forked from OSchip/llvm-project
1753 lines
65 KiB
C++
1753 lines
65 KiB
C++
//===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "clang/Tooling/Syntax/BuildTree.h"
|
|
#include "clang/AST/ASTFwd.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclarationName.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/IgnoreExpr.h"
|
|
#include "clang/AST/OperationKinds.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/AST/TypeLocVisitor.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/Basic/TokenKinds.h"
|
|
#include "clang/Lex/Lexer.h"
|
|
#include "clang/Lex/LiteralSupport.h"
|
|
#include "clang/Tooling/Syntax/Nodes.h"
|
|
#include "clang/Tooling/Syntax/Tokens.h"
|
|
#include "clang/Tooling/Syntax/Tree.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cstddef>
|
|
#include <map>
|
|
|
|
using namespace clang;
|
|
|
|
// Ignores the implicit `CXXConstructExpr` for copy/move constructor calls
|
|
// generated by the compiler, as well as in implicit conversions like the one
|
|
// wrapping `1` in `X x = 1;`.
|
|
static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) {
|
|
if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
|
|
auto NumArgs = C->getNumArgs();
|
|
if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
|
|
Expr *A = C->getArg(0);
|
|
if (C->getParenOrBraceRange().isInvalid())
|
|
return A;
|
|
}
|
|
}
|
|
return E;
|
|
}
|
|
|
|
// In:
|
|
// struct X {
|
|
// X(int)
|
|
// };
|
|
// X x = X(1);
|
|
// Ignores the implicit `CXXFunctionalCastExpr` that wraps
|
|
// `CXXConstructExpr X(1)`.
|
|
static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) {
|
|
if (auto *F = dyn_cast<CXXFunctionalCastExpr>(E)) {
|
|
if (F->getCastKind() == CK_ConstructorConversion)
|
|
return F->getSubExpr();
|
|
}
|
|
return E;
|
|
}
|
|
|
|
static Expr *IgnoreImplicit(Expr *E) {
|
|
return IgnoreExprNodes(E, IgnoreImplicitSingleStep,
|
|
IgnoreImplicitConstructorSingleStep,
|
|
IgnoreCXXFunctionalCastExprWrappingConstructor);
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_UNUSED
|
|
static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; }
|
|
|
|
namespace {
|
|
/// Get start location of the Declarator from the TypeLoc.
|
|
/// E.g.:
|
|
/// loc of `(` in `int (a)`
|
|
/// loc of `*` in `int *(a)`
|
|
/// loc of the first `(` in `int (*a)(int)`
|
|
/// loc of the `*` in `int *(a)(int)`
|
|
/// loc of the first `*` in `const int *const *volatile a;`
|
|
///
|
|
/// It is non-trivial to get the start location because TypeLocs are stored
|
|
/// inside out. In the example above `*volatile` is the TypeLoc returned
|
|
/// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
|
|
/// returns.
|
|
struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
|
|
SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
|
|
auto L = Visit(T.getInnerLoc());
|
|
if (L.isValid())
|
|
return L;
|
|
return T.getLParenLoc();
|
|
}
|
|
|
|
// Types spelled in the prefix part of the declarator.
|
|
SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
|
|
return HandlePointer(T);
|
|
}
|
|
|
|
SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
|
|
return HandlePointer(T);
|
|
}
|
|
|
|
SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
|
|
return HandlePointer(T);
|
|
}
|
|
|
|
SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
|
|
return HandlePointer(T);
|
|
}
|
|
|
|
SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
|
|
return HandlePointer(T);
|
|
}
|
|
|
|
// All other cases are not important, as they are either part of declaration
|
|
// specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
|
|
// existing declarators (e.g. QualifiedTypeLoc). They cannot start the
|
|
// declarator themselves, but their underlying type can.
|
|
SourceLocation VisitTypeLoc(TypeLoc T) {
|
|
auto N = T.getNextTypeLoc();
|
|
if (!N)
|
|
return SourceLocation();
|
|
return Visit(N);
|
|
}
|
|
|
|
SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
|
|
if (T.getTypePtr()->hasTrailingReturn())
|
|
return SourceLocation(); // avoid recursing into the suffix of declarator.
|
|
return VisitTypeLoc(T);
|
|
}
|
|
|
|
private:
|
|
template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
|
|
auto L = Visit(T.getPointeeLoc());
|
|
if (L.isValid())
|
|
return L;
|
|
return T.getLocalSourceRange().getBegin();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) {
|
|
auto FirstDefaultArg =
|
|
llvm::find_if(Args, [](auto It) { return isa<CXXDefaultArgExpr>(It); });
|
|
return llvm::make_range(Args.begin(), FirstDefaultArg);
|
|
}
|
|
|
|
static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) {
|
|
switch (E.getOperator()) {
|
|
// Comparison
|
|
case OO_EqualEqual:
|
|
case OO_ExclaimEqual:
|
|
case OO_Greater:
|
|
case OO_GreaterEqual:
|
|
case OO_Less:
|
|
case OO_LessEqual:
|
|
case OO_Spaceship:
|
|
// Assignment
|
|
case OO_Equal:
|
|
case OO_SlashEqual:
|
|
case OO_PercentEqual:
|
|
case OO_CaretEqual:
|
|
case OO_PipeEqual:
|
|
case OO_LessLessEqual:
|
|
case OO_GreaterGreaterEqual:
|
|
case OO_PlusEqual:
|
|
case OO_MinusEqual:
|
|
case OO_StarEqual:
|
|
case OO_AmpEqual:
|
|
// Binary computation
|
|
case OO_Slash:
|
|
case OO_Percent:
|
|
case OO_Caret:
|
|
case OO_Pipe:
|
|
case OO_LessLess:
|
|
case OO_GreaterGreater:
|
|
case OO_AmpAmp:
|
|
case OO_PipePipe:
|
|
case OO_ArrowStar:
|
|
case OO_Comma:
|
|
return syntax::NodeKind::BinaryOperatorExpression;
|
|
case OO_Tilde:
|
|
case OO_Exclaim:
|
|
return syntax::NodeKind::PrefixUnaryOperatorExpression;
|
|
// Prefix/Postfix increment/decrement
|
|
case OO_PlusPlus:
|
|
case OO_MinusMinus:
|
|
switch (E.getNumArgs()) {
|
|
case 1:
|
|
return syntax::NodeKind::PrefixUnaryOperatorExpression;
|
|
case 2:
|
|
return syntax::NodeKind::PostfixUnaryOperatorExpression;
|
|
default:
|
|
llvm_unreachable("Invalid number of arguments for operator");
|
|
}
|
|
// Operators that can be unary or binary
|
|
case OO_Plus:
|
|
case OO_Minus:
|
|
case OO_Star:
|
|
case OO_Amp:
|
|
switch (E.getNumArgs()) {
|
|
case 1:
|
|
return syntax::NodeKind::PrefixUnaryOperatorExpression;
|
|
case 2:
|
|
return syntax::NodeKind::BinaryOperatorExpression;
|
|
default:
|
|
llvm_unreachable("Invalid number of arguments for operator");
|
|
}
|
|
return syntax::NodeKind::BinaryOperatorExpression;
|
|
// Not yet supported by SyntaxTree
|
|
case OO_New:
|
|
case OO_Delete:
|
|
case OO_Array_New:
|
|
case OO_Array_Delete:
|
|
case OO_Coawait:
|
|
case OO_Subscript:
|
|
case OO_Arrow:
|
|
return syntax::NodeKind::UnknownExpression;
|
|
case OO_Call:
|
|
return syntax::NodeKind::CallExpression;
|
|
case OO_Conditional: // not overloadable
|
|
case NUM_OVERLOADED_OPERATORS:
|
|
case OO_None:
|
|
llvm_unreachable("Not an overloadable operator");
|
|
}
|
|
llvm_unreachable("Unknown OverloadedOperatorKind enum");
|
|
}
|
|
|
|
/// Get the start of the qualified name. In the examples below it gives the
|
|
/// location of the `^`:
|
|
/// `int ^a;`
|
|
/// `int *^a;`
|
|
/// `int ^a::S::f(){}`
|
|
static SourceLocation getQualifiedNameStart(NamedDecl *D) {
|
|
assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
|
|
"only DeclaratorDecl and TypedefNameDecl are supported.");
|
|
|
|
auto DN = D->getDeclName();
|
|
bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
|
|
if (IsAnonymous)
|
|
return SourceLocation();
|
|
|
|
if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) {
|
|
if (DD->getQualifierLoc()) {
|
|
return DD->getQualifierLoc().getBeginLoc();
|
|
}
|
|
}
|
|
|
|
return D->getLocation();
|
|
}
|
|
|
|
/// Gets the range of the initializer inside an init-declarator C++ [dcl.decl].
