tok.getIdentifierInfo(), PragmaLoc,
Tok.getLocation());
ConsumeToken(); // The weak name.
}
void Parser::HandlePragmaWeakAlias() {
assert(Tok.is(tok::annot_pragma_weakalias));
SourceLocation PragmaLoc = ConsumeAnnotationToken();
IdentifierInfo *WeakName = Tok.getIdentifierInfo();
SourceLocation WeakNameLoc = Tok.getLocation();
ConsumeToken();
IdentifierInfo *AliasName = Tok.getIdentifierInfo();
SourceLocation AliasNameLoc = Tok.getLocation();
ConsumeToken();
Actions.ActOnPragmaWeakAlias(WeakName, AliasName, PragmaLoc,
WeakNameLoc, AliasNameLoc);
}
void Parser::HandlePragmaRedefineExtname() {
assert(Tok.is(tok::annot_pragma_redefine_extname));
SourceLocation RedefLoc = ConsumeAnnotationToken();
IdentifierInfo *RedefName = Tok.getIdentifierInfo();
SourceLocation RedefNameLoc = Tok.getLocation();
ConsumeToken();
IdentifierInfo *AliasName = Tok.getIdentifierInfo();
SourceLocation AliasNameLoc = Tok.getLocation();
ConsumeToken();
Actions.ActOnPragmaRedefineExtname(RedefName, AliasName, RedefLoc,
RedefNameLoc, AliasNameLoc);
}
void Parser::HandlePragmaFPContract() {
assert(Tok.is(tok::annot_pragma_fp_contract));
tok::OnOffSwitch OOS =
static_cast<tok::OnOffSwitch>(
reinterpret_cast<uintptr_t>(Tok.getAnnotationValue()));
LangOptions::FPModeKind FPC;
switch (OOS) {
case tok::OOS_ON:
FPC = LangOptions::FPM_On;
break;
case tok::OOS_OFF:
FPC = LangOptions::FPM_Off;
break;
case tok::OOS_DEFAULT:
FPC = getLangOpts().getDefaultFPContractMode();
break;
}
SourceLocation PragmaLoc = ConsumeAnnotationToken();
Actions.ActOnPragmaFPContract(PragmaLoc, FPC);
}
void Parser::HandlePragmaFloatControl() {
assert(Tok.is(tok::annot_pragma_float_control));
// The value that is held on the PragmaFloatControlStack encodes
// the PragmaFloatControl kind and the MSStackAction kind
// into a single 32-bit word. The MsStackAction is the high 16 bits
// and the FloatControl is the lower 16 bits. Use shift and bit-and
// to decode the parts.
uintptr_t Value = reinterpret_cast<uintptr_t>(Tok.getAnnotationValue());
Sema::PragmaMsStackAction Action =
static_cast<Sema::PragmaMsStackAction>((Value >> 16) & 0xFFFF);
PragmaFloatControlKind Kind = PragmaFloatControlKind(Value & 0xFFFF);
SourceLocation PragmaLoc = ConsumeAnnotationToken();
Actions.ActOnPragmaFloatControl(PragmaLoc, Action, Kind);
}
void Parser::HandlePragmaFEnvAccess() {
assert(Tok.is(tok::annot_pragma_fenv_access));
tok::OnOffSwitch OOS =
static_cast<tok::OnOffSwitch>(
reinterpret_cast<uintptr_t>(Tok.getAnnotationValue()));
bool IsEnabled;
switch (OOS) {
case tok::OOS_ON:
IsEnabled = true;
break;
case tok::OOS_OFF:
IsEnabled = false;
break;
case tok::OOS_DEFAULT: // FIXME: Add this cli option when it makes sense.
IsEnabled = false;
break;
}
SourceLocation PragmaLoc = ConsumeAnnotationToken();
Actions.ActOnPragmaFEnvAccess(PragmaLoc, IsEnabled);
}
void Parser::HandlePragmaFEnvRound() {
assert(Tok.is(tok::annot_pragma_fenv_round));
auto RM = static_cast<llvm::RoundingMode>(
reinterpret_cast<uintptr_t>(Tok.getAnnotationValue()));
SourceLocation PragmaLoc = ConsumeAnnotationToken();
Actions.setRoundingMode(PragmaLoc, RM);
}
StmtResult Parser::HandlePragmaCaptured()
{
assert(Tok.is(tok::annot_pragma_captured));
ConsumeAnnotationToken();
if (Tok.isNot(tok::l_brace)) {
PP.Diag(Tok, diag::err_expected) << tok::l_brace;
return StmtError();
}
SourceLocation Loc = Tok.getLocation();
ParseScope CapturedRegionScope(this, Scope::FnScope | Scope::DeclScope |
Scope::CompoundStmtScope);
Actions.ActOnCapturedRegionStart(Loc, getCurScope(), CR_Default,
/*NumParams=*/1);
StmtResult R = ParseCompoundStatement();
CapturedRegionScope.Exit();
if (R.isInvalid()) {
Actions.ActOnCapturedRegionError();
return StmtError();
}
return Actions.ActOnCapturedRegionEnd(R.get());
}
namespace {
enum OpenCLExtState : char {
Disable, Enable, Begin, End
};
typedef std::pair<const IdentifierInfo *, OpenCLExtState> OpenCLExtData;
}
void Parser::HandlePragmaOpenCLExtension() {
assert(Tok.is(tok::annot_pragma_opencl_extension));
OpenCLExtData *Data = static_cast<OpenCLExtData*>(Tok.getAnnotationValue());
auto State = Data->second;
auto Ident = Data->first;
SourceLocation NameLoc = Tok.getLocation();
ConsumeAnnotationToken();
auto &Opt = Actions.getOpenCLOptions();
auto Name = Ident->getName();
// OpenCL 1.1 9.1: "The all variant sets the behavior for all extensions,
// overriding all previously issued extension directives, but only if the
// behavior is set to disable."
if (Name == "all") {
if (State == Disable)
Opt.disableAll();
else
PP.Diag(NameLoc, diag::warn_pragma_expected_predicate) << 1;
} else if (State == Begin) {
if (!Opt.isKnown(Name) || !Opt.isSupported(Name, getLangOpts())) {
Opt.support(Name);
// FIXME: Default behavior of the extension pragma is not defined.
// Therefore, it should never be added by default.
Opt.acceptsPragma(Name);
}
Actions.setCurrentOpenCLExtension(Name);
} else if (State == End) {
if (Name != Actions.getCurrentOpenCLExtension())
PP.Diag(NameLoc, diag::warn_pragma_begin_end_mismatch);
Actions.setCurrentOpenCLExtension("");
} else if (!Opt.isKnown(Name) || !Opt.isWithPragma(Name))
PP.Diag(NameLoc, diag::warn_pragma_unknown_extension) << Ident;
else if (Opt.isSupportedExtension(Name, getLangOpts()))
Opt.enable(Name, State == Enable);
else if (Opt.isSupportedCoreOrOptionalCore(Name, getLangOpts()))
PP.Diag(NameLoc, diag::warn_pragma_extension_is_core) << Ident;
else
PP.Diag(NameLoc, diag::warn_pragma_unsupported_extension) << Ident;
}
void Parser::HandlePragmaMSPointersToMembers() {
assert(Tok.is(tok::annot_pragma_ms_pointers_to_members));
LangOptions::PragmaMSPointersToMembersKind RepresentationMethod =
static_cast<LangOptions::PragmaMSPointersToMembersKind>(
reinterpret_cast<uintptr_t>(Tok.getAnnotationValue()));
SourceLocation PragmaLoc = ConsumeAnnotationToken();
Actions.ActOnPragmaMSPointersToMembers(RepresentationMethod, PragmaLoc);
}
void Parser::HandlePragmaMSVtorDisp() {
assert(Tok.is(tok::annot_pragma_ms_vtordisp));
uintptr_t Value = reinterpret_cast<uintptr_t>(Tok.getAnnotationValue());
Sema::PragmaMsStackAction Action =
static_cast<Sema::PragmaMsStackAction>((Value >> 16) & 0xFFFF);
MSVtorDispMode Mode = MSVtorDispMode(Value & 0xFFFF);
SourceLocation PragmaLoc = ConsumeAnnotationToken();
Actions.ActOnPragmaMSVtorDisp(Action, PragmaLoc, Mode);
}
void Parser::HandlePragmaMSPragma() {
assert(Tok.is(tok::annot_pragma_ms_pragma));
// Grab the tokens out of the annotation and enter them into the stream.
auto TheTokens =
(std::pair<std::unique_ptr<Token[]>, size_t> *)Tok.getAnnotationValue();
PP.EnterTokenStream(std::move(TheTokens->first), TheTokens->second, true,
/*IsReinject=*/true);
SourceLocation PragmaLocation = ConsumeAnnotationToken();
assert(Tok.isAnyIdentifier());
StringRef PragmaName = Tok.getIdentifierInfo()->getName();
PP.Lex(Tok); // pragma kind
// Figure out which #pragma we're dealing with. The switch has no default
// because lex shouldn't emit the annotation token for unrecognized pragmas.
typedef bool (Parser::*PragmaHandler)(StringRef, SourceLocation);
PragmaHandler Handler = llvm::StringSwitch<PragmaHandler>(PragmaName)
.Case("data_seg", &Parser::HandlePragmaMSSegment)
.Case("bss_seg", &Parser::HandlePragmaMSSegment)
.Case("const_seg", &Parser::HandlePragmaMSSegment)
.Case("code_seg", &Parser::HandlePragmaMSSegment)
.Case("section", &Parser::HandlePragmaMSSection)
.Case("init_seg", &Parser::HandlePragmaMSInitSeg);
if (!(this->*Handler)(PragmaName, PragmaLocation)) {
// Pragma handling failed, and has been diagnosed. Slurp up the tokens
// until eof (really end of line) to prevent follow-on errors.
while (Tok.isNot(tok::eof))
PP.Lex(Tok);
PP.Lex(Tok);
}
}
bool Parser::HandlePragmaMSSection(StringRef PragmaName,
SourceLocation PragmaLocation) {
if (Tok.isNot(tok::l_paren)) {
PP.Diag(PragmaLocation, diag::warn_pragma_expected_lparen) << PragmaName;
return false;
}
PP.Lex(Tok); // (
// Parsing code for pragma section
if (Tok.isNot(tok::string_literal)) {
PP.Diag(PragmaLocation, diag::warn_pragma_expected_section_name)
<< PragmaName;
return false;
}
ExprResult StringResult = ParseStringLiteralExpression();
if (StringResult.isInvalid())
return false; // Already diagnosed.
StringLiteral *SegmentName = cast<StringLiteral>(StringResult.get());
if (SegmentName->getCharByteWidth() != 1) {
PP.Diag(PragmaLocation, diag::warn_pragma_expected_non_wide_string)
<< PragmaName;
return false;
}
int SectionFlags = ASTContext::PSF_Read;
bool SectionFlagsAreDefault = true;
while (Tok.is(tok::comma)) {
PP.Lex(Tok); // ,
// Ignore "long" and "short".
// They are undocumented, but widely used, section attributes which appear
// to do nothing.
if (Tok.is(tok::kw_long) || Tok.is(tok::kw_short)) {
PP.Lex(Tok); // long/short
continue;
}
if (!Tok.isAnyIdentifier()) {
PP.Diag(PragmaLocation, diag::warn_pragma_expected_action_or_r_paren)
<< PragmaName;
return false;
}
ASTContext::PragmaSectionFlag Flag =
llvm::StringSwitch<ASTContext::PragmaSectionFlag>(
Tok.getIdentifierInfo()->getName())
.Case("read", ASTContext::PSF_Read)
.Case("write", ASTContext::PSF_Write)
.Case("execute", ASTContext::PSF_Execute)
.Case("shared", ASTContext::PSF_Invalid)
.Case("nopage", ASTContext::PSF_Invalid)
.Case("nocache", ASTContext::PSF_Invalid)
.Case("discard", ASTContext::PSF_Invalid)
.Case("remove", ASTContext::PSF_Invalid)
.Default(ASTContext::PSF_None);
if (Flag == ASTContext::PSF_None || Flag == ASTContext::PSF_Invalid) {
PP.Diag(PragmaLocation, Flag == ASTContext::PSF_None
? diag::warn_pragma_invalid_specific_action
: diag::warn_pragma_unsupported_action)
<< PragmaName << Tok.getIdentifierInfo()->getName();
return false;
}
SectionFlags |= Flag;
SectionFlagsAreDefault = false;
PP.Lex(Tok); // Identifier
}
// If no section attributes are specified, the section will be marked as
// read/write.
if (SectionFlagsAreDefault)
SectionFlags |= ASTContext::PSF_Write;
if (Tok.isNot(tok::r_paren)) {
PP.Diag(PragmaLocation, diag::warn_pragma_expected_rparen) << PragmaName;
return false;
}
PP.Lex(Tok); // )
if (Tok.isNot(tok::eof)) {
PP.Diag(PragmaLocation, diag::warn_pragma_extra_tokens_at_eol)
<< PragmaName;
return false;
}
PP.Lex(Tok); // eof
Actions.ActOnPragmaMSSection(PragmaLocation, SectionFlags, SegmentName);
return true;
}
bool Parser::HandlePragmaMSSegment(StringRef PragmaName,
SourceLocation PragmaLocation) {
if (Tok.isNot(tok::l_paren)) {
PP.Diag(PragmaLocation, diag::warn_pragma_expected_lparen) << PragmaName;
return false;
}
PP.Lex(Tok); // (
Sema::PragmaMsStackAction Action = Sema::PSK_Reset;
StringRef SlotLabel;
if (Tok.isAnyIdentifier()) {
StringRef PushPop = Tok.getIdentifierInfo()->getName();
if (PushPop == "push")
Action = Sema::PSK_Push;
else if (PushPop == "pop")
Action = Sema::PSK_Pop;
else {
PP.Diag(PragmaLocation,
diag::warn_pragma_expected_section_push_pop_or_name)
<< PragmaName;
return false;
}
if (Action != Sema::PSK_Reset) {
PP.Lex(Tok); // push | pop
if (Tok.is(tok::comma)) {
PP.Lex(Tok); // ,
// If we've got a comma, we either need a label or a string.
if (Tok.isAnyIdentifier()) {
SlotLabel = Tok.getIdentifierInfo()->getName();
PP.Lex(Tok); // identifier
if (Tok.is(tok::comma))
PP.Lex(Tok);
else if (Tok.isNot(tok::r_paren)) {
PP.Diag(PragmaLocation, diag::warn_pragma_expected_punc)
<< PragmaName;
return false;
}
}
} else if (Tok.isNot(tok::r_paren)) {
PP.Diag(PragmaLocation, diag::warn_pragma_expected_punc) << PragmaName;
return false;
}
}
}
// Grab the string literal for our section name.
