llvm-project/llvm/lib/Analysis/InlineCost.cpp

1102 lines
40 KiB
C++

//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements inline cost analysis.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "inline-cost"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/CallingConv.h"
#include "llvm/DataLayout.h"
#include "llvm/GlobalAlias.h"
#include "llvm/InstVisitor.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Operator.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
namespace {
class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
typedef InstVisitor<CallAnalyzer, bool> Base;
friend class InstVisitor<CallAnalyzer, bool>;
// DataLayout if available, or null.
const DataLayout *const TD;
// The called function.
Function &F;
int Threshold;
int Cost;
bool IsCallerRecursive;
bool IsRecursiveCall;
bool ExposesReturnsTwice;
bool HasDynamicAlloca;
/// Number of bytes allocated statically by the callee.
uint64_t AllocatedSize;
unsigned NumInstructions, NumVectorInstructions;
int FiftyPercentVectorBonus, TenPercentVectorBonus;
int VectorBonus;
// While we walk the potentially-inlined instructions, we build up and
// maintain a mapping of simplified values specific to this callsite. The
// idea is to propagate any special information we have about arguments to
// this call through the inlinable section of the function, and account for
// likely simplifications post-inlining. The most important aspect we track
// is CFG altering simplifications -- when we prove a basic block dead, that
// can cause dramatic shifts in the cost of inlining a function.
DenseMap<Value *, Constant *> SimplifiedValues;
// Keep track of the values which map back (through function arguments) to
// allocas on the caller stack which could be simplified through SROA.
DenseMap<Value *, Value *> SROAArgValues;
// The mapping of caller Alloca values to their accumulated cost savings. If
// we have to disable SROA for one of the allocas, this tells us how much
// cost must be added.
DenseMap<Value *, int> SROAArgCosts;
// Keep track of values which map to a pointer base and constant offset.
DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs;
// Custom simplification helper routines.
bool isAllocaDerivedArg(Value *V);
bool lookupSROAArgAndCost(Value *V, Value *&Arg,
DenseMap<Value *, int>::iterator &CostIt);
void disableSROA(DenseMap<Value *, int>::iterator CostIt);
void disableSROA(Value *V);
void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
int InstructionCost);
bool handleSROACandidate(bool IsSROAValid,
DenseMap<Value *, int>::iterator CostIt,
int InstructionCost);
bool isGEPOffsetConstant(GetElementPtrInst &GEP);
bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
// Custom analysis routines.
bool analyzeBlock(BasicBlock *BB);
// Disable several entry points to the visitor so we don't accidentally use
// them by declaring but not defining them here.
void visit(Module *); void visit(Module &);
void visit(Function *); void visit(Function &);
void visit(BasicBlock *); void visit(BasicBlock &);
// Provide base case for our instruction visit.
bool visitInstruction(Instruction &I);
// Our visit overrides.
bool visitAlloca(AllocaInst &I);
bool visitPHI(PHINode &I);
bool visitGetElementPtr(GetElementPtrInst &I);
bool visitBitCast(BitCastInst &I);
bool visitPtrToInt(PtrToIntInst &I);
bool visitIntToPtr(IntToPtrInst &I);
bool visitCastInst(CastInst &I);
bool visitUnaryInstruction(UnaryInstruction &I);
bool visitICmp(ICmpInst &I);
bool visitSub(BinaryOperator &I);
bool visitBinaryOperator(BinaryOperator &I);
bool visitLoad(LoadInst &I);
bool visitStore(StoreInst &I);
bool visitCallSite(CallSite CS);
public:
CallAnalyzer(const DataLayout *TD, Function &Callee, int Threshold)
: TD(TD), F(Callee), Threshold(Threshold), Cost(0),
IsCallerRecursive(false), IsRecursiveCall(false),
ExposesReturnsTwice(false), HasDynamicAlloca(false), AllocatedSize(0),
NumInstructions(0), NumVectorInstructions(0),
FiftyPercentVectorBonus(0), TenPercentVectorBonus(0), VectorBonus(0),
NumConstantArgs(0), NumConstantOffsetPtrArgs(0), NumAllocaArgs(0),
NumConstantPtrCmps(0), NumConstantPtrDiffs(0),
NumInstructionsSimplified(0), SROACostSavings(0), SROACostSavingsLost(0) {
}
bool analyzeCall(CallSite CS);
int getThreshold() { return Threshold; }
int getCost() { return Cost; }
// Keep a bunch of stats about the cost savings found so we can print them
// out when debugging.