|
|
/// `int a;` -> range of ``,
|
|
/// `int *a = nullptr` -> range of `= nullptr`.
|
|
/// `int a{}` -> range of `{}`.
|
|
/// `int a()` -> range of `()`.
|
|
static SourceRange getInitializerRange(Decl *D) {
|
|
if (auto *V = dyn_cast<VarDecl>(D)) {
|
|
auto *I = V->getInit();
|
|
// Initializers in range-based-for are not part of the declarator
|
|
if (I && !V->isCXXForRangeDecl())
|
|
return I->getSourceRange();
|
|
}
|
|
|
|
return SourceRange();
|
|
}
|
|
|
|
/// Gets the range of declarator as defined by the C++ grammar. E.g.
|
|
/// `int a;` -> range of `a`,
|
|
/// `int *a;` -> range of `*a`,
|
|
/// `int a[10];` -> range of `a[10]`,
|
|
/// `int a[1][2][3];` -> range of `a[1][2][3]`,
|
|
/// `int *a = nullptr` -> range of `*a = nullptr`.
|
|
/// `int S::f(){}` -> range of `S::f()`.
|
|
/// FIXME: \p Name must be a source range.
|
|
static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
|
|
SourceLocation Name,
|
|
SourceRange Initializer) {
|
|
SourceLocation Start = GetStartLoc().Visit(T);
|
|
SourceLocation End = T.getEndLoc();
|
|
if (Name.isValid()) {
|
|
if (Start.isInvalid())
|
|
Start = Name;
|
|
// End of TypeLoc could be invalid if the type is invalid, fallback to the
|
|
// NameLoc.
|
|
if (End.isInvalid() || SM.isBeforeInTranslationUnit(End, Name))
|
|
End = Name;
|
|
}
|
|
if (Initializer.isValid()) {
|
|
auto InitializerEnd = Initializer.getEnd();
|
|
assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) ||
|
|
End == InitializerEnd);
|
|
End = InitializerEnd;
|
|
}
|
|
return SourceRange(Start, End);
|
|
}
|
|
|
|
namespace {
|
|
/// All AST hierarchy roots that can be represented as pointers.
|
|
using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
|
|
/// Maintains a mapping from AST to syntax tree nodes. This class will get more
|
|
/// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
|
|
/// FIXME: expose this as public API.
|
|
class ASTToSyntaxMapping {
|
|
public:
|
|
void add(ASTPtr From, syntax::Tree *To) {
|
|
assert(To != nullptr);
|
|
assert(!From.isNull());
|
|
|
|
bool Added = Nodes.insert({From, To}).second;
|
|
(void)Added;
|
|
assert(Added && "mapping added twice");
|
|
}
|
|
|
|
void add(NestedNameSpecifierLoc From, syntax::Tree *To) {
|
|
assert(To != nullptr);
|
|
assert(From.hasQualifier());
|
|
|
|
bool Added = NNSNodes.insert({From, To}).second;
|
|
(void)Added;
|
|
assert(Added && "mapping added twice");
|
|
}
|
|
|
|
syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }
|
|
|
|
syntax::Tree *find(NestedNameSpecifierLoc P) const {
|
|
return NNSNodes.lookup(P);
|
|
}
|
|
|
|
private:
|
|
llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
|
|
llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes;
|
|
};
|
|
} // namespace
|
|
|
|
/// A helper class for constructing the syntax tree while traversing a clang
|
|
/// AST.
|
|
///
|
|
/// At each point of the traversal we maintain a list of pending nodes.
|
|
/// Initially all tokens are added as pending nodes. When processing a clang AST
|
|
/// node, the clients need to:
|
|
/// - create a corresponding syntax node,
|
|
/// - assign roles to all pending child nodes with 'markChild' and
|
|
/// 'markChildToken',
|
|
/// - replace the child nodes with the new syntax node in the pending list
|
|
/// with 'foldNode'.
|
|
///
|
|
/// Note that all children are expected to be processed when building a node.
|
|
///
|
|
/// Call finalize() to finish building the tree and consume the root node.
|
|
class syntax::TreeBuilder {
|
|
public:
|
|
TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
|
|
for (const auto &T : Arena.getTokenBuffer().expandedTokens())
|
|
LocationToToken.insert({T.location(), &T});
|
|
}
|
|
|
|
llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); }
|
|
const SourceManager &sourceManager() const {
|
|
return Arena.getSourceManager();
|
|
}
|
|
|
|
/// Populate children for \p New node, assuming it covers tokens from \p
|
|
/// Range.
|
|
void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) {
|
|
assert(New);
|
|
Pending.foldChildren(Arena, Range, New);
|
|
if (From)
|
|
Mapping.add(From, New);
|
|
}
|
|
|
|
void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) {
|
|
// FIXME: add mapping for TypeLocs
|
|
foldNode(Range, New, nullptr);
|
|
}
|
|
|
|
void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
|
|
NestedNameSpecifierLoc From) {
|
|
assert(New);
|
|
Pending.foldChildren(Arena, Range, New);
|
|
if (From)
|
|
Mapping.add(From, New);
|
|
}
|
|
|
|
/// Populate children for \p New list, assuming it covers tokens from a
|
|
/// subrange of \p SuperRange.