StringLiteral *SegmentName = nullptr;
if (Tok.isNot(tok::r_paren)) {
if (Tok.isNot(tok::string_literal)) {
unsigned DiagID = Action != Sema::PSK_Reset ? !SlotLabel.empty() ?
diag::warn_pragma_expected_section_name :
diag::warn_pragma_expected_section_label_or_name :
diag::warn_pragma_expected_section_push_pop_or_name;
PP.Diag(PragmaLocation, DiagID) << PragmaName;
return false;
}
ExprResult StringResult = ParseStringLiteralExpression();
if (StringResult.isInvalid())
return false; // Already diagnosed.
SegmentName = cast<StringLiteral>(StringResult.get());
if (SegmentName->getCharByteWidth() != 1) {
PP.Diag(PragmaLocation, diag::warn_pragma_expected_non_wide_string)
<< PragmaName;
return false;
}
// Setting section "" has no effect
if (SegmentName->getLength())
Action = (Sema::PragmaMsStackAction)(Action | Sema::PSK_Set);
}
if (Tok.isNot(tok::r_paren)) {
PP.Diag(PragmaLocation, diag::warn_pragma_expected_rparen) << PragmaName;
return false;
}
PP.Lex(Tok); // )
if (Tok.isNot(tok::eof)) {
PP.Diag(PragmaLocation, diag::warn_pragma_extra_tokens_at_eol)
<< PragmaName;
return false;
}
PP.Lex(Tok); // eof
Actions.ActOnPragmaMSSeg(PragmaLocation, Action, SlotLabel,
SegmentName, PragmaName);
return true;
}
// #pragma init_seg({ compiler | lib | user | "section-name" [, func-name]} )
bool Parser::HandlePragmaMSInitSeg(StringRef PragmaName,
SourceLocation PragmaLocation) {
if (getTargetInfo().getTriple().getEnvironment() != llvm::Triple::MSVC) {
PP.Diag(PragmaLocation, diag::warn_pragma_init_seg_unsupported_target);
return false;
}
if (ExpectAndConsume(tok::l_paren, diag::warn_pragma_expected_lparen,
PragmaName))
return false;
// Parse either the known section names or the string section name.
StringLiteral *SegmentName = nullptr;
if (Tok.isAnyIdentifier()) {
auto *II = Tok.getIdentifierInfo();
StringRef Section = llvm::StringSwitch<StringRef>(II->getName())
.Case("compiler", "\".CRT$XCC\"")
.Case("lib", "\".CRT$XCL\"")
.Case("user", "\".CRT$XCU\"")
.Default("");
if (!Section.empty()) {
// Pretend the user wrote the appropriate string literal here.
Token Toks[1];
Toks[0].startToken();
Toks[0].setKind(tok::string_literal);
Toks[0].setLocation(Tok.getLocation());
Toks[0].setLiteralData(Section.data());
Toks[0].setLength(Section.size());
SegmentName =
cast<StringLiteral>(Actions.ActOnStringLiteral(Toks, nullptr).get());
PP.Lex(Tok);
}
} else if (Tok.is(tok::string_literal)) {
ExprResult StringResult = ParseStringLiteralExpression();
if (StringResult.isInvalid())
return false;
SegmentName = cast<StringLiteral>(StringResult.get());
if (SegmentName->getCharByteWidth() != 1) {
PP.Diag(PragmaLocation, diag::warn_pragma_expected_non_wide_string)
<< PragmaName;
return false;
}
// FIXME: Add support for the '[, func-name]' part of the pragma.
}
if (!SegmentName) {
PP.Diag(PragmaLocation, diag::warn_pragma_expected_init_seg) << PragmaName;
return false;
}
if (ExpectAndConsume(tok::r_paren, diag::warn_pragma_expected_rparen,
PragmaName) ||
ExpectAndConsume(tok::eof, diag::warn_pragma_extra_tokens_at_eol,
PragmaName))
return false;
Actions.ActOnPragmaMSInitSeg(PragmaLocation, SegmentName);
return true;
}
namespace {
struct PragmaLoopHintInfo {
Token PragmaName;
Token Option;
ArrayRef<Token> Toks;
};
} // end anonymous namespace
static std::string PragmaLoopHintString(Token PragmaName, Token Option) {
StringRef Str = PragmaName.getIdentifierInfo()->getName();
std::string ClangLoopStr = (llvm::Twine("clang loop ") + Str).str();
return std::string(llvm::StringSwitch<StringRef>(Str)
.Case("loop", ClangLoopStr)
.Case("unroll_and_jam", Str)
.Case("unroll", Str)
.Default(""));
}
bool Parser::HandlePragmaLoopHint(LoopHint &Hint) {
assert(Tok.is(tok::annot_pragma_loop_hint));
PragmaLoopHintInfo *Info =
static_cast<PragmaLoopHintInfo *>(Tok.getAnnotationValue());
IdentifierInfo *PragmaNameInfo = Info->PragmaName.getIdentifierInfo();
Hint.PragmaNameLoc = IdentifierLoc::create(
Actions.Context, Info->PragmaName.getLocation(), PragmaNameInfo);
// It is possible that the loop hint has no option identifier, such as
// #pragma unroll(4).
IdentifierInfo *OptionInfo = Info->Option.is(tok::identifier)
? Info->Option.getIdentifierInfo()
: nullptr;
Hint.OptionLoc = IdentifierLoc::create(
Actions.Context, Info->Option.getLocation(), OptionInfo);
llvm::ArrayRef<Token> Toks = Info->Toks;
// Return a valid hint if pragma unroll or nounroll were specified
// without an argument.
auto IsLoopHint = llvm::StringSwitch<bool>(PragmaNameInfo->getName())
.Cases("unroll", "nounroll", "unroll_and_jam",
"nounroll_and_jam", true)
.Default(false);
if (Toks.empty() && IsLoopHint) {
ConsumeAnnotationToken();
Hint.Range = Info->PragmaName.getLocation();
return true;
}
// The constant expression is always followed by an eof token, which increases
// the TokSize by 1.
assert(!Toks.empty() &&
"PragmaLoopHintInfo::Toks must contain at least one token.");
// If no option is specified the argument is assumed to be a constant expr.
bool OptionUnroll = false;
bool OptionUnrollAndJam = false;
bool OptionDistribute = false;
bool OptionPipelineDisabled = false;
bool StateOption = false;
if (OptionInfo) { // Pragma Unroll does not specify an option.
OptionUnroll = OptionInfo->isStr("unroll");
OptionUnrollAndJam = OptionInfo->isStr("unroll_and_jam");
OptionDistribute = OptionInfo->isStr("distribute");
OptionPipelineDisabled = OptionInfo->isStr("pipeline");
StateOption = llvm::StringSwitch<bool>(OptionInfo->getName())
.Case("vectorize", true)
.Case("interleave", true)
.Case("vectorize_predicate", true)
.Default(false) ||
OptionUnroll || OptionUnrollAndJam || OptionDistribute ||
OptionPipelineDisabled;
}
bool AssumeSafetyArg = !OptionUnroll && !OptionUnrollAndJam &&
!OptionDistribute && !OptionPipelineDisabled;
// Verify loop hint has an argument.
if (Toks[0].is(tok::eof)) {
ConsumeAnnotationToken();
Diag(Toks[0].getLocation(), diag::err_pragma_loop_missing_argument)
<< /*StateArgument=*/StateOption
<< /*FullKeyword=*/(OptionUnroll || OptionUnrollAndJam)
<< /*AssumeSafetyKeyword=*/AssumeSafetyArg;
return false;
}
// Validate the argument.
if (StateOption) {
ConsumeAnnotationToken();
SourceLocation StateLoc = Toks[0].getLocation();
IdentifierInfo *StateInfo = Toks[0].getIdentifierInfo();
bool Valid = StateInfo &&
llvm::StringSwitch<bool>(StateInfo->getName())
.Case("disable", true)
.Case("enable", !OptionPipelineDisabled)
.Case("full", OptionUnroll || OptionUnrollAndJam)
.Case("assume_safety", AssumeSafetyArg)
.Default(false);
if (!Valid) {
if (OptionPipelineDisabled) {
Diag(Toks[0].getLocation(), diag::err_pragma_pipeline_invalid_keyword);
} else {
Diag(Toks[0].getLocation(), diag::err_pragma_invalid_keyword)
<< /*FullKeyword=*/(OptionUnroll || OptionUnrollAndJam)
<< /*AssumeSafetyKeyword=*/AssumeSafetyArg;
}
return false;
}
if (Toks.size() > 2)
Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< PragmaLoopHintString(Info->PragmaName, Info->Option);
Hint.StateLoc = IdentifierLoc::create(Actions.Context, StateLoc, StateInfo);
} else if (OptionInfo && OptionInfo->getName() == "vectorize_width") {
PP.EnterTokenStream(Toks, /*DisableMacroExpansion=*/false,
/*IsReinject=*/false);
ConsumeAnnotationToken();
SourceLocation StateLoc = Toks[0].getLocation();
IdentifierInfo *StateInfo = Toks[0].getIdentifierInfo();
StringRef IsScalableStr = StateInfo ? StateInfo->getName() : "";
// Look for vectorize_width(fixed|scalable)
if (IsScalableStr == "scalable" || IsScalableStr == "fixed") {
PP.Lex(Tok); // Identifier
if (Toks.size() > 2) {
Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< PragmaLoopHintString(Info->PragmaName, Info->Option);
while (Tok.isNot(tok::eof))
ConsumeAnyToken();
}
Hint.StateLoc =
IdentifierLoc::create(Actions.Context, StateLoc, StateInfo);
ConsumeToken(); // Consume the constant expression eof terminator.
} else {
// Enter constant expression including eof terminator into token stream.
ExprResult R = ParseConstantExpression();
if (R.isInvalid() && !Tok.is(tok::comma))
Diag(Toks[0].getLocation(),
diag::note_pragma_loop_invalid_vectorize_option);
bool Arg2Error = false;
if (Tok.is(tok::comma)) {
PP.Lex(Tok); // ,
StateInfo = Tok.getIdentifierInfo();
IsScalableStr = StateInfo->getName();
if (IsScalableStr != "scalable" && IsScalableStr != "fixed") {
Diag(Tok.getLocation(),
diag::err_pragma_loop_invalid_vectorize_option);
Arg2Error = true;
} else
Hint.StateLoc =
IdentifierLoc::create(Actions.Context, StateLoc, StateInfo);
PP.Lex(Tok); // Identifier
}
// Tokens following an error in an ill-formed constant expression will
// remain in the token stream and must be removed.
if (Tok.isNot(tok::eof)) {
Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< PragmaLoopHintString(Info->PragmaName, Info->Option);
while (Tok.isNot(tok::eof))
ConsumeAnyToken();
}
ConsumeToken(); // Consume the constant expression eof terminator.
if (Arg2Error || R.isInvalid() ||
Actions.CheckLoopHintExpr(R.get(), Toks[0].getLocation()))
return false;
// Argument is a constant expression with an integer type.
Hint.ValueExpr = R.get();
}
} else {
// Enter constant expression including eof terminator into token stream.
PP.EnterTokenStream(Toks, /*DisableMacroExpansion=*/false,
/*IsReinject=*/false);
ConsumeAnnotationToken();
ExprResult R = ParseConstantExpression();
// Tokens following an error in an ill-formed constant expression will
// remain in the token stream and must be removed.
if (Tok.isNot(tok::eof)) {
Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< PragmaLoopHintString(Info->PragmaName, Info->Option);
while (Tok.isNot(tok::eof))
ConsumeAnyToken();
}
ConsumeToken(); // Consume the constant expression eof terminator.
if (R.isInvalid() ||
Actions.CheckLoopHintExpr(R.get(), Toks[0].getLocation()))
return false;
// Argument is a constant expression with an integer type.