unsigned NumConstantArgs;
unsigned NumConstantOffsetPtrArgs;
unsigned NumAllocaArgs;
unsigned NumConstantPtrCmps;
unsigned NumConstantPtrDiffs;
unsigned NumInstructionsSimplified;
unsigned SROACostSavings;
unsigned SROACostSavingsLost;
void dump();
};
} // namespace
/// \brief Test whether the given value is an Alloca-derived function argument.
bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
return SROAArgValues.count(V);
}
/// \brief Lookup the SROA-candidate argument and cost iterator which V maps to.
/// Returns false if V does not map to a SROA-candidate.
bool CallAnalyzer::lookupSROAArgAndCost(
Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
if (SROAArgValues.empty() || SROAArgCosts.empty())
return false;
DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
if (ArgIt == SROAArgValues.end())
return false;
Arg = ArgIt->second;
CostIt = SROAArgCosts.find(Arg);
return CostIt != SROAArgCosts.end();
}
/// \brief Disable SROA for the candidate marked by this cost iterator.
///
/// This marks the candidate as no longer viable for SROA, and adds the cost
/// savings associated with it back into the inline cost measurement.
void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
// If we're no longer able to perform SROA we need to undo its cost savings
// and prevent subsequent analysis.
Cost += CostIt->second;
SROACostSavings -= CostIt->second;
SROACostSavingsLost += CostIt->second;
SROAArgCosts.erase(CostIt);
}
/// \brief If 'V' maps to a SROA candidate, disable SROA for it.
void CallAnalyzer::disableSROA(Value *V) {
Value *SROAArg;
DenseMap<Value *, int>::iterator CostIt;
if (lookupSROAArgAndCost(V, SROAArg, CostIt))
disableSROA(CostIt);
}
/// \brief Accumulate the given cost for a particular SROA candidate.
void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
int InstructionCost) {
CostIt->second += InstructionCost;
SROACostSavings += InstructionCost;
}
/// \brief Helper for the common pattern of handling a SROA candidate.
/// Either accumulates the cost savings if the SROA remains valid, or disables
/// SROA for the candidate.
bool CallAnalyzer::handleSROACandidate(bool IsSROAValid,
DenseMap<Value *, int>::iterator CostIt,
int InstructionCost) {
if (IsSROAValid) {
accumulateSROACost(CostIt, InstructionCost);
return true;
}
disableSROA(CostIt);
return false;
}
/// \brief Check whether a GEP's indices are all constant.
///
/// Respects any simplified values known during the analysis of this callsite.
bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) {
for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
return false;
return true;
}
/// \brief Accumulate a constant GEP offset into an APInt if possible.
///
/// Returns false if unable to compute the offset for any reason. Respects any
/// simplified values known during the analysis of this callsite.
bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
if (!TD)
return false;
unsigned IntPtrWidth = TD->getPointerSizeInBits();
assert(IntPtrWidth == Offset.getBitWidth());
for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
GTI != GTE; ++GTI) {
ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
if (!OpC)
if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
OpC = dyn_cast<ConstantInt>(SimpleOp);
if (!OpC)
return false;
if (OpC->isZero()) continue;
// Handle a struct index, which adds its field offset to the pointer.
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
unsigned ElementIdx = OpC->getZExtValue();
const StructLayout *SL = TD->getStructLayout(STy);
Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
continue;
}
APInt TypeSize(IntPtrWidth, TD->getTypeAllocSize(GTI.getIndexedType()));
Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
}
return true;
}
bool CallAnalyzer::visitAlloca(AllocaInst &I) {
// FIXME: Check whether inlining will turn a dynamic alloca into a static
// alloca, and handle that case.