|
|
void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New,
|
|
ASTPtr From) {
|
|
assert(New);
|
|
auto ListRange = Pending.shrinkToFitList(SuperRange);
|
|
Pending.foldChildren(Arena, ListRange, New);
|
|
if (From)
|
|
Mapping.add(From, New);
|
|
}
|
|
|
|
/// Notifies that we should not consume trailing semicolon when computing
|
|
/// token range of \p D.
|
|
void noticeDeclWithoutSemicolon(Decl *D);
|
|
|
|
/// Mark the \p Child node with a corresponding \p Role. All marked children
|
|
/// should be consumed by foldNode.
|
|
/// When called on expressions (clang::Expr is derived from clang::Stmt),
|
|
/// wraps expressions into expression statement.
|
|
void markStmtChild(Stmt *Child, NodeRole Role);
|
|
/// Should be called for expressions in non-statement position to avoid
|
|
/// wrapping into expression statement.
|
|
void markExprChild(Expr *Child, NodeRole Role);
|
|
/// Set role for a token starting at \p Loc.
|
|
void markChildToken(SourceLocation Loc, NodeRole R);
|
|
/// Set role for \p T.
|
|
void markChildToken(const syntax::Token *T, NodeRole R);
|
|
|
|
/// Set role for \p N.
|
|
void markChild(syntax::Node *N, NodeRole R);
|
|
/// Set role for the syntax node matching \p N.
|
|
void markChild(ASTPtr N, NodeRole R);
|
|
/// Set role for the syntax node matching \p N.
|
|
void markChild(NestedNameSpecifierLoc N, NodeRole R);
|
|
|
|
/// Finish building the tree and consume the root node.
|
|
syntax::TranslationUnit *finalize() && {
|
|
auto Tokens = Arena.getTokenBuffer().expandedTokens();
|
|
assert(!Tokens.empty());
|
|
assert(Tokens.back().kind() == tok::eof);
|
|
|
|
// Build the root of the tree, consuming all the children.
|
|
Pending.foldChildren(Arena, Tokens.drop_back(),
|
|
new (Arena.getAllocator()) syntax::TranslationUnit);
|
|
|
|
auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
|
|
TU->assertInvariantsRecursive();
|
|
return TU;
|
|
}
|
|
|
|
/// Finds a token starting at \p L. The token must exist if \p L is valid.
|
|
const syntax::Token *findToken(SourceLocation L) const;
|
|
|
|
/// Finds the syntax tokens corresponding to the \p SourceRange.
|
|
ArrayRef<syntax::Token> getRange(SourceRange Range) const {
|
|
assert(Range.isValid());
|
|
return getRange(Range.getBegin(), Range.getEnd());
|
|
}
|
|
|
|
/// Finds the syntax tokens corresponding to the passed source locations.
|
|
/// \p First is the start position of the first token and \p Last is the start
|
|
/// position of the last token.
|
|
ArrayRef<syntax::Token> getRange(SourceLocation First,
|
|
SourceLocation Last) const {
|
|
assert(First.isValid());
|
|
assert(Last.isValid());
|
|
assert(First == Last ||
|
|
Arena.getSourceManager().isBeforeInTranslationUnit(First, Last));
|
|
return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
|
|
}
|
|
|
|
ArrayRef<syntax::Token>
|
|
getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
|
|
auto Tokens = getRange(D->getSourceRange());
|
|
return maybeAppendSemicolon(Tokens, D);
|
|
}
|
|
|
|
/// Returns true if \p D is the last declarator in a chain and is thus
|
|
/// reponsible for creating SimpleDeclaration for the whole chain.
|
|
bool isResponsibleForCreatingDeclaration(const Decl *D) const {
|
|
assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
|
|
"only DeclaratorDecl and TypedefNameDecl are supported.");
|
|
|
|
const Decl *Next = D->getNextDeclInContext();
|
|
|
|
// There's no next sibling, this one is responsible.
|
|
if (Next == nullptr) {
|
|
return true;
|
|
}
|
|
|
|
// Next sibling is not the same type, this one is responsible.
|
|
if (D->getKind() != Next->getKind()) {
|
|
return true;
|
|
}
|
|
// Next sibling doesn't begin at the same loc, it must be a different
|
|
// declaration, so this declarator is responsible.
|
|
if (Next->getBeginLoc() != D->getBeginLoc()) {
|
|
return true;
|
|
}
|
|
|
|
// NextT is a member of the same declaration, and we need the last member to
|
|
// create declaration. This one is not responsible.
|
|
return false;
|
|
}
|
|
|
|
ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
|
|
ArrayRef<syntax::Token> Tokens;
|
|
// We want to drop the template parameters for specializations.
|
|
if (const auto *S = dyn_cast<TagDecl>(D))
|
|
Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
|
|
else
|
|
Tokens = getRange(D->getSourceRange());
|
|
return maybeAppendSemicolon(Tokens, D);
|
|
}
|
|
|
|
ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
|
|
return getRange(E->getSourceRange());
|
|
}
|
|
|
|
/// Find the adjusted range for the statement, consuming the trailing
|
|
/// semicolon when needed.
|
|
ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
|
|
auto Tokens = getRange(S->getSourceRange());
|
|
if (isa<CompoundStmt>(S))
|
|
return Tokens;
|
|
|
|
// Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
|
|
// all statements that end with those. Consume this semicolon here.
|
|
if (Tokens.back().kind() == tok::semi)
|
|
return Tokens;
|
|
return withTrailingSemicolon(Tokens);
|
|
}
|
|
|
|
private:
|
|
ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens,
|
|
const Decl *D) const {
|
|
if (isa<NamespaceDecl>(D))
|
|
return Tokens;
|
|
if (DeclsWithoutSemicolons.count(D))
|
|
return Tokens;
|
|
// FIXME: do not consume trailing semicolon on function definitions.
|
|
// Most declarations own a semicolon in syntax trees, but not in clang AST.
|
|
return withTrailingSemicolon(Tokens);
|
|
}
|
|
|
|
ArrayRef<syntax::Token>
|
|
withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const {
|
|
assert(!Tokens.empty());
|
|
assert(Tokens.back().kind() != tok::eof);
|
|
// We never consume 'eof', so looking at the next token is ok.
|
|
if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
|
|
return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
|
|
return Tokens;
|
|
}
|
|
|
|
void setRole(syntax::Node *N, NodeRole R) {
|
|
assert(N->getRole() == NodeRole::Detached);
|
|
N->setRole(R);
|
|
}
|
|
|
|
/// A collection of trees covering the input tokens.