Hint.ValueExpr = R.get();
}
Hint.Range = SourceRange(Info->PragmaName.getLocation(),
Info->Toks.back().getLocation());
return true;
}
namespace {
struct PragmaAttributeInfo {
enum ActionType { Push, Pop, Attribute };
ParsedAttributes &Attributes;
ActionType Action;
const IdentifierInfo *Namespace = nullptr;
ArrayRef<Token> Tokens;
PragmaAttributeInfo(ParsedAttributes &Attributes) : Attributes(Attributes) {}
};
#include "clang/Parse/AttrSubMatchRulesParserStringSwitches.inc"
} // end anonymous namespace
static StringRef getIdentifier(const Token &Tok) {
if (Tok.is(tok::identifier))
return Tok.getIdentifierInfo()->getName();
const char *S = tok::getKeywordSpelling(Tok.getKind());
if (!S)
return "";
return S;
}
static bool isAbstractAttrMatcherRule(attr::SubjectMatchRule Rule) {
using namespace attr;
switch (Rule) {
#define ATTR_MATCH_RULE(Value, Spelling, IsAbstract) \
case Value: \
return IsAbstract;
#include "clang/Basic/AttrSubMatchRulesList.inc"
}
llvm_unreachable("Invalid attribute subject match rule");
return false;
}
static void diagnoseExpectedAttributeSubjectSubRule(
Parser &PRef, attr::SubjectMatchRule PrimaryRule, StringRef PrimaryRuleName,
SourceLocation SubRuleLoc) {
auto Diagnostic =
PRef.Diag(SubRuleLoc,
diag::err_pragma_attribute_expected_subject_sub_identifier)
<< PrimaryRuleName;
if (const char *SubRules = validAttributeSubjectMatchSubRules(PrimaryRule))
Diagnostic << /*SubRulesSupported=*/1 << SubRules;
else
Diagnostic << /*SubRulesSupported=*/0;
}
static void diagnoseUnknownAttributeSubjectSubRule(
Parser &PRef, attr::SubjectMatchRule PrimaryRule, StringRef PrimaryRuleName,
StringRef SubRuleName, SourceLocation SubRuleLoc) {
auto Diagnostic =
PRef.Diag(SubRuleLoc, diag::err_pragma_attribute_unknown_subject_sub_rule)
<< SubRuleName << PrimaryRuleName;
if (const char *SubRules = validAttributeSubjectMatchSubRules(PrimaryRule))
Diagnostic << /*SubRulesSupported=*/1 << SubRules;
else
Diagnostic << /*SubRulesSupported=*/0;
}
bool Parser::ParsePragmaAttributeSubjectMatchRuleSet(
attr::ParsedSubjectMatchRuleSet &SubjectMatchRules, SourceLocation &AnyLoc,
SourceLocation &LastMatchRuleEndLoc) {
bool IsAny = false;
BalancedDelimiterTracker AnyParens(*this, tok::l_paren);
if (getIdentifier(Tok) == "any") {
AnyLoc = ConsumeToken();
IsAny = true;
if (AnyParens.expectAndConsume())
return true;
}
do {
// Parse the subject matcher rule.
StringRef Name = getIdentifier(Tok);
if (Name.empty()) {
Diag(Tok, diag::err_pragma_attribute_expected_subject_identifier);
return true;
}
std::pair<Optional<attr::SubjectMatchRule>,
Optional<attr::SubjectMatchRule> (*)(StringRef, bool)>
Rule = isAttributeSubjectMatchRule(Name);
if (!Rule.first) {
Diag(Tok, diag::err_pragma_attribute_unknown_subject_rule) << Name;
return true;
}
attr::SubjectMatchRule PrimaryRule = *Rule.first;
SourceLocation RuleLoc = ConsumeToken();
BalancedDelimiterTracker Parens(*this, tok::l_paren);
if (isAbstractAttrMatcherRule(PrimaryRule)) {
if (Parens.expectAndConsume())
return true;
} else if (Parens.consumeOpen()) {
if (!SubjectMatchRules
.insert(
std::make_pair(PrimaryRule, SourceRange(RuleLoc, RuleLoc)))
.second)
Diag(RuleLoc, diag::err_pragma_attribute_duplicate_subject)
<< Name
<< FixItHint::CreateRemoval(SourceRange(
RuleLoc, Tok.is(tok::comma) ? Tok.getLocation() : RuleLoc));
LastMatchRuleEndLoc = RuleLoc;
continue;
}
// Parse the sub-rules.
StringRef SubRuleName = getIdentifier(Tok);
if (SubRuleName.empty()) {
diagnoseExpectedAttributeSubjectSubRule(*this, PrimaryRule, Name,
Tok.getLocation());
return true;
}
attr::SubjectMatchRule SubRule;
if (SubRuleName == "unless") {
SourceLocation SubRuleLoc = ConsumeToken();
BalancedDelimiterTracker Parens(*this, tok::l_paren);
if (Parens.expectAndConsume())
return true;
SubRuleName = getIdentifier(Tok);
if (SubRuleName.empty()) {
diagnoseExpectedAttributeSubjectSubRule(*this, PrimaryRule, Name,
SubRuleLoc);
return true;
}
auto SubRuleOrNone = Rule.second(SubRuleName, /*IsUnless=*/true);
if (!SubRuleOrNone) {
std::string SubRuleUnlessName = "unless(" + SubRuleName.str() + ")";
diagnoseUnknownAttributeSubjectSubRule(*this, PrimaryRule, Name,
SubRuleUnlessName, SubRuleLoc);
return true;
}
SubRule = *SubRuleOrNone;
ConsumeToken();
if (Parens.consumeClose())
return true;
} else {
auto SubRuleOrNone = Rule.second(SubRuleName, /*IsUnless=*/false);
if (!SubRuleOrNone) {
diagnoseUnknownAttributeSubjectSubRule(*this, PrimaryRule, Name,
SubRuleName, Tok.getLocation());
return true;
}
SubRule = *SubRuleOrNone;
ConsumeToken();
}
SourceLocation RuleEndLoc = Tok.getLocation();
LastMatchRuleEndLoc = RuleEndLoc;
if (Parens.consumeClose())
return true;
if (!SubjectMatchRules
.insert(std::make_pair(SubRule, SourceRange(RuleLoc, RuleEndLoc)))
.second) {
Diag(RuleLoc, diag::err_pragma_attribute_duplicate_subject)
<< attr::getSubjectMatchRuleSpelling(SubRule)
<< FixItHint::CreateRemoval(SourceRange(
RuleLoc, Tok.is(tok::comma) ? Tok.getLocation() : RuleEndLoc));
continue;
}
} while (IsAny && TryConsumeToken(tok::comma));
if (IsAny)
if (AnyParens.consumeClose())
return true;
return false;
}
namespace {
/// Describes the stage at which attribute subject rule parsing was interrupted.
enum class MissingAttributeSubjectRulesRecoveryPoint {
Comma,
ApplyTo,
Equals,
Any,
None,
};
MissingAttributeSubjectRulesRecoveryPoint
getAttributeSubjectRulesRecoveryPointForToken(const Token &Tok) {
if (const auto *II = Tok.getIdentifierInfo()) {
if (II->isStr("apply_to"))
return MissingAttributeSubjectRulesRecoveryPoint::ApplyTo;
if (II->isStr("any"))
return MissingAttributeSubjectRulesRecoveryPoint::Any;
}
if (Tok.is(tok::equal))
return MissingAttributeSubjectRulesRecoveryPoint::Equals;
return MissingAttributeSubjectRulesRecoveryPoint::None;
}
/// Creates a diagnostic for the attribute subject rule parsing diagnostic that
/// suggests the possible attribute subject rules in a fix-it together with
/// any other missing tokens.
DiagnosticBuilder createExpectedAttributeSubjectRulesTokenDiagnostic(
unsigned DiagID, ParsedAttr &Attribute,
MissingAttributeSubjectRulesRecoveryPoint Point, Parser &PRef) {
SourceLocation Loc = PRef.getEndOfPreviousToken();
if (Loc.isInvalid())
Loc = PRef.getCurToken().getLocation();
auto Diagnostic = PRef.Diag(Loc, DiagID);
std::string FixIt;
MissingAttributeSubjectRulesRecoveryPoint EndPoint =
getAttributeSubjectRulesRecoveryPointForToken(PRef.getCurToken());
if (Point == MissingAttributeSubjectRulesRecoveryPoint::Comma)
FixIt = ", ";
if (Point <= MissingAttributeSubjectRulesRecoveryPoint::ApplyTo &&
EndPoint > MissingAttributeSubjectRulesRecoveryPoint::ApplyTo)
FixIt += "apply_to";
if (Point <= MissingAttributeSubjectRulesRecoveryPoint::Equals &&
EndPoint > MissingAttributeSubjectRulesRecoveryPoint::Equals)
FixIt += " = ";
SourceRange FixItRange(Loc);
if (EndPoint == MissingAttributeSubjectRulesRecoveryPoint::None) {
// Gather the subject match rules that are supported by the attribute.
SmallVector<std::pair<attr::SubjectMatchRule, bool>, 4> SubjectMatchRuleSet;
Attribute.getMatchRules(PRef.getLangOpts(), SubjectMatchRuleSet);
if (SubjectMatchRuleSet.empty()) {
// FIXME: We can emit a "fix-it" with a subject list placeholder when
// placeholders will be supported by the fix-its.
return Diagnostic;
}
FixIt += "any(";
bool NeedsComma = false;
for (const auto &I : SubjectMatchRuleSet) {
// Ensure that the missing rule is reported in the fix-it only when it's
// supported in the current language mode.
if (!I.second)
continue;
if (NeedsComma)
FixIt += ", ";
else
NeedsComma = true;
FixIt += attr::getSubjectMatchRuleSpelling(I.first);
}
FixIt += ")";
// Check if we need to remove the range
PRef.SkipUntil(tok::eof, Parser::StopBeforeMatch);
FixItRange.setEnd(PRef.getCurToken().getLocation());
}
if (FixItRange.getBegin() == FixItRange.getEnd())
Diagnostic << FixItHint::CreateInsertion(FixItRange.getBegin(), FixIt);
else
Diagnostic << FixItHint::CreateReplacement(
CharSourceRange::getCharRange(FixItRange), FixIt);
return Diagnostic;
}
} // end anonymous namespace
void Parser::HandlePragmaAttribute() {
assert(Tok.is(tok::annot_pragma_attribute) &&
"Expected #pragma attribute annotation token");
SourceLocation PragmaLoc = Tok.getLocation();
auto *Info = static_cast<PragmaAttributeInfo *>(Tok.getAnnotationValue());
if (Info->Action == PragmaAttributeInfo::Pop) {
ConsumeAnnotationToken();
Actions.ActOnPragmaAttributePop(PragmaLoc, Info->Namespace);
return;
}
// Parse the actual attribute with its arguments.
assert((Info->Action == PragmaAttributeInfo::Push ||
Info->Action == PragmaAttributeInfo::Attribute) &&
"Unexpected #pragma attribute command");
if (Info->Action == PragmaAttributeInfo::Push && Info->Tokens.empty()) {
ConsumeAnnotationToken();
Actions.ActOnPragmaAttributeEmptyPush(PragmaLoc, Info->Namespace);
return;
}
PP.EnterTokenStream(Info->Tokens, /*DisableMacroExpansion=*/false,
/*IsReinject=*/false);
ConsumeAnnotationToken();
ParsedAttributes &Attrs = Info->Attributes;
Attrs.clearListOnly();
auto SkipToEnd = [this]() {
SkipUntil(tok::eof, StopBeforeMatch);
ConsumeToken();
};
if (Tok.is(tok::l_square) && NextToken().is(tok::l_square)) {
// Parse the CXX11 style attribute.