// Accumulate the allocated size.
if (I.isStaticAlloca()) {
Type *Ty = I.getAllocatedType();
AllocatedSize += (TD ? TD->getTypeAllocSize(Ty) :
Ty->getPrimitiveSizeInBits());
}
// We will happily inline static alloca instructions.
if (I.isStaticAlloca())
return Base::visitAlloca(I);
// FIXME: This is overly conservative. Dynamic allocas are inefficient for
// a variety of reasons, and so we would like to not inline them into
// functions which don't currently have a dynamic alloca. This simply
// disables inlining altogether in the presence of a dynamic alloca.
HasDynamicAlloca = true;
return false;
}
bool CallAnalyzer::visitPHI(PHINode &I) {
// FIXME: We should potentially be tracking values through phi nodes,
// especially when they collapse to a single value due to deleted CFG edges
// during inlining.
// FIXME: We need to propagate SROA *disabling* through phi nodes, even
// though we don't want to propagate it's bonuses. The idea is to disable
// SROA if it *might* be used in an inappropriate manner.
// Phi nodes are always zero-cost.
return true;
}
bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
Value *SROAArg;
DenseMap<Value *, int>::iterator CostIt;
bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(),
SROAArg, CostIt);
// Try to fold GEPs of constant-offset call site argument pointers. This
// requires target data and inbounds GEPs.
if (TD && I.isInBounds()) {
// Check if we have a base + offset for the pointer.
Value *Ptr = I.getPointerOperand();
std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr);
if (BaseAndOffset.first) {
// Check if the offset of this GEP is constant, and if so accumulate it
// into Offset.
if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) {
// Non-constant GEPs aren't folded, and disable SROA.
if (SROACandidate)
disableSROA(CostIt);
return false;
}
// Add the result as a new mapping to Base + Offset.
ConstantOffsetPtrs[&I] = BaseAndOffset;
// Also handle SROA candidates here, we already know that the GEP is
// all-constant indexed.
if (SROACandidate)
SROAArgValues[&I] = SROAArg;
return true;
}
}
if (isGEPOffsetConstant(I)) {
if (SROACandidate)
SROAArgValues[&I] = SROAArg;
// Constant GEPs are modeled as free.
return true;
}
// Variable GEPs will require math and will disable SROA.
if (SROACandidate)
disableSROA(CostIt);
return false;
}
bool CallAnalyzer::visitBitCast(BitCastInst &I) {
// Propagate constants through bitcasts.
if (Constant *COp = dyn_cast<Constant>(I.getOperand(0)))
if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) {
SimplifiedValues[&I] = C;
return true;
}
// Track base/offsets through casts
std::pair<Value *, APInt> BaseAndOffset
= ConstantOffsetPtrs.lookup(I.getOperand(0));
// Casts don't change the offset, just wrap it up.
if (BaseAndOffset.first)
ConstantOffsetPtrs[&I] = BaseAndOffset;
// Also look for SROA candidates here.
Value *SROAArg;
DenseMap<Value *, int>::iterator CostIt;
if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
SROAArgValues[&I] = SROAArg;
// Bitcasts are always zero cost.
return true;
}
bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
// Propagate constants through ptrtoint.
if (Constant *COp = dyn_cast<Constant>(I.getOperand(0)))
if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) {
SimplifiedValues[&I] = C;
return true;
}
// Track base/offset pairs when converted to a plain integer provided the
// integer is large enough to represent the pointer.
unsigned IntegerSize = I.getType()->getScalarSizeInBits();
if (TD && IntegerSize >= TD->getPointerSizeInBits()) {
std::pair<Value *, APInt> BaseAndOffset
= ConstantOffsetPtrs.lookup(I.getOperand(0));
if (BaseAndOffset.first)
ConstantOffsetPtrs[&I] = BaseAndOffset;
}
// This is really weird. Technically, ptrtoint will disable SROA. However,
// unless that ptrtoint is *used* somewhere in the live basic blocks after
// inlining, it will be nuked, and SROA should proceed. All of the uses which
// would block SROA would also block SROA if applied directly to a pointer,
// and so we can just add the integer in here. The only places where SROA is
// preserved either cannot fire on an integer, or won't in-and-of themselves
// disable SROA (ext) w/o some later use that we would see and disable.