|
|
/// When created, each tree corresponds to a single token in the file.
|
|
/// Clients call 'foldChildren' to attach one or more subtrees to a parent
|
|
/// node and update the list of trees accordingly.
|
|
///
|
|
/// Ensures that added nodes properly nest and cover the whole token stream.
|
|
struct Forest {
|
|
Forest(syntax::Arena &A) {
|
|
assert(!A.getTokenBuffer().expandedTokens().empty());
|
|
assert(A.getTokenBuffer().expandedTokens().back().kind() == tok::eof);
|
|
// Create all leaf nodes.
|
|
// Note that we do not have 'eof' in the tree.
|
|
for (const auto &T : A.getTokenBuffer().expandedTokens().drop_back()) {
|
|
auto *L = new (A.getAllocator()) syntax::Leaf(&T);
|
|
L->Original = true;
|
|
L->CanModify = A.getTokenBuffer().spelledForExpanded(T).hasValue();
|
|
Trees.insert(Trees.end(), {&T, L});
|
|
}
|
|
}
|
|
|
|
void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) {
|
|
assert(!Range.empty());
|
|
auto It = Trees.lower_bound(Range.begin());
|
|
assert(It != Trees.end() && "no node found");
|
|
assert(It->first == Range.begin() && "no child with the specified range");
|
|
assert((std::next(It) == Trees.end() ||
|
|
std::next(It)->first == Range.end()) &&
|
|
"no child with the specified range");
|
|
assert(It->second->getRole() == NodeRole::Detached &&
|
|
"re-assigning role for a child");
|
|
It->second->setRole(Role);
|
|
}
|
|
|
|
/// Shrink \p Range to a subrange that only contains tokens of a list.
|
|
/// List elements and delimiters should already have correct roles.
|
|
ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) {
|
|
auto BeginChildren = Trees.lower_bound(Range.begin());
|
|
assert((BeginChildren == Trees.end() ||
|
|
BeginChildren->first == Range.begin()) &&
|
|
"Range crosses boundaries of existing subtrees");
|
|
|
|
auto EndChildren = Trees.lower_bound(Range.end());
|
|
assert(
|
|
(EndChildren == Trees.end() || EndChildren->first == Range.end()) &&
|
|
"Range crosses boundaries of existing subtrees");
|
|
|
|
auto BelongsToList = [](decltype(Trees)::value_type KV) {
|
|
auto Role = KV.second->getRole();
|
|
return Role == syntax::NodeRole::ListElement ||
|
|
Role == syntax::NodeRole::ListDelimiter;
|
|
};
|
|
|
|
auto BeginListChildren =
|
|
std::find_if(BeginChildren, EndChildren, BelongsToList);
|
|
|
|
auto EndListChildren =
|
|
std::find_if_not(BeginListChildren, EndChildren, BelongsToList);
|
|
|
|
return ArrayRef<syntax::Token>(BeginListChildren->first,
|
|
EndListChildren->first);
|
|
}
|
|
|
|
/// Add \p Node to the forest and attach child nodes based on \p Tokens.
|
|
void foldChildren(const syntax::Arena &A, ArrayRef<syntax::Token> Tokens,
|
|
syntax::Tree *Node) {
|
|
// Attach children to `Node`.
|
|
assert(Node->getFirstChild() == nullptr && "node already has children");
|
|
|
|
auto *FirstToken = Tokens.begin();
|
|
auto BeginChildren = Trees.lower_bound(FirstToken);
|
|
|
|
assert((BeginChildren == Trees.end() ||
|
|
BeginChildren->first == FirstToken) &&
|
|
"fold crosses boundaries of existing subtrees");
|
|
auto EndChildren = Trees.lower_bound(Tokens.end());
|
|
assert(
|
|
(EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
|
|
"fold crosses boundaries of existing subtrees");
|
|
|
|
for (auto It = BeginChildren; It != EndChildren; ++It) {
|
|
auto *C = It->second;
|
|
if (C->getRole() == NodeRole::Detached)
|
|
C->setRole(NodeRole::Unknown);
|
|
Node->appendChildLowLevel(C);
|
|
}
|
|
|
|
// Mark that this node came from the AST and is backed by the source code.
|
|
Node->Original = true;
|
|
Node->CanModify =
|
|
A.getTokenBuffer().spelledForExpanded(Tokens).hasValue();
|
|
|
|
Trees.erase(BeginChildren, EndChildren);
|
|
Trees.insert({FirstToken, Node});
|
|
}
|
|
|
|
// EXPECTS: all tokens were consumed and are owned by a single root node.
|
|
syntax::Node *finalize() && {
|
|
assert(Trees.size() == 1);
|
|
auto *Root = Trees.begin()->second;
|
|
Trees = {};
|
|
return Root;
|
|
}
|
|
|
|
std::string str(const syntax::Arena &A) const {
|
|
std::string R;
|
|
for (auto It = Trees.begin(); It != Trees.end(); ++It) {
|
|
unsigned CoveredTokens =
|
|
It != Trees.end()
|
|
? (std::next(It)->first - It->first)
|
|
: A.getTokenBuffer().expandedTokens().end() - It->first;
|
|
|
|
R += std::string(
|
|
formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->getKind(),
|
|
It->first->text(A.getSourceManager()), CoveredTokens));
|
|
R += It->second->dump(A.getSourceManager());
|
|
}
|
|
return R;
|
|
}
|
|
|
|
private:
|
|
/// Maps from the start token to a subtree starting at that token.
|
|
/// Keys in the map are pointers into the array of expanded tokens, so
|
|
/// pointer order corresponds to the order of preprocessor tokens.
|
|
std::map<const syntax::Token *, syntax::Node *> Trees;
|
|
};
|
|
|
|
/// For debugging purposes.
|
|
std::string str() { return Pending.str(Arena); }
|
|
|
|
syntax::Arena &Arena;
|
|
/// To quickly find tokens by their start location.
|
|
llvm::DenseMap<SourceLocation, const syntax::Token *> LocationToToken;
|
|
Forest Pending;
|
|
llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
|
|
ASTToSyntaxMapping Mapping;
|
|
};
|
|
|
|
namespace {
|
|
class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
|
|
public:
|
|
explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder)
|
|
: Builder(Builder), Context(Context) {}
|
|
|
|
bool shouldTraversePostOrder() const { return true; }
|
|
|
|
bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
|
|
return processDeclaratorAndDeclaration(DD);
|
|
}
|
|
|
|
bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
|
|
return processDeclaratorAndDeclaration(TD);
|
|
}
|
|
|
|
bool VisitDecl(Decl *D) {
|
|
assert(!D->isImplicit());
|
|
Builder.foldNode(Builder.getDeclarationRange(D),
|
|
new (allocator()) syntax::UnknownDeclaration(), D);
|
|
return true;
|
|
}
|
|
|
|
// RAV does not call WalkUpFrom* on explicit instantiations, so we have to
|
|
// override Traverse.