ParseCXX11AttributeSpecifier(Attrs);
} else if (Tok.is(tok::kw___attribute)) {
ConsumeToken();
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
"attribute"))
return SkipToEnd();
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "("))
return SkipToEnd();
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_pragma_attribute_expected_attribute_name);
SkipToEnd();
return;
}
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
if (Tok.isNot(tok::l_paren))
Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
ParsedAttr::AS_GNU);
else
ParseGNUAttributeArgs(AttrName, AttrNameLoc, Attrs, /*EndLoc=*/nullptr,
/*ScopeName=*/nullptr,
/*ScopeLoc=*/SourceLocation(), ParsedAttr::AS_GNU,
/*Declarator=*/nullptr);
if (ExpectAndConsume(tok::r_paren))
return SkipToEnd();
if (ExpectAndConsume(tok::r_paren))
return SkipToEnd();
} else if (Tok.is(tok::kw___declspec)) {
ParseMicrosoftDeclSpecs(Attrs);
} else {
Diag(Tok, diag::err_pragma_attribute_expected_attribute_syntax);
if (Tok.getIdentifierInfo()) {
// If we suspect that this is an attribute suggest the use of
// '__attribute__'.
if (ParsedAttr::getParsedKind(
Tok.getIdentifierInfo(), /*ScopeName=*/nullptr,
ParsedAttr::AS_GNU) != ParsedAttr::UnknownAttribute) {
SourceLocation InsertStartLoc = Tok.getLocation();
ConsumeToken();
if (Tok.is(tok::l_paren)) {
ConsumeAnyToken();
SkipUntil(tok::r_paren, StopBeforeMatch);
if (Tok.isNot(tok::r_paren))
return SkipToEnd();
}
Diag(Tok, diag::note_pragma_attribute_use_attribute_kw)
<< FixItHint::CreateInsertion(InsertStartLoc, "__attribute__((")
<< FixItHint::CreateInsertion(Tok.getEndLoc(), "))");
}
}
SkipToEnd();
return;
}
if (Attrs.empty() || Attrs.begin()->isInvalid()) {
SkipToEnd();
return;
}
// Ensure that we don't have more than one attribute.
if (Attrs.size() > 1) {
SourceLocation Loc = Attrs[1].getLoc();
Diag(Loc, diag::err_pragma_attribute_multiple_attributes);
SkipToEnd();
return;
}
ParsedAttr &Attribute = *Attrs.begin();
if (!Attribute.isSupportedByPragmaAttribute()) {
Diag(PragmaLoc, diag::err_pragma_attribute_unsupported_attribute)
<< Attribute;
SkipToEnd();
return;
}
// Parse the subject-list.
if (!TryConsumeToken(tok::comma)) {
createExpectedAttributeSubjectRulesTokenDiagnostic(
diag::err_expected, Attribute,
MissingAttributeSubjectRulesRecoveryPoint::Comma, *this)
<< tok::comma;
SkipToEnd();
return;
}
if (Tok.isNot(tok::identifier)) {
createExpectedAttributeSubjectRulesTokenDiagnostic(
diag::err_pragma_attribute_invalid_subject_set_specifier, Attribute,
MissingAttributeSubjectRulesRecoveryPoint::ApplyTo, *this);
SkipToEnd();
return;
}
const IdentifierInfo *II = Tok.getIdentifierInfo();
if (!II->isStr("apply_to")) {
createExpectedAttributeSubjectRulesTokenDiagnostic(
diag::err_pragma_attribute_invalid_subject_set_specifier, Attribute,
MissingAttributeSubjectRulesRecoveryPoint::ApplyTo, *this);
SkipToEnd();
return;
}
ConsumeToken();
if (!TryConsumeToken(tok::equal)) {
createExpectedAttributeSubjectRulesTokenDiagnostic(
diag::err_expected, Attribute,
MissingAttributeSubjectRulesRecoveryPoint::Equals, *this)
<< tok::equal;
SkipToEnd();
return;
}
attr::ParsedSubjectMatchRuleSet SubjectMatchRules;
SourceLocation AnyLoc, LastMatchRuleEndLoc;
if (ParsePragmaAttributeSubjectMatchRuleSet(SubjectMatchRules, AnyLoc,
LastMatchRuleEndLoc)) {
SkipToEnd();
return;
}
// Tokens following an ill-formed attribute will remain in the token stream
// and must be removed.
if (Tok.isNot(tok::eof)) {
Diag(Tok, diag::err_pragma_attribute_extra_tokens_after_attribute);
SkipToEnd();
return;
}
// Consume the eof terminator token.
ConsumeToken();
// Handle a mixed push/attribute by desurging to a push, then an attribute.
if (Info->Action == PragmaAttributeInfo::Push)
Actions.ActOnPragmaAttributeEmptyPush(PragmaLoc, Info->Namespace);
Actions.ActOnPragmaAttributeAttribute(Attribute, PragmaLoc,
std::move(SubjectMatchRules));
}
// #pragma GCC visibility comes in two variants:
// 'push' '(' [visibility] ')'
// 'pop'
void PragmaGCCVisibilityHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &VisTok) {
SourceLocation VisLoc = VisTok.getLocation();
Token Tok;
PP.LexUnexpandedToken(Tok);
const IdentifierInfo *PushPop = Tok.getIdentifierInfo();
const IdentifierInfo *VisType;
if (PushPop && PushPop->isStr("pop")) {
VisType = nullptr;
} else if (PushPop && PushPop->isStr("push")) {
PP.LexUnexpandedToken(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_lparen)
<< "visibility";
return;
}
PP.LexUnexpandedToken(Tok);
VisType = Tok.getIdentifierInfo();
if (!VisType) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier)
<< "visibility";
return;
}
PP.LexUnexpandedToken(Tok);
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_rparen)
<< "visibility";
return;
}
} else {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier)
<< "visibility";
return;
}
SourceLocation EndLoc = Tok.getLocation();
PP.LexUnexpandedToken(Tok);
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< "visibility";
return;
}
auto Toks = std::make_unique<Token[]>(1);
Toks[0].startToken();
Toks[0].setKind(tok::annot_pragma_vis);
Toks[0].setLocation(VisLoc);
Toks[0].setAnnotationEndLoc(EndLoc);
Toks[0].setAnnotationValue(
const_cast<void *>(static_cast<const void *>(VisType)));
PP.EnterTokenStream(std::move(Toks), 1, /*DisableMacroExpansion=*/true,
/*IsReinject=*/false);
}
// #pragma pack(...) comes in the following delicious flavors:
// pack '(' [integer] ')'
// pack '(' 'show' ')'
// pack '(' ('push' | 'pop') [',' identifier] [, integer] ')'
void PragmaPackHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &PackTok) {
SourceLocation PackLoc = PackTok.getLocation();
Token Tok;
PP.Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_lparen) << "pack";
return;
}
Sema::PragmaMsStackAction Action = Sema::PSK_Reset;
StringRef SlotLabel;
Token Alignment;
Alignment.startToken();
PP.Lex(Tok);
if (Tok.is(tok::numeric_constant)) {
Alignment = Tok;
PP.Lex(Tok);
// In MSVC/gcc, #pragma pack(4) sets the alignment without affecting
// the push/pop stack.
// In Apple gcc/XL, #pragma pack(4) is equivalent to #pragma pack(push, 4)
Action = (PP.getLangOpts().ApplePragmaPack || PP.getLangOpts().XLPragmaPack)
? Sema::PSK_Push_Set
: Sema::PSK_Set;
} else if (Tok.is(tok::identifier)) {
const IdentifierInfo *II = Tok.getIdentifierInfo();
if (II->isStr("show")) {
Action = Sema::PSK_Show;
PP.Lex(Tok);
} else {
if (II->isStr("push")) {
Action = Sema::PSK_Push;
} else if (II->isStr("pop")) {
Action = Sema::PSK_Pop;
} else {
PP.Diag(Tok.getLocation(), diag::warn_pragma_invalid_action) << "pack";
return;
}
PP.Lex(Tok);
if (Tok.is(tok::comma)) {
PP.Lex(Tok);
if (Tok.is(tok::numeric_constant)) {
Action = (Sema::PragmaMsStackAction)(Action | Sema::PSK_Set);
Alignment = Tok;
PP.Lex(Tok);
} else if (Tok.is(tok::identifier)) {
SlotLabel = Tok.getIdentifierInfo()->getName();
PP.Lex(Tok);
if (Tok.is(tok::comma)) {
PP.Lex(Tok);
if (Tok.isNot(tok::numeric_constant)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_pack_malformed);
return;
}
Action = (Sema::PragmaMsStackAction)(Action | Sema::PSK_Set);
Alignment = Tok;
PP.Lex(Tok);
}
} else {
PP.Diag(Tok.getLocation(), diag::warn_pragma_pack_malformed);
return;
}
}
}
} else if (PP.getLangOpts().ApplePragmaPack ||
PP.getLangOpts().XLPragmaPack) {
// In MSVC/gcc, #pragma pack() resets the alignment without affecting
// the push/pop stack.
// In Apple gcc and IBM XL, #pragma pack() is equivalent to #pragma
// pack(pop).
Action = Sema::PSK_Pop;
}
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_rparen) << "pack";
return;
}
SourceLocation RParenLoc = Tok.getLocation();
PP.Lex(Tok);
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) << "pack";
return;
}
PragmaPackInfo *Info =
PP.getPreprocessorAllocator().Allocate<PragmaPackInfo>(1);
Info->Action = Action;
Info->SlotLabel = SlotLabel;
Info->Alignment = Alignment;
MutableArrayRef<Token> Toks(PP.getPreprocessorAllocator().Allocate<Token>(1),
1);
Toks[0].startToken();
Toks[0].setKind(tok::annot_pragma_pack);
Toks[0].setLocation(PackLoc);
Toks[0].setAnnotationEndLoc(RParenLoc);
Toks[0].setAnnotationValue(static_cast<void*>(Info));
PP.EnterTokenStream(Toks, /*DisableMacroExpansion=*/true,
/*IsReinject=*/false);
}
// #pragma ms_struct on
// #pragma ms_struct off
void PragmaMSStructHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &MSStructTok) {
PragmaMSStructKind Kind = PMSST_OFF;
Token Tok;
PP.Lex(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_ms_struct);
return;
}
SourceLocation EndLoc = Tok.getLocation();
const IdentifierInfo *II = Tok.getIdentifierInfo();
if (II->isStr("on")) {
Kind = PMSST_ON;
PP.Lex(Tok);
}
else if (II->isStr("off") || II->isStr("reset"))
PP.Lex(Tok);
else {
PP.Diag(Tok.getLocation(), diag::warn_pragma_ms_struct);
return;
}
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< "ms_struct";
return;
}
MutableArrayRef<Token> Toks(PP.getPreprocessorAllocator().Allocate<Token>(1),
1);
Toks[0].startToken();
Toks[0].setKind(tok::annot_pragma_msstruct);
Toks[0].setLocation(MSStructTok.getLocation());
Toks[0].setAnnotationEndLoc(EndLoc);
Toks[0].setAnnotationValue(reinterpret_cast<void*>(
static_cast<uintptr_t>(Kind)));
PP.EnterTokenStream(Toks, /*DisableMacroExpansion=*/true,
/*IsReinject=*/false);
}
// #pragma clang section bss="abc" data="" rodata="def" text="" relro=""
void PragmaClangSectionHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &FirstToken) {
Token Tok;
auto SecKind = Sema::PragmaClangSectionKind::PCSK_Invalid;
PP.Lex(Tok); // eat 'section'
while (Tok.isNot(tok::eod)) {
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_expected_clang_section_name) << "clang section";
return;
}
const IdentifierInfo *SecType = Tok.getIdentifierInfo();
if (SecType->isStr("bss"))
SecKind = Sema::PragmaClangSectionKind::PCSK_BSS;
else if (SecType->isStr("data"))
SecKind = Sema::PragmaClangSectionKind::PCSK_Data;
else if (SecType->isStr("rodata"))
SecKind = Sema::PragmaClangSectionKind::PCSK_Rodata;
else if (SecType->isStr("relro"))
SecKind = Sema::PragmaClangSectionKind::PCSK_Relro;
else if (SecType->isStr("text"))
SecKind = Sema::PragmaClangSectionKind::PCSK_Text;
else {
PP.Diag(Tok.getLocation(), diag::err_pragma_expected_clang_section_name) << "clang section";
return;
}
SourceLocation PragmaLocation = Tok.getLocation();
PP.Lex(Tok); // eat ['bss'|'data'|'rodata'|'text']
if (Tok.isNot(tok::equal)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_clang_section_expected_equal) << SecKind;
return;
}
std::string SecName;
if (!PP.LexStringLiteral(Tok, SecName, "pragma clang section", false))
return;
Actions.ActOnPragmaClangSection(
PragmaLocation,
(SecName.size() ? Sema::PragmaClangSectionAction::PCSA_Set
: Sema::PragmaClangSectionAction::PCSA_Clear),
SecKind, SecName);
}
}
// #pragma 'align' '=' {'native','natural','mac68k','power','reset'}
// #pragma 'options 'align' '=' {'native','natural','mac68k','power','reset'}
// #pragma 'align' '(' {'native','natural','mac68k','power','reset'} ')'
static void ParseAlignPragma(Preprocessor &PP, Token &FirstTok,
bool IsOptions) {
Token Tok;
if (IsOptions) {
PP.Lex(Tok);
if (Tok.isNot(tok::identifier) ||
!Tok.getIdentifierInfo()->isStr("align")) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_options_expected_align);
return;
}
}
PP.Lex(Tok);
if (PP.getLangOpts().XLPragmaPack) {
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_lparen) << "align";
return;
}
} else if (Tok.isNot(tok::equal)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_align_expected_equal)
<< IsOptions;
return;
}
PP.Lex(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier)
<< (IsOptions ? "options" : "align");
return;
}
Sema::PragmaOptionsAlignKind Kind = Sema::POAK_Natural;
const IdentifierInfo *II = Tok.getIdentifierInfo();
if (II->isStr("native"))
Kind = Sema::POAK_Native;
else if (II->isStr("natural"))
Kind = Sema::POAK_Natural;
else if (II->isStr("packed"))
Kind = Sema::POAK_Packed;
else if (II->isStr("power"))
Kind = Sema::POAK_Power;
else if (II->isStr("mac68k"))
Kind = Sema::POAK_Mac68k;
else if (II->isStr("reset"))
Kind = Sema::POAK_Reset;
else {
PP.Diag(Tok.getLocation(), diag::warn_pragma_align_invalid_option)
<< IsOptions;
return;
}
if (PP.getLangOpts().XLPragmaPack) {
PP.Lex(Tok);
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_rparen) << "align";
return;
}
}
SourceLocation EndLoc = Tok.getLocation();
PP.Lex(Tok);
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< (IsOptions ? "options" : "align");
return;
}
MutableArrayRef<Token> Toks(PP.getPreprocessorAllocator().Allocate<Token>(1),
1);
Toks[0].startToken();
Toks[0].setKind(tok::annot_pragma_align);
Toks[0].setLocation(FirstTok.getLocation());
Toks[0].setAnnotationEndLoc(EndLoc);
Toks[0].setAnnotationValue(reinterpret_cast<void*>(
static_cast<uintptr_t>(Kind)));
PP.EnterTokenStream(Toks, /*DisableMacroExpansion=*/true,
/*IsReinject=*/false);
}
void PragmaAlignHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &AlignTok) {
ParseAlignPragma(PP, AlignTok, /*IsOptions=*/false);
}
void PragmaOptionsHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &OptionsTok) {
ParseAlignPragma(PP, OptionsTok, /*IsOptions=*/true);
}
// #pragma unused(identifier)
void PragmaUnusedHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &UnusedTok) {
// FIXME: Should we be expanding macros here? My guess is no.