Value *SROAArg;
DenseMap<Value *, int>::iterator CostIt;
if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
SROAArgValues[&I] = SROAArg;
return isInstructionFree(&I, TD);
}
bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
// Propagate constants through ptrtoint.
if (Constant *COp = dyn_cast<Constant>(I.getOperand(0)))
if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) {
SimplifiedValues[&I] = C;
return true;
}
// Track base/offset pairs when round-tripped through a pointer without
// modifications provided the integer is not too large.
Value *Op = I.getOperand(0);
unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
if (TD && IntegerSize <= TD->getPointerSizeInBits()) {
std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
if (BaseAndOffset.first)
ConstantOffsetPtrs[&I] = BaseAndOffset;
}
// "Propagate" SROA here in the same manner as we do for ptrtoint above.
Value *SROAArg;
DenseMap<Value *, int>::iterator CostIt;
if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
SROAArgValues[&I] = SROAArg;
return isInstructionFree(&I, TD);
}
bool CallAnalyzer::visitCastInst(CastInst &I) {
// Propagate constants through ptrtoint.
if (Constant *COp = dyn_cast<Constant>(I.getOperand(0)))
if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
SimplifiedValues[&I] = C;
return true;
}
// Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
disableSROA(I.getOperand(0));
return isInstructionFree(&I, TD);
}
bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
Value *Operand = I.getOperand(0);
Constant *Ops[1] = { dyn_cast<Constant>(Operand) };
if (Ops[0] || (Ops[0] = SimplifiedValues.lookup(Operand)))
if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(),
Ops, TD)) {
SimplifiedValues[&I] = C;
return true;
}
// Disable any SROA on the argument to arbitrary unary operators.
disableSROA(Operand);
return false;
}
bool CallAnalyzer::visitICmp(ICmpInst &I) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
// First try to handle simplified comparisons.
if (!isa<Constant>(LHS))
if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
LHS = SimpleLHS;
if (!isa<Constant>(RHS))
if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
RHS = SimpleRHS;
if (Constant *CLHS = dyn_cast<Constant>(LHS))
if (Constant *CRHS = dyn_cast<Constant>(RHS))
if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
SimplifiedValues[&I] = C;
return true;
}
// Otherwise look for a comparison between constant offset pointers with
// a common base.
Value *LHSBase, *RHSBase;
APInt LHSOffset, RHSOffset;
llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
if (LHSBase) {
llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
if (RHSBase && LHSBase == RHSBase) {
// We have common bases, fold the icmp to a constant based on the
// offsets.
Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
SimplifiedValues[&I] = C;
++NumConstantPtrCmps;
return true;
}
}
}
// If the comparison is an equality comparison with null, we can simplify it
// for any alloca-derived argument.
if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)))
if (isAllocaDerivedArg(I.getOperand(0))) {
// We can actually predict the result of comparisons between an
// alloca-derived value and null. Note that this fires regardless of
// SROA firing.
bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
: ConstantInt::getFalse(I.getType());
return true;
}
// Finally check for SROA candidates in comparisons.
Value *SROAArg;
DenseMap<Value *, int>::iterator CostIt;
if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
if (isa<ConstantPointerNull>(I.getOperand(1))) {
accumulateSROACost(CostIt, InlineConstants::InstrCost);
return true;
}
disableSROA(CostIt);
}
return false;
}
bool CallAnalyzer::visitSub(BinaryOperator &I) {
// Try to handle a special case: we can fold computing the difference of two
// constant-related pointers.
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Value *LHSBase, *RHSBase;
APInt LHSOffset, RHSOffset;
llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
if (LHSBase) {
llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
if (RHSBase && LHSBase == RHSBase) {
// We have common bases, fold the subtract to a constant based on the
// offsets.
Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
SimplifiedValues[&I] = C;
++NumConstantPtrDiffs;
return true;
}
}
}
// Otherwise, fall back to the generic logic for simplifying and handling
// instructions.
return Base::visitSub(I);
}
bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
if (!isa<Constant>(LHS))
if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
LHS = SimpleLHS;
if (!isa<Constant>(RHS))
if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
RHS = SimpleRHS;
Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, TD);
if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
SimplifiedValues[&I] = C;
return true;
}
// Disable any SROA on arguments to arbitrary, unsimplified binary operators.
disableSROA(LHS);
disableSROA(RHS);
return false;
}
bool CallAnalyzer::visitLoad(LoadInst &I) {
Value *SROAArg;
DenseMap<Value *, int>::iterator CostIt;
if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
if (I.isSimple()) {
accumulateSROACost(CostIt, InlineConstants::InstrCost);
return true;
}
disableSROA(CostIt);
}
return false;
}
bool CallAnalyzer::visitStore(StoreInst &I) {
Value *SROAArg;
DenseMap<Value *, int>::iterator CostIt;
if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
if (I.isSimple()) {
accumulateSROACost(CostIt, InlineConstants::InstrCost);
return true;
}
disableSROA(CostIt);
}
return false;
}
bool CallAnalyzer::visitCallSite(CallSite CS) {
if (CS.isCall() && cast<CallInst>(CS.getInstruction())->canReturnTwice() &&
!F.getFnAttributes().hasAttribute(Attributes::ReturnsTwice)) {
// This aborts the entire analysis.
ExposesReturnsTwice = true;
return false;
}
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
switch (II->getIntrinsicID()) {
default:
return Base::visitCallSite(CS);
case Intrinsic::memset:
case Intrinsic::memcpy:
case Intrinsic::memmove:
// SROA can usually chew through these intrinsics, but they aren't free.
return false;
}
}
if (Function *F = CS.getCalledFunction()) {
if (F == CS.getInstruction()->getParent()->getParent()) {
// This flag will fully abort the analysis, so don't bother with anything
// else.
IsRecursiveCall = true;
return false;
}
if (!callIsSmall(CS)) {
// We account for the average 1 instruction per call argument setup
// here.
Cost += CS.arg_size() * InlineConstants::InstrCost;
// Everything other than inline ASM will also have a significant cost
// merely from making the call.
if (!isa<InlineAsm>(CS.getCalledValue()))
Cost += InlineConstants::CallPenalty;
}
return Base::visitCallSite(CS);
}
// Otherwise we're in a very special case -- an indirect function call. See
// if we can be particularly clever about this.
Value *Callee = CS.getCalledValue();
// First, pay the price of the argument setup. We account for the average
// 1 instruction per call argument setup here.
Cost += CS.arg_size() * InlineConstants::InstrCost;
// Next, check if this happens to be an indirect function call to a known
// function in this inline context. If not, we've done all we can.
Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
if (!F)
return Base::visitCallSite(CS);
// If we have a constant that we are calling as a function, we can peer
// through it and see the function target. This happens not infrequently
// during devirtualization and so we want to give it a hefty bonus for
// inlining, but cap that bonus in the event that inlining wouldn't pan
// out. Pretend to inline the function, with a custom threshold.
CallAnalyzer CA(TD, *F, InlineConstants::IndirectCallThreshold);
if (CA.analyzeCall(CS)) {
// We were able to inline the indirect call! Subtract the cost from the
// bonus we want to apply, but don't go below zero.
Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost());
}
return Base::visitCallSite(CS);
}
bool CallAnalyzer::visitInstruction(Instruction &I) {
// Some instructions are free. All of the free intrinsics can also be
// handled by SROA, etc.
if (isInstructionFree(&I, TD))
return true;
// We found something we don't understand or can't handle. Mark any SROA-able
// values in the operand list as no longer viable.
for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
disableSROA(*OI);
return false;
}
/// \brief Analyze a basic block for its contribution to the inline cost.