|
|
// FIXME: make RAV call WalkUpFrom* instead.
|
|
bool
|
|
TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
|
|
if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
|
|
return false;
|
|
if (C->isExplicitSpecialization())
|
|
return true; // we are only interested in explicit instantiations.
|
|
auto *Declaration =
|
|
cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
|
|
foldExplicitTemplateInstantiation(
|
|
Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
|
|
Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromTemplateDecl(TemplateDecl *S) {
|
|
foldTemplateDeclaration(
|
|
Builder.getDeclarationRange(S),
|
|
Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
|
|
Builder.getDeclarationRange(S->getTemplatedDecl()), S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromTagDecl(TagDecl *C) {
|
|
// FIXME: build the ClassSpecifier node.
|
|
if (!C->isFreeStanding()) {
|
|
assert(C->getNumTemplateParameterLists() == 0);
|
|
return true;
|
|
}
|
|
handleFreeStandingTagDecl(C);
|
|
return true;
|
|
}
|
|
|
|
syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
|
|
assert(C->isFreeStanding());
|
|
// Class is a declaration specifier and needs a spanning declaration node.
|
|
auto DeclarationRange = Builder.getDeclarationRange(C);
|
|
syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
|
|
Builder.foldNode(DeclarationRange, Result, nullptr);
|
|
|
|
// Build TemplateDeclaration nodes if we had template parameters.
|
|
auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
|
|
const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
|
|
auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
|
|
Result =
|
|
foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
|
|
DeclarationRange = R;
|
|
};
|
|
if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
|
|
ConsumeTemplateParameters(*S->getTemplateParameters());
|
|
for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
|
|
ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
|
|
return Result;
|
|
}
|
|
|
|
bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
|
|
// We do not want to call VisitDecl(), the declaration for translation
|
|
// unit is built by finalize().
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromCompoundStmt(CompoundStmt *S) {
|
|
using NodeRole = syntax::NodeRole;
|
|
|
|
Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
|
|
for (auto *Child : S->body())
|
|
Builder.markStmtChild(Child, NodeRole::Statement);
|
|
Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
|
|
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::CompoundStatement, S);
|
|
return true;
|
|
}
|
|
|
|
// Some statements are not yet handled by syntax trees.
|
|
bool WalkUpFromStmt(Stmt *S) {
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::UnknownStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool TraverseIfStmt(IfStmt *S) {
|
|
bool Result = [&, this]() {
|
|
if (S->getInit() && !TraverseStmt(S->getInit())) {
|
|
return false;
|
|
}
|
|
// In cases where the condition is an initialized declaration in a
|
|
// statement, we want to preserve the declaration and ignore the
|
|
// implicit condition expression in the syntax tree.
|
|
if (S->hasVarStorage()) {
|
|
if (!TraverseStmt(S->getConditionVariableDeclStmt()))
|
|
return false;
|
|
} else if (S->getCond() && !TraverseStmt(S->getCond()))
|
|
return false;
|
|
|
|
if (S->getThen() && !TraverseStmt(S->getThen()))
|
|
return false;
|
|
if (S->getElse() && !TraverseStmt(S->getElse()))
|
|
return false;
|
|
return true;
|
|
}();
|
|
WalkUpFromIfStmt(S);
|
|
return Result;
|
|
}
|
|
|
|
bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
|
|
// We override to traverse range initializer as VarDecl.
|
|
// RAV traverses it as a statement, we produce invalid node kinds in that
|
|
// case.
|
|
// FIXME: should do this in RAV instead?
|
|
bool Result = [&, this]() {
|
|
if (S->getInit() && !TraverseStmt(S->getInit()))
|
|
return false;
|
|
if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
|
|
return false;
|
|
if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
|
|
return false;
|
|
if (S->getBody() && !TraverseStmt(S->getBody()))
|
|
return false;
|
|
return true;
|
|
}();
|
|
WalkUpFromCXXForRangeStmt(S);
|
|
return Result;
|
|
}
|
|
|
|
bool TraverseStmt(Stmt *S) {
|
|
if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) {
|
|
// We want to consume the semicolon, make sure SimpleDeclaration does not.
|
|
for (auto *D : DS->decls())
|
|
Builder.noticeDeclWithoutSemicolon(D);
|
|
} else if (auto *E = dyn_cast_or_null<Expr>(S)) {
|
|
return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E));
|
|
}
|
|
return RecursiveASTVisitor::TraverseStmt(S);
|
|
}
|
|
|
|
bool TraverseOpaqueValueExpr(OpaqueValueExpr *VE) {
|
|
// OpaqueValue doesn't correspond to concrete syntax, ignore it.
|
|
return true;
|
|
}
|
|
|
|
// Some expressions are not yet handled by syntax trees.
|
|
bool WalkUpFromExpr(Expr *E) {
|
|
assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
|
|
Builder.foldNode(Builder.getExprRange(E),
|
|
new (allocator()) syntax::UnknownExpression, E);
|
|
return true;
|
|
}
|
|
|
|
bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) {
|
|
// The semantic AST node `UserDefinedLiteral` (UDL) may have one child node
|
|
// referencing the location of the UDL suffix (`_w` in `1.2_w`). The
|
|
// UDL suffix location does not point to the beginning of a token, so we
|
|
// can't represent the UDL suffix as a separate syntax tree node.
|
|
|
|
return WalkUpFromUserDefinedLiteral(S);
|
|
}
|
|
|
|
syntax::UserDefinedLiteralExpression *
|
|
buildUserDefinedLiteral(UserDefinedLiteral *S) {
|
|
switch (S->getLiteralOperatorKind()) {
|
|
case UserDefinedLiteral::LOK_Integer:
|
|
return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
|
|
case UserDefinedLiteral::LOK_Floating:
|
|
return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
|
|
case UserDefinedLiteral::LOK_Character:
|
|
return new (allocator()) syntax::CharUserDefinedLiteralExpression;
|
|
case UserDefinedLiteral::LOK_String:
|
|
return new (allocator()) syntax::StringUserDefinedLiteralExpression;
|
|
case UserDefinedLiteral::LOK_Raw:
|
|
case UserDefinedLiteral::LOK_Template:
|
|
// For raw literal operator and numeric literal operator template we
|
|
// cannot get the type of the operand in the semantic AST. We get this
|
|
// information from the token. As integer and floating point have the same
|
|
// token kind, we run `NumericLiteralParser` again to distinguish them.
|
|
auto TokLoc = S->getBeginLoc();
|
|
auto TokSpelling =
|
|
Builder.findToken(TokLoc)->text(Context.getSourceManager());
|
|
auto Literal =
|
|
NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(),
|
|
Context.getLangOpts(), Context.getTargetInfo(),
|
|
Context.getDiagnostics());
|
|
if (Literal.isIntegerLiteral())
|
|
return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
|
|
else {
|
|
assert(Literal.isFloatingLiteral());
|
|
return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
|
|
}
|
|
}
|
|
llvm_unreachable("Unknown literal operator kind.");
|
|
}
|
|
|
|
bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) {
|
|
Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
|
|
Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the
|
|
// `DependentTemplateSpecializationType` case.
