forked from OSchip/llvm-project
17aabf83e9
The generic entry points for static loop scheduling previously hardcoded that the runtime was initialized. This can be wrong if the compiler analyzes that the runtime is not needed and calls the init functions accordingly. This didn't affect clang-ykt because they have entry points for different combinations of SPMD x Runtime not needed. I didn't do measurements yet but with inlining we might get away with always calling the generic interface and letting compiler and runtime figure out the rest. In any case, a correct runtime is always better than having functions that may only be called if previous calls passed in a specific set of arguments! Differential Revision: https://reviews.llvm.org/D47131 llvm-svn: 333285 |
||
---|---|---|
.. | ||
cmake/Modules | ||
deviceRTLs | ||
include | ||
plugins | ||
src | ||
test | ||
CMakeLists.txt | ||
README.txt |
README.txt
README for the LLVM* OpenMP* Offloading Runtime Library (libomptarget) ====================================================================== How to Build the LLVM* OpenMP* Offloading Runtime Library (libomptarget) ======================================================================== In-tree build: $ cd where-you-want-to-live Check out openmp (libomptarget lives under ./libomptarget) into llvm/projects $ cd where-you-want-to-build $ mkdir build && cd build $ cmake path/to/llvm -DCMAKE_C_COMPILER=<C compiler> -DCMAKE_CXX_COMPILER=<C++ compiler> $ make omptarget Out-of-tree build: $ cd where-you-want-to-live Check out openmp (libomptarget lives under ./libomptarget) $ cd where-you-want-to-live/openmp/libomptarget $ mkdir build && cd build $ cmake path/to/openmp -DCMAKE_C_COMPILER=<C compiler> -DCMAKE_CXX_COMPILER=<C++ compiler> $ make For details about building, please look at README.rst in the parent directory. Architectures Supported ======================= The current library has been only tested in Linux operating system and the following host architectures: * Intel(R) 64 architecture * IBM(R) Power architecture (big endian) * IBM(R) Power architecture (little endian) * ARM(R) AArch64 architecture (little endian) The currently supported offloading device architectures are: * Intel(R) 64 architecture (generic 64-bit plugin - mostly for testing purposes) * IBM(R) Power architecture (big endian) (generic 64-bit plugin - mostly for testing purposes) * IBM(R) Power architecture (little endian) (generic 64-bit plugin - mostly for testing purposes) * ARM(R) AArch64 architecture (little endian) (generic 64-bit plugin - mostly for testing purposes) * CUDA(R) enabled 64-bit NVIDIA(R) GPU architectures Supported RTL Build Configurations ================================== Supported Architectures: Intel(R) 64, IBM(R) Power 7 and Power 8 --------------------------- | gcc | clang | --------------|------------|------------| | Linux* OS | Yes(1) | Yes(2) | ----------------------------------------- (1) gcc version 4.8.2 or later is supported. (2) clang version 3.7 or later is supported. Front-end Compilers that work with this RTL =========================================== The following compilers are known to do compatible code generation for this RTL: - clang (from https://github.com/clang-ykt ) - clang (development branch at http://clang.llvm.org - several features still under development) ----------------------------------------------------------------------- Notices ======= This library and related compiler support is still under development, so the employed interface is likely to change in the future. *Other names and brands may be claimed as the property of others.