///
/// This method walks the analyzer over every instruction in the given basic
/// block and accounts for their cost during inlining at this callsite. It
/// aborts early if the threshold has been exceeded or an impossible to inline
/// construct has been detected. It returns false if inlining is no longer
/// viable, and true if inlining remains viable.
bool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
for (BasicBlock::iterator I = BB->begin(), E = llvm::prior(BB->end());
I != E; ++I) {
++NumInstructions;
if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
++NumVectorInstructions;
// If the instruction simplified to a constant, there is no cost to this
// instruction. Visit the instructions using our InstVisitor to account for
// all of the per-instruction logic. The visit tree returns true if we
// consumed the instruction in any way, and false if the instruction's base
// cost should count against inlining.
if (Base::visit(I))
++NumInstructionsSimplified;
else
Cost += InlineConstants::InstrCost;
// If the visit this instruction detected an uninlinable pattern, abort.
if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca)
return false;
// If the caller is a recursive function then we don't want to inline
// functions which allocate a lot of stack space because it would increase
// the caller stack usage dramatically.
if (IsCallerRecursive &&
AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
return false;
if (NumVectorInstructions > NumInstructions/2)
VectorBonus = FiftyPercentVectorBonus;
else if (NumVectorInstructions > NumInstructions/10)
VectorBonus = TenPercentVectorBonus;
else
VectorBonus = 0;
// Check if we've past the threshold so we don't spin in huge basic
// blocks that will never inline.
if (Cost > (Threshold + VectorBonus))
return false;
}
return true;
}
/// \brief Compute the base pointer and cumulative constant offsets for V.
///
/// This strips all constant offsets off of V, leaving it the base pointer, and
/// accumulates the total constant offset applied in the returned constant. It
/// returns 0 if V is not a pointer, and returns the constant '0' if there are
/// no constant offsets applied.
ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
if (!TD || !V->getType()->isPointerTy())
return 0;
unsigned IntPtrWidth = TD->getPointerSizeInBits();
APInt Offset = APInt::getNullValue(IntPtrWidth);
// Even though we don't look through PHI nodes, we could be called on an
// instruction in an unreachable block, which may be on a cycle.
SmallPtrSet<Value *, 4> Visited;
Visited.insert(V);
do {
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
return 0;
V = GEP->getPointerOperand();
} else if (Operator::getOpcode(V) == Instruction::BitCast) {
V = cast<Operator>(V)->getOperand(0);
} else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (GA->mayBeOverridden())
break;
V = GA->getAliasee();
} else {
break;
}
assert(V->getType()->isPointerTy() && "Unexpected operand type!");
} while (Visited.insert(V));
Type *IntPtrTy = TD->getIntPtrType(V->getContext());
return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
}
/// \brief Analyze a call site for potential inlining.
///
/// Returns true if inlining this call is viable, and false if it is not
/// viable. It computes the cost and adjusts the threshold based on numerous
/// factors and heuristics. If this method returns false but the computed cost
/// is below the computed threshold, then inlining was forcibly disabled by
/// some artifact of the routine.
bool CallAnalyzer::analyzeCall(CallSite CS) {
++NumCallsAnalyzed;
// Track whether the post-inlining function would have more than one basic
// block. A single basic block is often intended for inlining. Balloon the
// threshold by 50% until we pass the single-BB phase.
bool SingleBB = true;
int SingleBBBonus = Threshold / 2;
Threshold += SingleBBBonus;
// Perform some tweaks to the cost and threshold based on the direct
// callsite information.
// We want to more aggressively inline vector-dense kernels, so up the
// threshold, and we'll lower it if the % of vector instructions gets too
// low.
assert(NumInstructions == 0);
assert(NumVectorInstructions == 0);
FiftyPercentVectorBonus = Threshold;
TenPercentVectorBonus = Threshold / 2;
// Give out bonuses per argument, as the instructions setting them up will
// be gone after inlining.
for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
if (TD && CS.isByValArgument(I)) {
// We approximate the number of loads and stores needed by dividing the
// size of the byval type by the target's pointer size.
PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
unsigned TypeSize = TD->getTypeSizeInBits(PTy->getElementType());
unsigned PointerSize = TD->getPointerSizeInBits();
// Ceiling division.
unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
// If it generates more than 8 stores it is likely to be expanded as an
// inline memcpy so we take that as an upper bound. Otherwise we assume
// one load and one store per word copied.
// FIXME: The maxStoresPerMemcpy setting from the target should be used
// here instead of a magic number of 8, but it's not available via
// DataLayout.
NumStores = std::min(NumStores, 8U);
Cost -= 2 * NumStores * InlineConstants::InstrCost;
} else {
// For non-byval arguments subtract off one instruction per call
// argument.