|
|
/// Given a nested-name-specifier return the range for the last name
|
|
/// specifier.
|
|
///
|
|
/// e.g. `std::T::template X<U>::` => `template X<U>::`
|
|
SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) {
|
|
auto SR = NNSLoc.getLocalSourceRange();
|
|
|
|
// The method `NestedNameSpecifierLoc::getLocalSourceRange` *should*
|
|
// return the desired `SourceRange`, but there is a corner case. For a
|
|
// `DependentTemplateSpecializationType` this method returns its
|
|
// qualifiers as well, in other words in the example above this method
|
|
// returns `T::template X<U>::` instead of only `template X<U>::`
|
|
if (auto TL = NNSLoc.getTypeLoc()) {
|
|
if (auto DependentTL =
|
|
TL.getAs<DependentTemplateSpecializationTypeLoc>()) {
|
|
// The 'template' keyword is always present in dependent template
|
|
// specializations. Except in the case of incorrect code
|
|
// TODO: Treat the case of incorrect code.
|
|
SR.setBegin(DependentTL.getTemplateKeywordLoc());
|
|
}
|
|
}
|
|
|
|
return SR;
|
|
}
|
|
|
|
syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) {
|
|
switch (NNS.getKind()) {
|
|
case NestedNameSpecifier::Global:
|
|
return syntax::NodeKind::GlobalNameSpecifier;
|
|
case NestedNameSpecifier::Namespace:
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
case NestedNameSpecifier::Identifier:
|
|
return syntax::NodeKind::IdentifierNameSpecifier;
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
return syntax::NodeKind::SimpleTemplateNameSpecifier;
|
|
case NestedNameSpecifier::TypeSpec: {
|
|
const auto *NNSType = NNS.getAsType();
|
|
assert(NNSType);
|
|
if (isa<DecltypeType>(NNSType))
|
|
return syntax::NodeKind::DecltypeNameSpecifier;
|
|
if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>(
|
|
NNSType))
|
|
return syntax::NodeKind::SimpleTemplateNameSpecifier;
|
|
return syntax::NodeKind::IdentifierNameSpecifier;
|
|
}
|
|
default:
|
|
// FIXME: Support Microsoft's __super
|
|
llvm::report_fatal_error("We don't yet support the __super specifier",
|
|
true);
|
|
}
|
|
}
|
|
|
|
syntax::NameSpecifier *
|
|
buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) {
|
|
assert(NNSLoc.hasQualifier());
|
|
auto NameSpecifierTokens =
|
|
Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back();
|
|
switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) {
|
|
case syntax::NodeKind::GlobalNameSpecifier:
|
|
return new (allocator()) syntax::GlobalNameSpecifier;
|
|
case syntax::NodeKind::IdentifierNameSpecifier: {
|
|
assert(NameSpecifierTokens.size() == 1);
|
|
Builder.markChildToken(NameSpecifierTokens.begin(),
|
|
syntax::NodeRole::Unknown);
|
|
auto *NS = new (allocator()) syntax::IdentifierNameSpecifier;
|
|
Builder.foldNode(NameSpecifierTokens, NS, nullptr);
|
|
return NS;
|
|
}
|
|
case syntax::NodeKind::SimpleTemplateNameSpecifier: {
|
|
// TODO: Build `SimpleTemplateNameSpecifier` children and implement
|
|
// accessors to them.
|
|
// Be aware, we cannot do that simply by calling `TraverseTypeLoc`,
|
|
// some `TypeLoc`s have inside them the previous name specifier and
|
|
// we want to treat them independently.
|
|
auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier;
|
|
Builder.foldNode(NameSpecifierTokens, NS, nullptr);
|
|
return NS;
|
|
}
|
|
case syntax::NodeKind::DecltypeNameSpecifier: {
|
|
const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>();
|
|
if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL))
|
|
return nullptr;
|
|
auto *NS = new (allocator()) syntax::DecltypeNameSpecifier;
|
|
// TODO: Implement accessor to `DecltypeNameSpecifier` inner
|
|
// `DecltypeTypeLoc`.
|
|
// For that add mapping from `TypeLoc` to `syntax::Node*` then:
|
|
// Builder.markChild(TypeLoc, syntax::NodeRole);
|
|
Builder.foldNode(NameSpecifierTokens, NS, nullptr);
|
|
return NS;
|
|
}
|
|
default:
|
|
llvm_unreachable("getChildKind() does not return this value");
|
|
}
|
|
}
|
|
|
|
// To build syntax tree nodes for NestedNameSpecifierLoc we override
|
|
// Traverse instead of WalkUpFrom because we want to traverse the children
|
|
// ourselves and build a list instead of a nested tree of name specifier
|
|
// prefixes.
|
|
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) {
|
|
if (!QualifierLoc)
|
|
return true;
|
|
for (auto It = QualifierLoc; It; It = It.getPrefix()) {
|
|
auto *NS = buildNameSpecifier(It);
|
|
if (!NS)
|
|
return false;
|
|
Builder.markChild(NS, syntax::NodeRole::ListElement);
|
|
Builder.markChildToken(It.getEndLoc(), syntax::NodeRole::ListDelimiter);
|
|
}
|
|
Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()),
|
|
new (allocator()) syntax::NestedNameSpecifier,
|
|
QualifierLoc);
|
|
return true;
|
|
}
|
|
|
|
syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TemplateKeywordLoc,
|
|
SourceRange UnqualifiedIdLoc,
|
|
ASTPtr From) {
|
|
if (QualifierLoc) {
|
|
Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier);
|
|
if (TemplateKeywordLoc.isValid())
|
|
Builder.markChildToken(TemplateKeywordLoc,
|
|
syntax::NodeRole::TemplateKeyword);
|
|
}
|
|
|
|
auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId;
|
|
Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId,
|
|
nullptr);
|
|
Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId);
|
|
|
|
auto IdExpressionBeginLoc =
|
|
QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin();
|
|
|
|
auto *TheIdExpression = new (allocator()) syntax::IdExpression;
|
|
Builder.foldNode(
|
|
Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()),
|
|
TheIdExpression, From);
|
|
|
|
return TheIdExpression;
|
|
}
|
|
|
|
bool WalkUpFromMemberExpr(MemberExpr *S) {
|
|
// For `MemberExpr` with implicit `this->` we generate a simple
|
|
// `id-expression` syntax node, beacuse an implicit `member-expression` is
|
|
// syntactically undistinguishable from an `id-expression`
|
|
if (S->isImplicitAccess()) {
|
|
buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
|
|
SourceRange(S->getMemberLoc(), S->getEndLoc()), S);
|
|
return true;
|
|
}
|
|
|
|
auto *TheIdExpression = buildIdExpression(
|
|
S->getQualifierLoc(), S->getTemplateKeywordLoc(),
|
|
SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr);
|
|
|
|
Builder.markChild(TheIdExpression, syntax::NodeRole::Member);
|
|
|
|
Builder.markExprChild(S->getBase(), syntax::NodeRole::Object);
|
|
Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken);
|
|
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::MemberExpression, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromDeclRefExpr(DeclRefExpr *S) {
|
|
buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
|
|
SourceRange(S->getLocation(), S->getEndLoc()), S);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Same logic as DeclRefExpr.