SourceLocation UnusedLoc = UnusedTok.getLocation();
// Lex the left '('.
Token Tok;
PP.Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_lparen) << "unused";
return;
}
// Lex the declaration reference(s).
SmallVector<Token, 5> Identifiers;
SourceLocation RParenLoc;
bool LexID = true;
while (true) {
PP.Lex(Tok);
if (LexID) {
if (Tok.is(tok::identifier)) {
Identifiers.push_back(Tok);
LexID = false;
continue;
}
// Illegal token!
PP.Diag(Tok.getLocation(), diag::warn_pragma_unused_expected_var);
return;
}
// We are execting a ')' or a ','.
if (Tok.is(tok::comma)) {
LexID = true;
continue;
}
if (Tok.is(tok::r_paren)) {
RParenLoc = Tok.getLocation();
break;
}
// Illegal token!
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_punc) << "unused";
return;
}
PP.Lex(Tok);
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) <<
"unused";
return;
}
// Verify that we have a location for the right parenthesis.
assert(RParenLoc.isValid() && "Valid '#pragma unused' must have ')'");
assert(!Identifiers.empty() && "Valid '#pragma unused' must have arguments");
// For each identifier token, insert into the token stream a
// annot_pragma_unused token followed by the identifier token.
// This allows us to cache a "#pragma unused" that occurs inside an inline
// C++ member function.
MutableArrayRef<Token> Toks(
PP.getPreprocessorAllocator().Allocate<Token>(2 * Identifiers.size()),
2 * Identifiers.size());
for (unsigned i=0; i != Identifiers.size(); i++) {
Token &pragmaUnusedTok = Toks[2*i], &idTok = Toks[2*i+1];
pragmaUnusedTok.startToken();
pragmaUnusedTok.setKind(tok::annot_pragma_unused);
pragmaUnusedTok.setLocation(UnusedLoc);
idTok = Identifiers[i];
}
PP.EnterTokenStream(Toks, /*DisableMacroExpansion=*/true,
/*IsReinject=*/false);
}
// #pragma weak identifier
// #pragma weak identifier '=' identifier
void PragmaWeakHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &WeakTok) {
SourceLocation WeakLoc = WeakTok.getLocation();
Token Tok;
PP.Lex(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier) << "weak";
return;
}
Token WeakName = Tok;
bool HasAlias = false;
Token AliasName;
PP.Lex(Tok);
if (Tok.is(tok::equal)) {
HasAlias = true;
PP.Lex(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier)
<< "weak";
return;
}
AliasName = Tok;
PP.Lex(Tok);
}
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) << "weak";
return;
}
if (HasAlias) {
MutableArrayRef<Token> Toks(
PP.getPreprocessorAllocator().Allocate<Token>(3), 3);
Token &pragmaUnusedTok = Toks[0];
pragmaUnusedTok.startToken();
pragmaUnusedTok.setKind(tok::annot_pragma_weakalias);
pragmaUnusedTok.setLocation(WeakLoc);
pragmaUnusedTok.setAnnotationEndLoc(AliasName.getLocation());
Toks[1] = WeakName;
Toks[2] = AliasName;
PP.EnterTokenStream(Toks, /*DisableMacroExpansion=*/true,
/*IsReinject=*/false);
} else {
MutableArrayRef<Token> Toks(
PP.getPreprocessorAllocator().Allocate<Token>(2), 2);
Token &pragmaUnusedTok = Toks[0];
pragmaUnusedTok.startToken();
pragmaUnusedTok.setKind(tok::annot_pragma_weak);
pragmaUnusedTok.setLocation(WeakLoc);
pragmaUnusedTok.setAnnotationEndLoc(WeakLoc);
Toks[1] = WeakName;
PP.EnterTokenStream(Toks, /*DisableMacroExpansion=*/true,
/*IsReinject=*/false);
}
}
// #pragma redefine_extname identifier identifier
void PragmaRedefineExtnameHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &RedefToken) {
SourceLocation RedefLoc = RedefToken.getLocation();
Token Tok;
PP.Lex(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier) <<
"redefine_extname";
return;
}
Token RedefName = Tok;
PP.Lex(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier)
<< "redefine_extname";
return;
}
Token AliasName = Tok;
PP.Lex(Tok);
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) <<
"redefine_extname";
return;
}
MutableArrayRef<Token> Toks(PP.getPreprocessorAllocator().Allocate<Token>(3),
3);
Token &pragmaRedefTok = Toks[0];
pragmaRedefTok.startToken();
pragmaRedefTok.setKind(tok::annot_pragma_redefine_extname);
pragmaRedefTok.setLocation(RedefLoc);
pragmaRedefTok.setAnnotationEndLoc(AliasName.getLocation());
Toks[1] = RedefName;
Toks[2] = AliasName;
PP.EnterTokenStream(Toks, /*DisableMacroExpansion=*/true,
/*IsReinject=*/false);
}
void PragmaFPContractHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &Tok) {
tok::OnOffSwitch OOS;
if (PP.LexOnOffSwitch(OOS))
return;
MutableArrayRef<Token> Toks(PP.getPreprocessorAllocator().Allocate<Token>(1),
1);
Toks[0].startToken();
Toks[0].setKind(tok::annot_pragma_fp_contract);
Toks[0].setLocation(Tok.getLocation());
Toks[0].setAnnotationEndLoc(Tok.getLocation());
Toks[0].setAnnotationValue(reinterpret_cast<void*>(
static_cast<uintptr_t>(OOS)));
PP.EnterTokenStream(Toks, /*DisableMacroExpansion=*/true,
/*IsReinject=*/false);
}
void PragmaOpenCLExtensionHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &Tok) {
PP.LexUnexpandedToken(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier) <<
"OPENCL";
return;
}
IdentifierInfo *Ext = Tok.getIdentifierInfo();
SourceLocation NameLoc = Tok.getLocation();
PP.Lex(Tok);
if (Tok.isNot(tok::colon)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_colon) << Ext;
return;
}
PP.Lex(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_predicate) << 0;
return;
}
IdentifierInfo *Pred = Tok.getIdentifierInfo();
OpenCLExtState State;
if (Pred->isStr("enable")) {
State = Enable;
} else if (Pred->isStr("disable")) {
State = Disable;
} else if (Pred->isStr("begin"))
State = Begin;
else if (Pred->isStr("end"))
State = End;
else {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_predicate)
<< Ext->isStr("all");
return;
}
SourceLocation StateLoc = Tok.getLocation();
PP.Lex(Tok);
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol) <<
"OPENCL EXTENSION";
return;
}
auto Info = PP.getPreprocessorAllocator().Allocate<OpenCLExtData>(1);
Info->first = Ext;
Info->second = State;
MutableArrayRef<Token> Toks(PP.getPreprocessorAllocator().Allocate<Token>(1),
1);
Toks[0].startToken();
Toks[0].setKind(tok::annot_pragma_opencl_extension);
Toks[0].setLocation(NameLoc);
Toks[0].setAnnotationValue(static_cast<void*>(Info));
Toks[0].setAnnotationEndLoc(StateLoc);
PP.EnterTokenStream(Toks, /*DisableMacroExpansion=*/true,
/*IsReinject=*/false);
if (PP.getPPCallbacks())
PP.getPPCallbacks()->PragmaOpenCLExtension(NameLoc, Ext,
StateLoc, State);
}
/// Handle '#pragma omp ...' when OpenMP is disabled.
///
void PragmaNoOpenMPHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &FirstTok) {
if (!PP.getDiagnostics().isIgnored(diag::warn_pragma_omp_ignored,
FirstTok.getLocation())) {
PP.Diag(FirstTok, diag::warn_pragma_omp_ignored);
PP.getDiagnostics().setSeverity(diag::warn_pragma_omp_ignored,
diag::Severity::Ignored, SourceLocation());
}
PP.DiscardUntilEndOfDirective();
}
/// Handle '#pragma omp ...' when OpenMP is enabled.
///
void PragmaOpenMPHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &FirstTok) {
SmallVector<Token, 16> Pragma;
Token Tok;
Tok.startToken();
Tok.setKind(tok::annot_pragma_openmp);
Tok.setLocation(Introducer.Loc);
while (Tok.isNot(tok::eod) && Tok.isNot(tok::eof)) {
Pragma.push_back(Tok);
PP.Lex(Tok);
if (Tok.is(tok::annot_pragma_openmp)) {
PP.Diag(Tok, diag::err_omp_unexpected_directive) << 0;
unsigned InnerPragmaCnt = 1;
while (InnerPragmaCnt != 0) {
PP.Lex(Tok);
if (Tok.is(tok::annot_pragma_openmp))
++InnerPragmaCnt;
else if (Tok.is(tok::annot_pragma_openmp_end))
--InnerPragmaCnt;
}
PP.Lex(Tok);
}
}
SourceLocation EodLoc = Tok.getLocation();
Tok.startToken();
Tok.setKind(tok::annot_pragma_openmp_end);
Tok.setLocation(EodLoc);
Pragma.push_back(Tok);
auto Toks = std::make_unique<Token[]>(Pragma.size());
std::copy(Pragma.begin(), Pragma.end(), Toks.get());
PP.EnterTokenStream(std::move(Toks), Pragma.size(),
/*DisableMacroExpansion=*/false, /*IsReinject=*/false);
}
/// Handle '#pragma pointers_to_members'
// The grammar for this pragma is as follows:
//
// <inheritance model> ::= ('single' | 'multiple' | 'virtual') '_inheritance'
//
// #pragma pointers_to_members '(' 'best_case' ')'
// #pragma pointers_to_members '(' 'full_generality' [',' inheritance-model] ')'
// #pragma pointers_to_members '(' inheritance-model ')'
void PragmaMSPointersToMembers::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &Tok) {
SourceLocation PointersToMembersLoc = Tok.getLocation();
PP.Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(PointersToMembersLoc, diag::warn_pragma_expected_lparen)
<< "pointers_to_members";
return;
}
PP.Lex(Tok);
const IdentifierInfo *Arg = Tok.getIdentifierInfo();
if (!Arg) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier)
<< "pointers_to_members";
return;
}
PP.Lex(Tok);
LangOptions::PragmaMSPointersToMembersKind RepresentationMethod;
if (Arg->isStr("best_case")) {
RepresentationMethod = LangOptions::PPTMK_BestCase;
} else {
if (Arg->isStr("full_generality")) {
if (Tok.is(tok::comma)) {
PP.Lex(Tok);
Arg = Tok.getIdentifierInfo();
if (!Arg) {
PP.Diag(Tok.getLocation(),
diag::err_pragma_pointers_to_members_unknown_kind)
<< Tok.getKind() << /*OnlyInheritanceModels*/ 0;
return;
}
PP.Lex(Tok);
} else if (Tok.is(tok::r_paren)) {
// #pragma pointers_to_members(full_generality) implicitly specifies
// virtual_inheritance.