Cost -= InlineConstants::InstrCost;
}
}
// If there is only one call of the function, and it has internal linkage,
// the cost of inlining it drops dramatically.
if (F.hasLocalLinkage() && F.hasOneUse() && &F == CS.getCalledFunction())
Cost += InlineConstants::LastCallToStaticBonus;
// If the instruction after the call, or if the normal destination of the
// invoke is an unreachable instruction, the function is noreturn. As such,
// there is little point in inlining this unless there is literally zero
// cost.
Instruction *Instr = CS.getInstruction();
if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) {
if (isa<UnreachableInst>(II->getNormalDest()->begin()))
Threshold = 1;
} else if (isa<UnreachableInst>(++BasicBlock::iterator(Instr)))
Threshold = 1;
// If this function uses the coldcc calling convention, prefer not to inline
// it.
if (F.getCallingConv() == CallingConv::Cold)
Cost += InlineConstants::ColdccPenalty;
// Check if we're done. This can happen due to bonuses and penalties.
if (Cost > Threshold)
return false;
if (F.empty())
return true;
Function *Caller = CS.getInstruction()->getParent()->getParent();
// Check if the caller function is recursive itself.
for (Value::use_iterator U = Caller->use_begin(), E = Caller->use_end();
U != E; ++U) {
CallSite Site(cast<Value>(*U));
if (!Site)
continue;
Instruction *I = Site.getInstruction();
if (I->getParent()->getParent() == Caller) {
IsCallerRecursive = true;
break;
}
}
// Track whether we've seen a return instruction. The first return
// instruction is free, as at least one will usually disappear in inlining.
bool HasReturn = false;
// Populate our simplified values by mapping from function arguments to call
// arguments with known important simplifications.
CallSite::arg_iterator CAI = CS.arg_begin();
for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
FAI != FAE; ++FAI, ++CAI) {
assert(CAI != CS.arg_end());
if (Constant *C = dyn_cast<Constant>(CAI))
SimplifiedValues[FAI] = C;
Value *PtrArg = *CAI;
if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
ConstantOffsetPtrs[FAI] = std::make_pair(PtrArg, C->getValue());
// We can SROA any pointer arguments derived from alloca instructions.
if (isa<AllocaInst>(PtrArg)) {
SROAArgValues[FAI] = PtrArg;
SROAArgCosts[PtrArg] = 0;
}
}
}
NumConstantArgs = SimplifiedValues.size();
NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
NumAllocaArgs = SROAArgValues.size();
// The worklist of live basic blocks in the callee *after* inlining. We avoid
// adding basic blocks of the callee which can be proven to be dead for this
// particular call site in order to get more accurate cost estimates. This
// requires a somewhat heavyweight iteration pattern: we need to walk the
// basic blocks in a breadth-first order as we insert live successors. To
// accomplish this, prioritizing for small iterations because we exit after
// crossing our threshold, we use a small-size optimized SetVector.
typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
SmallPtrSet<BasicBlock *, 16> > BBSetVector;
BBSetVector BBWorklist;
BBWorklist.insert(&F.getEntryBlock());
// Note that we *must not* cache the size, this loop grows the worklist.
for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
// Bail out the moment we cross the threshold. This means we'll under-count
// the cost, but only when undercounting doesn't matter.
if (Cost > (Threshold + VectorBonus))
break;
BasicBlock *BB = BBWorklist[Idx];
if (BB->empty())
continue;
// Handle the terminator cost here where we can track returns and other
// function-wide constructs.
TerminatorInst *TI = BB->getTerminator();
// We never want to inline functions that contain an indirectbr. This is
// incorrect because all the blockaddress's (in static global initializers
// for example) would be referring to the original function, and this
// indirect jump would jump from the inlined copy of the function into the
// original function which is extremely undefined behavior.