|
|
bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) {
|
|
buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
|
|
SourceRange(S->getLocation(), S->getEndLoc()), S);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromCXXThisExpr(CXXThisExpr *S) {
|
|
if (!S->isImplicit()) {
|
|
Builder.markChildToken(S->getLocation(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::ThisExpression, S);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromParenExpr(ParenExpr *S) {
|
|
Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen);
|
|
Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression);
|
|
Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen);
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::ParenExpression, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
|
|
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::IntegerLiteralExpression, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromCharacterLiteral(CharacterLiteral *S) {
|
|
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::CharacterLiteralExpression, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromFloatingLiteral(FloatingLiteral *S) {
|
|
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::FloatingLiteralExpression, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromStringLiteral(StringLiteral *S) {
|
|
Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::StringLiteralExpression, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) {
|
|
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::BoolLiteralExpression, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
|
|
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::CxxNullPtrExpression, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromUnaryOperator(UnaryOperator *S) {
|
|
Builder.markChildToken(S->getOperatorLoc(),
|
|
syntax::NodeRole::OperatorToken);
|
|
Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand);
|
|
|
|
if (S->isPostfix())
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::PostfixUnaryOperatorExpression,
|
|
S);
|
|
else
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::PrefixUnaryOperatorExpression,
|
|
S);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromBinaryOperator(BinaryOperator *S) {
|
|
Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide);
|
|
Builder.markChildToken(S->getOperatorLoc(),
|
|
syntax::NodeRole::OperatorToken);
|
|
Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide);
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::BinaryOperatorExpression, S);
|
|
return true;
|
|
}
|
|
|
|
/// Builds `CallArguments` syntax node from arguments that appear in source
|
|
/// code, i.e. not default arguments.
|
|
syntax::CallArguments *
|
|
buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) {
|
|
auto Args = dropDefaultArgs(ArgsAndDefaultArgs);
|
|
for (auto *Arg : Args) {
|
|
Builder.markExprChild(Arg, syntax::NodeRole::ListElement);
|
|
const auto *DelimiterToken =
|
|
std::next(Builder.findToken(Arg->getEndLoc()));
|
|
if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
|
|
Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
|
|
}
|
|
|
|
auto *Arguments = new (allocator()) syntax::CallArguments;
|
|
if (!Args.empty())
|
|
Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(),
|
|
(*(Args.end() - 1))->getEndLoc()),
|
|
Arguments, nullptr);
|
|
|
|
return Arguments;
|
|
}
|
|
|
|
bool WalkUpFromCallExpr(CallExpr *S) {
|
|
Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee);
|
|
|
|
const auto *LParenToken =
|
|
std::next(Builder.findToken(S->getCallee()->getEndLoc()));
|
|
// FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed
|
|
// the test on decltype desctructors.
|
|
if (LParenToken->kind() == clang::tok::l_paren)
|
|
Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
|
|
|
|
Builder.markChild(buildCallArguments(S->arguments()),
|
|
syntax::NodeRole::Arguments);
|
|
|
|
Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
|
|
|
|
Builder.foldNode(Builder.getRange(S->getSourceRange()),
|
|
new (allocator()) syntax::CallExpression, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) {
|
|
// Ignore the implicit calls to default constructors.
|
|
if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(S->getArg(0))) &&
|
|
S->getParenOrBraceRange().isInvalid())
|
|
return true;
|
|
return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S);
|
|
}
|
|
|
|
bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
|
|
// To construct a syntax tree of the same shape for calls to built-in and
|
|
// user-defined operators, ignore the `DeclRefExpr` that refers to the
|
|
// operator and treat it as a simple token. Do that by traversing
|
|
// arguments instead of children.
|
|
for (auto *child : S->arguments()) {
|
|
// A postfix unary operator is declared as taking two operands. The
|
|
// second operand is used to distinguish from its prefix counterpart. In
|
|
// the semantic AST this "phantom" operand is represented as a
|
|
// `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this
|
|
// operand because it does not correspond to anything written in source
|
|
// code.
|
|
if (child->getSourceRange().isInvalid()) {
|
|
assert(getOperatorNodeKind(*S) ==
|
|
syntax::NodeKind::PostfixUnaryOperatorExpression);
|
|
continue;
|
|
}
|
|
if (!TraverseStmt(child))
|
|
return false;
|
|
}
|
|
return WalkUpFromCXXOperatorCallExpr(S);
|
|
}
|
|
|
|
bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
|
|
switch (getOperatorNodeKind(*S)) {
|
|
case syntax::NodeKind::BinaryOperatorExpression:
|
|
Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide);
|
|
Builder.markChildToken(S->getOperatorLoc(),
|
|
syntax::NodeRole::OperatorToken);
|
|
Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide);
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::BinaryOperatorExpression, S);
|
|
return true;
|
|
case syntax::NodeKind::PrefixUnaryOperatorExpression:
|
|
Builder.markChildToken(S->getOperatorLoc(),
|
|
syntax::NodeRole::OperatorToken);
|
|
Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::PrefixUnaryOperatorExpression,
|
|
S);
|
|
return true;
|
|
case syntax::NodeKind::PostfixUnaryOperatorExpression:
|
|
Builder.markChildToken(S->getOperatorLoc(),
|
|
syntax::NodeRole::OperatorToken);
|
|
Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::PostfixUnaryOperatorExpression,
|
|
S);
|
|
return true;
|
|
case syntax::NodeKind::CallExpression: {
|
|
Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee);
|
|
|
|
const auto *LParenToken =
|
|
std::next(Builder.findToken(S->getArg(0)->getEndLoc()));
|
|
// FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have
|
|
// fixed the test on decltype desctructors.