Arg = nullptr;
RepresentationMethod = LangOptions::PPTMK_FullGeneralityVirtualInheritance;
} else {
PP.Diag(Tok.getLocation(), diag::err_expected_punc)
<< "full_generality";
return;
}
}
if (Arg) {
if (Arg->isStr("single_inheritance")) {
RepresentationMethod =
LangOptions::PPTMK_FullGeneralitySingleInheritance;
} else if (Arg->isStr("multiple_inheritance")) {
RepresentationMethod =
LangOptions::PPTMK_FullGeneralityMultipleInheritance;
} else if (Arg->isStr("virtual_inheritance")) {
RepresentationMethod =
LangOptions::PPTMK_FullGeneralityVirtualInheritance;
} else {
PP.Diag(Tok.getLocation(),
diag::err_pragma_pointers_to_members_unknown_kind)
<< Arg << /*HasPointerDeclaration*/ 1;
return;
}
}
}
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::err_expected_rparen_after)
<< (Arg ? Arg->getName() : "full_generality");
return;
}
SourceLocation EndLoc = Tok.getLocation();
PP.Lex(Tok);
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< "pointers_to_members";
return;
}
Token AnnotTok;
AnnotTok.startToken();
AnnotTok.setKind(tok::annot_pragma_ms_pointers_to_members);
AnnotTok.setLocation(PointersToMembersLoc);
AnnotTok.setAnnotationEndLoc(EndLoc);
AnnotTok.setAnnotationValue(
reinterpret_cast<void *>(static_cast<uintptr_t>(RepresentationMethod)));
PP.EnterToken(AnnotTok, /*IsReinject=*/true);
}
/// Handle '#pragma vtordisp'
// The grammar for this pragma is as follows:
//
// <vtordisp-mode> ::= ('off' | 'on' | '0' | '1' | '2' )
//
// #pragma vtordisp '(' ['push' ','] vtordisp-mode ')'
// #pragma vtordisp '(' 'pop' ')'
// #pragma vtordisp '(' ')'
void PragmaMSVtorDisp::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer, Token &Tok) {
SourceLocation VtorDispLoc = Tok.getLocation();
PP.Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(VtorDispLoc, diag::warn_pragma_expected_lparen) << "vtordisp";
return;
}
PP.Lex(Tok);
Sema::PragmaMsStackAction Action = Sema::PSK_Set;
const IdentifierInfo *II = Tok.getIdentifierInfo();
if (II) {
if (II->isStr("push")) {
// #pragma vtordisp(push, mode)
PP.Lex(Tok);
if (Tok.isNot(tok::comma)) {
PP.Diag(VtorDispLoc, diag::warn_pragma_expected_punc) << "vtordisp";
return;
}
PP.Lex(Tok);
Action = Sema::PSK_Push_Set;
// not push, could be on/off
} else if (II->isStr("pop")) {
// #pragma vtordisp(pop)
PP.Lex(Tok);
Action = Sema::PSK_Pop;
}
// not push or pop, could be on/off
} else {
if (Tok.is(tok::r_paren)) {
// #pragma vtordisp()
Action = Sema::PSK_Reset;
}
}
uint64_t Value = 0;
if (Action & Sema::PSK_Push || Action & Sema::PSK_Set) {
const IdentifierInfo *II = Tok.getIdentifierInfo();
if (II && II->isStr("off")) {
PP.Lex(Tok);
Value = 0;
} else if (II && II->isStr("on")) {
PP.Lex(Tok);
Value = 1;
} else if (Tok.is(tok::numeric_constant) &&
PP.parseSimpleIntegerLiteral(Tok, Value)) {
if (Value > 2) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_integer)
<< 0 << 2 << "vtordisp";
return;
}
} else {
PP.Diag(Tok.getLocation(), diag::warn_pragma_invalid_action)
<< "vtordisp";
return;
}
}
// Finish the pragma: ')' $
if (Tok.isNot(tok::r_paren)) {
PP.Diag(VtorDispLoc, diag::warn_pragma_expected_rparen) << "vtordisp";
return;
}
SourceLocation EndLoc = Tok.getLocation();
PP.Lex(Tok);
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< "vtordisp";
return;
}
// Enter the annotation.
Token AnnotTok;
AnnotTok.startToken();
AnnotTok.setKind(tok::annot_pragma_ms_vtordisp);
AnnotTok.setLocation(VtorDispLoc);
AnnotTok.setAnnotationEndLoc(EndLoc);
AnnotTok.setAnnotationValue(reinterpret_cast<void *>(
static_cast<uintptr_t>((Action << 16) | (Value & 0xFFFF))));
PP.EnterToken(AnnotTok, /*IsReinject=*/false);
}
/// Handle all MS pragmas. Simply forwards the tokens after inserting
/// an annotation token.
void PragmaMSPragma::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer, Token &Tok) {
Token EoF, AnnotTok;
EoF.startToken();
EoF.setKind(tok::eof);
AnnotTok.startToken();
AnnotTok.setKind(tok::annot_pragma_ms_pragma);
AnnotTok.setLocation(Tok.getLocation());
AnnotTok.setAnnotationEndLoc(Tok.getLocation());
SmallVector<Token, 8> TokenVector;
// Suck up all of the tokens before the eod.
for (; Tok.isNot(tok::eod); PP.Lex(Tok)) {
TokenVector.push_back(Tok);
AnnotTok.setAnnotationEndLoc(Tok.getLocation());
}
// Add a sentinel EoF token to the end of the list.
TokenVector.push_back(EoF);
// We must allocate this array with new because EnterTokenStream is going to
// delete it later.
markAsReinjectedForRelexing(TokenVector);
auto TokenArray = std::make_unique<Token[]>(TokenVector.size());
std::copy(TokenVector.begin(), TokenVector.end(), TokenArray.get());
auto Value = new (PP.getPreprocessorAllocator())
std::pair<std::unique_ptr<Token[]>, size_t>(std::move(TokenArray),
TokenVector.size());
AnnotTok.setAnnotationValue(Value);
PP.EnterToken(AnnotTok, /*IsReinject*/ false);
}
/// Handle the \#pragma float_control extension.
///
/// The syntax is:
/// \code
/// #pragma float_control(keyword[, setting] [,push])
/// \endcode
/// Where 'keyword' and 'setting' are identifiers.
// 'keyword' can be: precise, except, push, pop
// 'setting' can be: on, off
/// The optional arguments 'setting' and 'push' are supported only
/// when the keyword is 'precise' or 'except'.
void PragmaFloatControlHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &Tok) {
Sema::PragmaMsStackAction Action = Sema::PSK_Set;
SourceLocation FloatControlLoc = Tok.getLocation();
Token PragmaName = Tok;
if (!PP.getTargetInfo().hasStrictFP() && !PP.getLangOpts().ExpStrictFP) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_fp_ignored)
<< PragmaName.getIdentifierInfo()->getName();
return;
}
PP.Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(FloatControlLoc, diag::err_expected) << tok::l_paren;
return;
}
// Read the identifier.
PP.Lex(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_float_control_malformed);
return;
}
// Verify that this is one of the float control options.
IdentifierInfo *II = Tok.getIdentifierInfo();
PragmaFloatControlKind Kind =
llvm::StringSwitch<PragmaFloatControlKind>(II->getName())
.Case("precise", PFC_Precise)
.Case("except", PFC_Except)
.Case("push", PFC_Push)
.Case("pop", PFC_Pop)
.Default(PFC_Unknown);
PP.Lex(Tok); // the identifier
if (Kind == PFC_Unknown) {
PP.Diag(Tok.getLocation(), diag::err_pragma_float_control_malformed);
return;
} else if (Kind == PFC_Push || Kind == PFC_Pop) {
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_float_control_malformed);
return;
}
PP.Lex(Tok); // Eat the r_paren
Action = (Kind == PFC_Pop) ? Sema::PSK_Pop : Sema::PSK_Push;
} else {
if (Tok.is(tok::r_paren))
// Selecting Precise or Except
PP.Lex(Tok); // the r_paren
else if (Tok.isNot(tok::comma)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_float_control_malformed);
return;
} else {
PP.Lex(Tok); // ,
if (!Tok.isAnyIdentifier()) {
PP.Diag(Tok.getLocation(), diag::err_pragma_float_control_malformed);
return;
}
StringRef PushOnOff = Tok.getIdentifierInfo()->getName();
if (PushOnOff == "on")
// Kind is set correctly
;
else if (PushOnOff == "off") {
if (Kind == PFC_Precise)
Kind = PFC_NoPrecise;
if (Kind == PFC_Except)
Kind = PFC_NoExcept;
} else if (PushOnOff == "push") {
Action = Sema::PSK_Push_Set;
} else {
PP.Diag(Tok.getLocation(), diag::err_pragma_float_control_malformed);
return;
}
PP.Lex(Tok); // the identifier
if (Tok.is(tok::comma)) {
PP.Lex(Tok); // ,
if (!Tok.isAnyIdentifier()) {
PP.Diag(Tok.getLocation(), diag::err_pragma_float_control_malformed);
return;
}
StringRef ExpectedPush = Tok.getIdentifierInfo()->getName();
if (ExpectedPush == "push") {
Action = Sema::PSK_Push_Set;
} else {
PP.Diag(Tok.getLocation(), diag::err_pragma_float_control_malformed);
return;
}
PP.Lex(Tok); // the push identifier
}
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_float_control_malformed);
return;
}
PP.Lex(Tok); // the r_paren
}
}
SourceLocation EndLoc = Tok.getLocation();
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< "float_control";
return;
}
// Note: there is no accomodation for PP callback for this pragma.
// Enter the annotation.
auto TokenArray = std::make_unique<Token[]>(1);
TokenArray[0].startToken();
TokenArray[0].setKind(tok::annot_pragma_float_control);
TokenArray[0].setLocation(FloatControlLoc);
TokenArray[0].setAnnotationEndLoc(EndLoc);
// Create an encoding of Action and Value by shifting the Action into
// the high 16 bits then union with the Kind.
TokenArray[0].setAnnotationValue(reinterpret_cast<void *>(
static_cast<uintptr_t>((Action << 16) | (Kind & 0xFFFF))));
PP.EnterTokenStream(std::move(TokenArray), 1,
/*DisableMacroExpansion=*/false, /*IsReinject=*/false);
}
/// Handle the Microsoft \#pragma detect_mismatch extension.
///
/// The syntax is:
/// \code
/// #pragma detect_mismatch("name", "value")
/// \endcode
/// Where 'name' and 'value' are quoted strings. The values are embedded in
/// the object file and passed along to the linker. If the linker detects a
/// mismatch in the object file's values for the given name, a LNK2038 error
/// is emitted. See MSDN for more details.
void PragmaDetectMismatchHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &Tok) {
SourceLocation DetectMismatchLoc = Tok.getLocation();
PP.Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(DetectMismatchLoc, diag::err_expected) << tok::l_paren;
return;
}
// Read the name to embed, which must be a string literal.
std::string NameString;
if (!PP.LexStringLiteral(Tok, NameString,
"pragma detect_mismatch",
/*AllowMacroExpansion=*/true))
return;
// Read the comma followed by a second string literal.
std::string ValueString;
if (Tok.isNot(tok::comma)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_detect_mismatch_malformed);
return;
}
if (!PP.LexStringLiteral(Tok, ValueString, "pragma detect_mismatch",
/*AllowMacroExpansion=*/true))
return;
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::err_expected) << tok::r_paren;
return;
}
PP.Lex(Tok); // Eat the r_paren.
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_detect_mismatch_malformed);
return;
}
// If the pragma is lexically sound, notify any interested PPCallbacks.
if (PP.getPPCallbacks())
PP.getPPCallbacks()->PragmaDetectMismatch(DetectMismatchLoc, NameString,
ValueString);
Actions.ActOnPragmaDetectMismatch(DetectMismatchLoc, NameString, ValueString);
}
/// Handle the microsoft \#pragma comment extension.
///
/// The syntax is:
/// \code
/// #pragma comment(linker, "foo")
/// \endcode
/// 'linker' is one of five identifiers: compiler, exestr, lib, linker, user.
/// "foo" is a string, which is fully macro expanded, and permits string
/// concatenation, embedded escape characters etc. See MSDN for more details.
void PragmaCommentHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &Tok) {
SourceLocation CommentLoc = Tok.getLocation();
PP.Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(CommentLoc, diag::err_pragma_comment_malformed);
return;
}
// Read the identifier.
PP.Lex(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(CommentLoc, diag::err_pragma_comment_malformed);
return;
}
// Verify that this is one of the 5 explicitly listed options.
IdentifierInfo *II = Tok.getIdentifierInfo();
PragmaMSCommentKind Kind =
llvm::StringSwitch<PragmaMSCommentKind>(II->getName())
.Case("linker", PCK_Linker)
.Case("lib", PCK_Lib)
.Case("compiler", PCK_Compiler)
.Case("exestr", PCK_ExeStr)
.Case("user", PCK_User)
.Default(PCK_Unknown);
if (Kind == PCK_Unknown) {
PP.Diag(Tok.getLocation(), diag::err_pragma_comment_unknown_kind);
return;
}
if (PP.getTargetInfo().getTriple().isOSBinFormatELF() && Kind != PCK_Lib) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_comment_ignored)
<< II->getName();
return;
}
// On PS4, issue a warning about any pragma comments other than
// #pragma comment lib.
if (PP.getTargetInfo().getTriple().isPS4() && Kind != PCK_Lib) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_comment_ignored)
<< II->getName();
return;
}
// Read the optional string if present.
PP.Lex(Tok);
std::string ArgumentString;
if (Tok.is(tok::comma) && !PP.LexStringLiteral(Tok, ArgumentString,
"pragma comment",
/*AllowMacroExpansion=*/true))
return;
// FIXME: warn that 'exestr' is deprecated.
// FIXME: If the kind is "compiler" warn if the string is present (it is
// ignored).
// The MSDN docs say that "lib" and "linker" require a string and have a short
// list of linker options they support, but in practice MSVC doesn't
// issue a diagnostic. Therefore neither does clang.
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_comment_malformed);
return;
}
PP.Lex(Tok); // eat the r_paren.