// FIXME: This logic isn't really right; we can safely inline functions
// with indirectbr's as long as no other function or global references the
// blockaddress of a block within the current function. And as a QOI issue,
// if someone is using a blockaddress without an indirectbr, and that
// reference somehow ends up in another function or global, we probably
// don't want to inline this function.
if (isa<IndirectBrInst>(TI))
return false;
if (!HasReturn && isa<ReturnInst>(TI))
HasReturn = true;
else
Cost += InlineConstants::InstrCost;
// Analyze the cost of this block. If we blow through the threshold, this
// returns false, and we can bail on out.
if (!analyzeBlock(BB)) {
if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca)
return false;
// If the caller is a recursive function then we don't want to inline
// functions which allocate a lot of stack space because it would increase
// the caller stack usage dramatically.
if (IsCallerRecursive &&
AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
return false;
break;
}
// Add in the live successors by first checking whether we have terminator
// that may be simplified based on the values simplified by this call.
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (BI->isConditional()) {
Value *Cond = BI->getCondition();
if (ConstantInt *SimpleCond
= dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0));
continue;
}
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
Value *Cond = SI->getCondition();
if (ConstantInt *SimpleCond
= dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor());
continue;
}
}
// If we're unable to select a particular successor, just count all of
// them.
for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
++TIdx)
BBWorklist.insert(TI->getSuccessor(TIdx));
// If we had any successors at this point, than post-inlining is likely to
// have them as well. Note that we assume any basic blocks which existed
// due to branches or switches which folded above will also fold after
// inlining.
if (SingleBB && TI->getNumSuccessors() > 1) {
// Take off the bonus we applied to the threshold.
Threshold -= SingleBBBonus;
SingleBB = false;
}
}
Threshold += VectorBonus;
return Cost < Threshold;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// \brief Dump stats about this call's analysis.
void CallAnalyzer::dump() {
#define DEBUG_PRINT_STAT(x) llvm::dbgs() << " " #x ": " << x << "\n"
DEBUG_PRINT_STAT(NumConstantArgs);
DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
DEBUG_PRINT_STAT(NumAllocaArgs);
DEBUG_PRINT_STAT(NumConstantPtrCmps);
DEBUG_PRINT_STAT(NumConstantPtrDiffs);
DEBUG_PRINT_STAT(NumInstructionsSimplified);
DEBUG_PRINT_STAT(SROACostSavings);
DEBUG_PRINT_STAT(SROACostSavingsLost);
#undef DEBUG_PRINT_STAT
}
#endif
InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, int Threshold) {
return getInlineCost(CS, CS.getCalledFunction(), Threshold);
}
InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, Function *Callee,
int Threshold) {
// Cannot inline indirect calls.
if (!Callee)
return llvm::InlineCost::getNever();
// Calls to functions with always-inline attributes should be inlined
// whenever possible.
if (Callee->getFnAttributes().hasAttribute(Attributes::AlwaysInline)) {
if (isInlineViable(*Callee))
return llvm::InlineCost::getAlways();
return llvm::InlineCost::getNever();
}
// Don't inline functions which can be redefined at link-time to mean
// something else. Don't inline functions marked noinline or call sites
// marked noinline.
if (Callee->mayBeOverridden() ||
Callee->getFnAttributes().hasAttribute(Attributes::NoInline) ||
CS.isNoInline())
return llvm::InlineCost::getNever();
DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName()
<< "...\n");
CallAnalyzer CA(TD, *Callee, Threshold);
bool ShouldInline = CA.analyzeCall(CS);
DEBUG(CA.dump());
// Check if there was a reason to force inlining or no inlining.
if (!ShouldInline && CA.getCost() < CA.getThreshold())
return InlineCost::getNever();
if (ShouldInline && CA.getCost() >= CA.getThreshold())
return InlineCost::getAlways();
return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
}
bool InlineCostAnalyzer::isInlineViable(Function &F) {
bool ReturnsTwice =F.getFnAttributes().hasAttribute(Attributes::ReturnsTwice);
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
// Disallow inlining of functions which contain an indirect branch.
if (isa<IndirectBrInst>(BI->getTerminator()))
return false;
for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
++II) {
CallSite CS(II);
if (!CS)
continue;
// Disallow recursive calls.
if (&F == CS.getCalledFunction())
return false;
// Disallow calls which expose returns-twice to a function not previously
// attributed as such.
if (!ReturnsTwice && CS.isCall() &&
cast<CallInst>(CS.getInstruction())->canReturnTwice())
return false;
}
}
return true;
}