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_comment_malformed);
return;
}
// If the pragma is lexically sound, notify any interested PPCallbacks.
if (PP.getPPCallbacks())
PP.getPPCallbacks()->PragmaComment(CommentLoc, II, ArgumentString);
Actions.ActOnPragmaMSComment(CommentLoc, Kind, ArgumentString);
}
// #pragma clang optimize off
// #pragma clang optimize on
void PragmaOptimizeHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &FirstToken) {
Token Tok;
PP.Lex(Tok);
if (Tok.is(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_missing_argument)
<< "clang optimize" << /*Expected=*/true << "'on' or 'off'";
return;
}
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_optimize_invalid_argument)
<< PP.getSpelling(Tok);
return;
}
const IdentifierInfo *II = Tok.getIdentifierInfo();
// The only accepted values are 'on' or 'off'.
bool IsOn = false;
if (II->isStr("on")) {
IsOn = true;
} else if (!II->isStr("off")) {
PP.Diag(Tok.getLocation(), diag::err_pragma_optimize_invalid_argument)
<< PP.getSpelling(Tok);
return;
}
PP.Lex(Tok);
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_optimize_extra_argument)
<< PP.getSpelling(Tok);
return;
}
Actions.ActOnPragmaOptimize(IsOn, FirstToken.getLocation());
}
namespace {
/// Used as the annotation value for tok::annot_pragma_fp.
struct TokFPAnnotValue {
enum FlagKinds { Contract, Reassociate, Exceptions };
enum FlagValues { On, Off, Fast };
llvm::Optional<LangOptions::FPModeKind> ContractValue;
llvm::Optional<LangOptions::FPModeKind> ReassociateValue;
llvm::Optional<LangOptions::FPExceptionModeKind> ExceptionsValue;
};
} // end anonymous namespace
void PragmaFPHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer, Token &Tok) {
// fp
Token PragmaName = Tok;
SmallVector<Token, 1> TokenList;
PP.Lex(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_fp_invalid_option)
<< /*MissingOption=*/true << "";
return;
}
auto *AnnotValue = new (PP.getPreprocessorAllocator()) TokFPAnnotValue;
while (Tok.is(tok::identifier)) {
IdentifierInfo *OptionInfo = Tok.getIdentifierInfo();
auto FlagKind =
llvm::StringSwitch<llvm::Optional<TokFPAnnotValue::FlagKinds>>(
OptionInfo->getName())
.Case("contract", TokFPAnnotValue::Contract)
.Case("reassociate", TokFPAnnotValue::Reassociate)
.Case("exceptions", TokFPAnnotValue::Exceptions)
.Default(None);
if (!FlagKind) {
PP.Diag(Tok.getLocation(), diag::err_pragma_fp_invalid_option)
<< /*MissingOption=*/false << OptionInfo;
return;
}
PP.Lex(Tok);
// Read '('
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok.getLocation(), diag::err_expected) << tok::l_paren;
return;
}
PP.Lex(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_fp_invalid_argument)
<< PP.getSpelling(Tok) << OptionInfo->getName()
<< static_cast<int>(*FlagKind);
return;
}
const IdentifierInfo *II = Tok.getIdentifierInfo();
if (FlagKind == TokFPAnnotValue::Contract) {
AnnotValue->ContractValue =
llvm::StringSwitch<llvm::Optional<LangOptions::FPModeKind>>(
II->getName())
.Case("on", LangOptions::FPModeKind::FPM_On)
.Case("off", LangOptions::FPModeKind::FPM_Off)
.Case("fast", LangOptions::FPModeKind::FPM_Fast)
.Default(llvm::None);
if (!AnnotValue->ContractValue) {
PP.Diag(Tok.getLocation(), diag::err_pragma_fp_invalid_argument)
<< PP.getSpelling(Tok) << OptionInfo->getName() << *FlagKind;
return;
}
} else if (FlagKind == TokFPAnnotValue::Reassociate) {
AnnotValue->ReassociateValue =
llvm::StringSwitch<llvm::Optional<LangOptions::FPModeKind>>(
II->getName())
.Case("on", LangOptions::FPModeKind::FPM_On)
.Case("off", LangOptions::FPModeKind::FPM_Off)
.Default(llvm::None);
if (!AnnotValue->ReassociateValue) {
PP.Diag(Tok.getLocation(), diag::err_pragma_fp_invalid_argument)
<< PP.getSpelling(Tok) << OptionInfo->getName() << *FlagKind;
return;
}
} else if (FlagKind == TokFPAnnotValue::Exceptions) {
AnnotValue->ExceptionsValue =
llvm::StringSwitch<llvm::Optional<LangOptions::FPExceptionModeKind>>(
II->getName())
.Case("ignore", LangOptions::FPE_Ignore)
.Case("maytrap", LangOptions::FPE_MayTrap)
.Case("strict", LangOptions::FPE_Strict)
.Default(llvm::None);
if (!AnnotValue->ExceptionsValue) {
PP.Diag(Tok.getLocation(), diag::err_pragma_fp_invalid_argument)
<< PP.getSpelling(Tok) << OptionInfo->getName() << *FlagKind;
return;
}
}
PP.Lex(Tok);
// Read ')'
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::err_expected) << tok::r_paren;
return;
}
PP.Lex(Tok);
}
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< "clang fp";
return;
}
Token FPTok;
FPTok.startToken();
FPTok.setKind(tok::annot_pragma_fp);
FPTok.setLocation(PragmaName.getLocation());
FPTok.setAnnotationEndLoc(PragmaName.getLocation());
FPTok.setAnnotationValue(reinterpret_cast<void *>(AnnotValue));
TokenList.push_back(FPTok);
auto TokenArray = std::make_unique<Token[]>(TokenList.size());
std::copy(TokenList.begin(), TokenList.end(), TokenArray.get());
PP.EnterTokenStream(std::move(TokenArray), TokenList.size(),
/*DisableMacroExpansion=*/false, /*IsReinject=*/false);
}
void PragmaSTDC_FENV_ROUNDHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &Tok) {
Token PragmaName = Tok;
SmallVector<Token, 1> TokenList;
if (!PP.getTargetInfo().hasStrictFP() && !PP.getLangOpts().ExpStrictFP) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_fp_ignored)
<< PragmaName.getIdentifierInfo()->getName();
return;
}
PP.Lex(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_identifier)
<< PragmaName.getIdentifierInfo()->getName();
return;
}
IdentifierInfo *II = Tok.getIdentifierInfo();
auto RM =
llvm::StringSwitch<llvm::RoundingMode>(II->getName())
.Case("FE_TOWARDZERO", llvm::RoundingMode::TowardZero)
.Case("FE_TONEAREST", llvm::RoundingMode::NearestTiesToEven)
.Case("FE_UPWARD", llvm::RoundingMode::TowardPositive)
.Case("FE_DOWNWARD", llvm::RoundingMode::TowardNegative)
.Case("FE_TONEARESTFROMZERO", llvm::RoundingMode::NearestTiesToAway)
.Case("FE_DYNAMIC", llvm::RoundingMode::Dynamic)
.Default(llvm::RoundingMode::Invalid);
if (RM == llvm::RoundingMode::Invalid) {
PP.Diag(Tok.getLocation(), diag::warn_stdc_unknown_rounding_mode);
return;
}
PP.Lex(Tok);
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< "STDC FENV_ROUND";
return;
}
// Until the pragma is fully implemented, issue a warning.
PP.Diag(Tok.getLocation(), diag::warn_stdc_fenv_round_not_supported);
MutableArrayRef<Token> Toks(PP.getPreprocessorAllocator().Allocate<Token>(1),
1);
Toks[0].startToken();
Toks[0].setKind(tok::annot_pragma_fenv_round);
Toks[0].setLocation(Tok.getLocation());
Toks[0].setAnnotationEndLoc(Tok.getLocation());
Toks[0].setAnnotationValue(
reinterpret_cast<void *>(static_cast<uintptr_t>(RM)));
PP.EnterTokenStream(Toks, /*DisableMacroExpansion=*/true,
/*IsReinject=*/false);
}
void Parser::HandlePragmaFP() {
assert(Tok.is(tok::annot_pragma_fp));
auto *AnnotValue =
reinterpret_cast<TokFPAnnotValue *>(Tok.getAnnotationValue());
if (AnnotValue->ReassociateValue)
Actions.ActOnPragmaFPReassociate(Tok.getLocation(),
*AnnotValue->ReassociateValue ==
LangOptions::FPModeKind::FPM_On);
if (AnnotValue->ContractValue)
Actions.ActOnPragmaFPContract(Tok.getLocation(),
*AnnotValue->ContractValue);
if (AnnotValue->ExceptionsValue)
Actions.ActOnPragmaFPExceptions(Tok.getLocation(),
*AnnotValue->ExceptionsValue);
ConsumeAnnotationToken();
}
/// Parses loop or unroll pragma hint value and fills in Info.
static bool ParseLoopHintValue(Preprocessor &PP, Token &Tok, Token PragmaName,
Token Option, bool ValueInParens,
PragmaLoopHintInfo &Info) {
SmallVector<Token, 1> ValueList;
int OpenParens = ValueInParens ? 1 : 0;
// Read constant expression.
while (Tok.isNot(tok::eod)) {
if (Tok.is(tok::l_paren))
OpenParens++;
else if (Tok.is(tok::r_paren)) {
OpenParens--;
if (OpenParens == 0 && ValueInParens)
break;
}
ValueList.push_back(Tok);
PP.Lex(Tok);
}
if (ValueInParens) {
// Read ')'
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::err_expected) << tok::r_paren;
return true;
}
PP.Lex(Tok);
}
Token EOFTok;
EOFTok.startToken();
EOFTok.setKind(tok::eof);
EOFTok.setLocation(Tok.getLocation());
ValueList.push_back(EOFTok); // Terminates expression for parsing.
markAsReinjectedForRelexing(ValueList);
Info.Toks = llvm::makeArrayRef(ValueList).copy(PP.getPreprocessorAllocator());
Info.PragmaName = PragmaName;
Info.Option = Option;
return false;
}
/// Handle the \#pragma clang loop directive.
/// #pragma clang 'loop' loop-hints
///
/// loop-hints:
/// loop-hint loop-hints[opt]
///
/// loop-hint:
/// 'vectorize' '(' loop-hint-keyword ')'
/// 'interleave' '(' loop-hint-keyword ')'
/// 'unroll' '(' unroll-hint-keyword ')'
/// 'vectorize_predicate' '(' loop-hint-keyword ')'
/// 'vectorize_width' '(' loop-hint-value ')'
/// 'interleave_count' '(' loop-hint-value ')'
/// 'unroll_count' '(' loop-hint-value ')'
/// 'pipeline' '(' disable ')'
/// 'pipeline_initiation_interval' '(' loop-hint-value ')'
///
/// loop-hint-keyword:
/// 'enable'
/// 'disable'
/// 'assume_safety'
///
/// unroll-hint-keyword:
/// 'enable'
/// 'disable'
/// 'full'
///
/// loop-hint-value:
/// constant-expression
///
/// Specifying vectorize(enable) or vectorize_width(_value_) instructs llvm to
/// try vectorizing the instructions of the loop it precedes. Specifying
/// interleave(enable) or interleave_count(_value_) instructs llvm to try
/// interleaving multiple iterations of the loop it precedes. The width of the
/// vector instructions is specified by vectorize_width() and the number of
/// interleaved loop iterations is specified by interleave_count(). Specifying a
/// value of 1 effectively disables vectorization/interleaving, even if it is
/// possible and profitable, and 0 is invalid. The loop vectorizer currently
/// only works on inner loops.
///
/// The unroll and unroll_count directives control the concatenation
/// unroller. Specifying unroll(enable) instructs llvm to unroll the loop
/// completely if the trip count is known at compile time and unroll partially
/// if the trip count is not known. Specifying unroll(full) is similar to
/// unroll(enable) but will unroll the loop only if the trip count is known at
/// compile time. Specifying unroll(disable) disables unrolling for the
/// loop. Specifying unroll_count(_value_) instructs llvm to try to unroll the
/// loop the number of times indicated by the value.
void PragmaLoopHintHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &Tok) {
// Incoming token is "loop" from "#pragma clang loop".
Token PragmaName = Tok;
SmallVector<Token, 1> TokenList;
// Lex the optimization option and verify it is an identifier.
PP.Lex(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_loop_invalid_option)
<< /*MissingOption=*/true << "";
return;
}
while (Tok.is(tok::identifier)) {
Token Option = Tok;
IdentifierInfo *OptionInfo = Tok.getIdentifierInfo();
bool OptionValid = llvm::StringSwitch<bool>(OptionInfo->getName())
.Case("vectorize", true)
.Case("interleave", true)
.Case("unroll", true)
.Case("distribute", true)
.Case("vectorize_predicate", true)
.Case("vectorize_width", true)
.Case("interleave_count", true)
.Case("unroll_count", true)
.Case("pipeline", true)
.Case("pipeline_initiation_interval", true)
.Default(false);
if (!OptionValid) {
PP.Diag(Tok.getLocation(), diag::err_pragma_loop_invalid_option)
<< /*MissingOption=*/false << OptionInfo;
return;
}
PP.Lex(Tok);
// Read '('
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok.getLocation(), diag::err_expected) << tok::l_paren;
return;
}
PP.Lex(Tok);
auto *Info = new (PP.getPreprocessorAllocator()) PragmaLoopHintInfo;
if (ParseLoopHintValue(PP, Tok, PragmaName, Option, /*ValueInParens=*/true,
*Info))
return;
// Generate the loop hint token.
Token LoopHintTok;
LoopHintTok.startToken();
LoopHintTok.setKind(tok::annot_pragma_loop_hint);
LoopHintTok.setLocation(Introducer.Loc);
LoopHintTok.setAnnotationEndLoc(PragmaName.getLocation());
LoopHintTok.setAnnotationValue(static_cast<void *>(Info));
TokenList.push_back(LoopHintTok);
}
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< "clang loop";
return;
}
auto TokenArray = std::make_unique<Token[]>(TokenList.size());
std::copy(TokenList.begin(), TokenList.end(), TokenArray.get());
PP.EnterTokenStream(std::move(TokenArray), TokenList.size(),
/*DisableMacroExpansion=*/false, /*IsReinject=*/false);
}
/// Handle the loop unroll optimization pragmas.
/// #pragma unroll
/// #pragma unroll unroll-hint-value
/// #pragma unroll '(' unroll-hint-value ')'
/// #pragma nounroll
/// #pragma unroll_and_jam
/// #pragma unroll_and_jam unroll-hint-value
/// #pragma unroll_and_jam '(' unroll-hint-value ')'
/// #pragma nounroll_and_jam
///
/// unroll-hint-value:
/// constant-expression
///
/// Loop unrolling hints can be specified with '#pragma unroll' or
/// '#pragma nounroll'. '#pragma unroll' can take a numeric argument optionally
/// contained in parentheses. With no argument the directive instructs llvm to
/// try to unroll the loop completely. A positive integer argument can be
/// specified to indicate the number of times the loop should be unrolled. To
/// maximize compatibility with other compilers the unroll count argument can be
/// specified with or without parentheses. Specifying, '#pragma nounroll'
/// disables unrolling of the loop.
void PragmaUnrollHintHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &Tok) {
// Incoming token is "unroll" for "#pragma unroll", or "nounroll" for
// "#pragma nounroll".
Token PragmaName = Tok;
PP.Lex(Tok);
auto *Info = new (PP.getPreprocessorAllocator()) PragmaLoopHintInfo;
if (Tok.is(tok::eod)) {
// nounroll or unroll pragma without an argument.
Info->PragmaName = PragmaName;
Info->Option.startToken();
} else if (PragmaName.getIdentifierInfo()->getName() == "nounroll" ||
PragmaName.getIdentifierInfo()->getName() == "nounroll_and_jam") {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< PragmaName.getIdentifierInfo()->getName();
return;
} else {
// Unroll pragma with an argument: "#pragma unroll N" or
// "#pragma unroll(N)".
// Read '(' if it exists.
bool ValueInParens = Tok.is(tok::l_paren);
if (ValueInParens)
PP.Lex(Tok);
Token Option;
Option.startToken();
if (ParseLoopHintValue(PP, Tok, PragmaName, Option, ValueInParens, *Info))
return;
// In CUDA, the argument to '#pragma unroll' should not be contained in
// parentheses.
if (PP.getLangOpts().CUDA && ValueInParens)
PP.Diag(Info->Toks[0].getLocation(),
diag::warn_pragma_unroll_cuda_value_in_parens);
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< "unroll";
return;
}
}
// Generate the hint token.
auto TokenArray = std::make_unique<Token[]>(1);
TokenArray[0].startToken();
TokenArray[0].setKind(tok::annot_pragma_loop_hint);
TokenArray[0].setLocation(Introducer.Loc);
TokenArray[0].setAnnotationEndLoc(PragmaName.getLocation());
TokenArray[0].setAnnotationValue(static_cast<void *>(Info));
PP.EnterTokenStream(std::move(TokenArray), 1,
/*DisableMacroExpansion=*/false, /*IsReinject=*/false);
}
/// Handle the Microsoft \#pragma intrinsic extension.
///
/// The syntax is:
/// \code
/// #pragma intrinsic(memset)
/// #pragma intrinsic(strlen, memcpy)
/// \endcode
///
/// Pragma intrisic tells the compiler to use a builtin version of the
/// function. Clang does it anyway, so the pragma doesn't really do anything.
/// Anyway, we emit a warning if the function specified in \#pragma intrinsic
/// isn't an intrinsic in clang and suggest to include intrin.h.
void PragmaMSIntrinsicHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &Tok) {
PP.Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_lparen)
<< "intrinsic";
return;
}
PP.Lex(Tok);
bool SuggestIntrinH = !PP.isMacroDefined("__INTRIN_H");
while (Tok.is(tok::identifier)) {
IdentifierInfo *II = Tok.getIdentifierInfo();
if (!II->getBuiltinID())
PP.Diag(Tok.getLocation(), diag::warn_pragma_intrinsic_builtin)
<< II << SuggestIntrinH;
PP.Lex(Tok);
if (Tok.isNot(tok::comma))
break;
PP.Lex(Tok);
}
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_rparen)
<< "intrinsic";
return;
}
PP.Lex(Tok);
if (Tok.isNot(tok::eod))
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< "intrinsic";
}
// #pragma optimize("gsty", on|off)
void PragmaMSOptimizeHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &Tok) {
SourceLocation StartLoc = Tok.getLocation();
PP.Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_lparen) << "optimize";
return;
}
PP.Lex(Tok);
if (Tok.isNot(tok::string_literal)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_string) << "optimize";
return;
}
// We could syntax check the string but it's probably not worth the effort.
PP.Lex(Tok);
if (Tok.isNot(tok::comma)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_comma) << "optimize";
return;
}
PP.Lex(Tok);
if (Tok.is(tok::eod) || Tok.is(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_missing_argument)
<< "optimize" << /*Expected=*/true << "'on' or 'off'";
return;
}
IdentifierInfo *II = Tok.getIdentifierInfo();
if (!II || (!II->isStr("on") && !II->isStr("off"))) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_invalid_argument)
<< PP.getSpelling(Tok) << "optimize" << /*Expected=*/true
<< "'on' or 'off'";
return;
}
PP.Lex(Tok);
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_expected_rparen) << "optimize";
return;
}
PP.Lex(Tok);
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< "optimize";
return;
}
PP.Diag(StartLoc, diag::warn_pragma_optimize);
}
void PragmaForceCUDAHostDeviceHandler::HandlePragma(
Preprocessor &PP, PragmaIntroducer Introducer, Token &Tok) {
Token FirstTok = Tok;
PP.Lex(Tok);
IdentifierInfo *Info = Tok.getIdentifierInfo();
if (!Info || (!Info->isStr("begin") && !Info->isStr("end"))) {
PP.Diag(FirstTok.getLocation(),
diag::warn_pragma_force_cuda_host_device_bad_arg);
return;
}
if (Info->isStr("begin"))
Actions.PushForceCUDAHostDevice();
else if (!Actions.PopForceCUDAHostDevice())
PP.Diag(FirstTok.getLocation(),
diag::err_pragma_cannot_end_force_cuda_host_device);
PP.Lex(Tok);
if (!Tok.is(tok::eod))
PP.Diag(FirstTok.getLocation(),
diag::warn_pragma_force_cuda_host_device_bad_arg);
}
/// Handle the #pragma clang attribute directive.
///
/// The syntax is:
/// \code
/// #pragma clang attribute push (attribute, subject-set)
/// #pragma clang attribute push
/// #pragma clang attribute (attribute, subject-set)
/// #pragma clang attribute pop
/// \endcode
///
/// There are also 'namespace' variants of push and pop directives. The bare
/// '#pragma clang attribute (attribute, subject-set)' version doesn't require a
/// namespace, since it always applies attributes to the most recently pushed
/// group, regardless of namespace.
/// \code
/// #pragma clang attribute namespace.push (attribute, subject-set)
/// #pragma clang attribute namespace.push
/// #pragma clang attribute namespace.pop
/// \endcode
///
/// The subject-set clause defines the set of declarations which receive the
/// attribute. Its exact syntax is described in the LanguageExtensions document
/// in Clang's documentation.
///
/// This directive instructs the compiler to begin/finish applying the specified
/// attribute to the set of attribute-specific declarations in the active range
/// of the pragma.
void PragmaAttributeHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &FirstToken) {
Token Tok;
PP.Lex(Tok);
auto *Info = new (PP.getPreprocessorAllocator())
PragmaAttributeInfo(AttributesForPragmaAttribute);
// Parse the optional namespace followed by a period.
if (Tok.is(tok::identifier)) {
IdentifierInfo *II = Tok.getIdentifierInfo();
if (!II->isStr("push") && !II->isStr("pop")) {
Info->Namespace = II;
PP.Lex(Tok);
if (!Tok.is(tok::period)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_attribute_expected_period)
<< II;
return;
}
PP.Lex(Tok);
}
}
if (!Tok.isOneOf(tok::identifier, tok::l_paren)) {
PP.Diag(Tok.getLocation(),
diag::err_pragma_attribute_expected_push_pop_paren);
return;
}
// Determine what action this pragma clang attribute represents.
if (Tok.is(tok::l_paren)) {
if (Info->Namespace) {
PP.Diag(Tok.getLocation(),
diag::err_pragma_attribute_namespace_on_attribute);
PP.Diag(Tok.getLocation(),
diag::note_pragma_attribute_namespace_on_attribute);
return;
}
Info->Action = PragmaAttributeInfo::Attribute;
} else {
const IdentifierInfo *II = Tok.getIdentifierInfo();
if (II->isStr("push"))
Info->Action = PragmaAttributeInfo::Push;
else if (II->isStr("pop"))
Info->Action = PragmaAttributeInfo::Pop;
else {
PP.Diag(Tok.getLocation(), diag::err_pragma_attribute_invalid_argument)
<< PP.getSpelling(Tok);
return;
}
PP.Lex(Tok);
}
// Parse the actual attribute.
if ((Info->Action == PragmaAttributeInfo::Push && Tok.isNot(tok::eod)) ||
Info->Action == PragmaAttributeInfo::Attribute) {
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok.getLocation(), diag::err_expected) << tok::l_paren;
return;
}
PP.Lex(Tok);
// Lex the attribute tokens.
SmallVector<Token, 16> AttributeTokens;
int OpenParens = 1;
while (Tok.isNot(tok::eod)) {
if (Tok.is(tok::l_paren))
OpenParens++;
else if (Tok.is(tok::r_paren)) {
OpenParens--;
if (OpenParens == 0)
break;
}
AttributeTokens.push_back(Tok);
PP.Lex(Tok);
}
if (AttributeTokens.empty()) {
PP.Diag(Tok.getLocation(), diag::err_pragma_attribute_expected_attribute);
return;
}
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::err_expected) << tok::r_paren;
return;
}
SourceLocation EndLoc = Tok.getLocation();
PP.Lex(Tok);
// Terminate the attribute for parsing.
Token EOFTok;
EOFTok.startToken();
EOFTok.setKind(tok::eof);
EOFTok.setLocation(EndLoc);
AttributeTokens.push_back(EOFTok);
markAsReinjectedForRelexing(AttributeTokens);
Info->Tokens =
llvm::makeArrayRef(AttributeTokens).copy(PP.getPreprocessorAllocator());
}
if (Tok.isNot(tok::eod))
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< "clang attribute";
// Generate the annotated pragma token.
auto TokenArray = std::make_unique<Token[]>(1);
TokenArray[0].startToken();
TokenArray[0].setKind(tok::annot_pragma_attribute);
TokenArray[0].setLocation(FirstToken.getLocation());
TokenArray[0].setAnnotationEndLoc(FirstToken.getLocation());
TokenArray[0].setAnnotationValue(static_cast<void *>(Info));
PP.EnterTokenStream(std::move(TokenArray), 1,
/*DisableMacroExpansion=*/false, /*IsReinject=*/false);
}
// Handle '#pragma clang max_tokens 12345'.
void PragmaMaxTokensHereHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &Tok) {
PP.Lex(Tok);
if (Tok.is(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_missing_argument)
<< "clang max_tokens_here" << /*Expected=*/true << "integer";
return;
}
SourceLocation Loc = Tok.getLocation();
uint64_t MaxTokens;
if (Tok.isNot(tok::numeric_constant) ||
!PP.parseSimpleIntegerLiteral(Tok, MaxTokens)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_expected_integer)
<< "clang max_tokens_here";
return;
}
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< "clang max_tokens_here";
return;
}
if (PP.getTokenCount() > MaxTokens) {
PP.Diag(Loc, diag::warn_max_tokens)
<< PP.getTokenCount() << (unsigned)MaxTokens;
}
}
// Handle '#pragma clang max_tokens_total 12345'.
void PragmaMaxTokensTotalHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducer Introducer,
Token &Tok) {
PP.Lex(Tok);
if (Tok.is(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_missing_argument)
<< "clang max_tokens_total" << /*Expected=*/true << "integer";
return;
}
SourceLocation Loc = Tok.getLocation();
uint64_t MaxTokens;
if (Tok.isNot(tok::numeric_constant) ||
!PP.parseSimpleIntegerLiteral(Tok, MaxTokens)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_expected_integer)
<< "clang max_tokens_total";
return;
}
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< "clang max_tokens_total";
return;
}
PP.overrideMaxTokens(MaxTokens, Loc);
}