|
|
if (LParenToken->kind() == clang::tok::l_paren)
|
|
Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
|
|
|
|
Builder.markChild(buildCallArguments(CallExpr::arg_range(
|
|
S->arg_begin() + 1, S->arg_end())),
|
|
syntax::NodeRole::Arguments);
|
|
|
|
Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
|
|
|
|
Builder.foldNode(Builder.getRange(S->getSourceRange()),
|
|
new (allocator()) syntax::CallExpression, S);
|
|
return true;
|
|
}
|
|
case syntax::NodeKind::UnknownExpression:
|
|
return WalkUpFromExpr(S);
|
|
default:
|
|
llvm_unreachable("getOperatorNodeKind() does not return this value");
|
|
}
|
|
}
|
|
|
|
bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; }
|
|
|
|
bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
|
|
auto Tokens = Builder.getDeclarationRange(S);
|
|
if (Tokens.front().kind() == tok::coloncolon) {
|
|
// Handle nested namespace definitions. Those start at '::' token, e.g.
|
|
// namespace a^::b {}
|
|
// FIXME: build corresponding nodes for the name of this namespace.
|
|
return true;
|
|
}
|
|
Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test
|
|
// results. Find test coverage or remove it.
|
|
bool TraverseParenTypeLoc(ParenTypeLoc L) {
|
|
// We reverse order of traversal to get the proper syntax structure.
|
|
if (!WalkUpFromParenTypeLoc(L))
|
|
return false;
|
|
return TraverseTypeLoc(L.getInnerLoc());
|
|
}
|
|
|
|
bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
|
|
Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
|
|
Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
|
|
Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
|
|
new (allocator()) syntax::ParenDeclarator, L);
|
|
return true;
|
|
}
|
|
|
|
// Declarator chunks, they are produced by type locs and some clang::Decls.
|
|
bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
|
|
Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
|
|
Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size);
|
|
Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
|
|
Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
|
|
new (allocator()) syntax::ArraySubscript, L);
|
|
return true;
|
|
}
|
|
|
|
syntax::ParameterDeclarationList *
|
|
buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) {
|
|
for (auto *P : Params) {
|
|
Builder.markChild(P, syntax::NodeRole::ListElement);
|
|
const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc()));
|
|
if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
|
|
Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
|
|
}
|
|
auto *Parameters = new (allocator()) syntax::ParameterDeclarationList;
|
|
if (!Params.empty())
|
|
Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(),
|
|
Params.back()->getEndLoc()),
|
|
Parameters, nullptr);
|
|
return Parameters;
|
|
}
|
|
|
|
bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
|
|
Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
|
|
|
|
Builder.markChild(buildParameterDeclarationList(L.getParams()),
|
|
syntax::NodeRole::Parameters);
|
|
|
|
Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
|
|
Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
|
|
new (allocator()) syntax::ParametersAndQualifiers, L);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
|
|
if (!L.getTypePtr()->hasTrailingReturn())
|
|
return WalkUpFromFunctionTypeLoc(L);
|
|
|
|
auto *TrailingReturnTokens = buildTrailingReturn(L);
|
|
// Finish building the node for parameters.
|
|
Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn);
|
|
return WalkUpFromFunctionTypeLoc(L);
|
|
}
|
|
|
|
bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) {
|
|
// In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds
|
|
// to "Y::*" but it points to a `ParenTypeLoc` that corresponds to
|
|
// "(Y::*mp)" We thus reverse the order of traversal to get the proper
|
|
// syntax structure.
|
|
if (!WalkUpFromMemberPointerTypeLoc(L))
|
|
return false;
|
|
return TraverseTypeLoc(L.getPointeeLoc());
|
|
}
|
|
|
|
bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
|
|
auto SR = L.getLocalSourceRange();
|
|
Builder.foldNode(Builder.getRange(SR),
|
|
new (allocator()) syntax::MemberPointer, L);
|
|
return true;
|
|
}
|
|
|
|
// The code below is very regular, it could even be generated with some
|
|
// preprocessor magic. We merely assign roles to the corresponding children
|
|
// and fold resulting nodes.
|
|
bool WalkUpFromDeclStmt(DeclStmt *S) {
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::DeclarationStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromNullStmt(NullStmt *S) {
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::EmptyStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromSwitchStmt(SwitchStmt *S) {
|
|
Builder.markChildToken(S->getSwitchLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::SwitchStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromCaseStmt(CaseStmt *S) {
|
|
Builder.markChildToken(S->getKeywordLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue);
|
|
Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::CaseStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromDefaultStmt(DefaultStmt *S) {
|
|
Builder.markChildToken(S->getKeywordLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::DefaultStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromIfStmt(IfStmt *S) {
|
|
Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
|
|
Stmt *ConditionStatement = S->getCond();
|
|
if (S->hasVarStorage())
|
|
ConditionStatement = S->getConditionVariableDeclStmt();
|
|
Builder.markStmtChild(ConditionStatement, syntax::NodeRole::Condition);
|
|
Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement);
|
|
Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword);
|
|
Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::IfStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromForStmt(ForStmt *S) {
|
|
Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::ForStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromWhileStmt(WhileStmt *S) {
|
|
Builder.markChildToken(S->getWhileLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::WhileStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromContinueStmt(ContinueStmt *S) {
|
|
Builder.markChildToken(S->getContinueLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::ContinueStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromBreakStmt(BreakStmt *S) {
|
|
Builder.markChildToken(S->getBreakLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::BreakStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromReturnStmt(ReturnStmt *S) {
|
|
Builder.markChildToken(S->getReturnLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::ReturnStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
|
|
Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::RangeBasedForStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromEmptyDecl(EmptyDecl *S) {
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::EmptyDeclaration, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
|
|
Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition);
|
|
Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message);
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::StaticAssertDeclaration, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::LinkageSpecificationDeclaration,
|
|
S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::NamespaceAliasDefinition, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::UsingNamespaceDirective, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromUsingDecl(UsingDecl *S) {
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::UsingDeclaration, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::UsingDeclaration, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::UsingDeclaration, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::TypeAliasDeclaration, S);
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
/// Folds SimpleDeclarator node (if present) and in case this is the last
|
|
/// declarator in the chain it also folds SimpleDeclaration node.
|
|
template <class T> bool processDeclaratorAndDeclaration(T *D) {
|
|
auto Range = getDeclaratorRange(
|
|
Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(),
|
|
getQualifiedNameStart(D), getInitializerRange(D));
|
|
|
|
// There doesn't have to be a declarator (e.g. `void foo(int)` only has
|
|
// declaration, but no declarator).
|
|
if (!Range.getBegin().isValid()) {
|
|
Builder.markChild(new (allocator()) syntax::DeclaratorList,
|
|
syntax::NodeRole::Declarators);
|
|
Builder.foldNode(Builder.getDeclarationRange(D),
|
|
new (allocator()) syntax::SimpleDeclaration, D);
|
|
return true;
|
|
}
|
|
|
|
auto *N = new (allocator()) syntax::SimpleDeclarator;
|
|
Builder.foldNode(Builder.getRange(Range), N, nullptr);
|
|
Builder.markChild(N, syntax::NodeRole::ListElement);
|
|
|
|
if (!Builder.isResponsibleForCreatingDeclaration(D)) {
|
|
// If this is not the last declarator in the declaration we expect a
|
|
// delimiter after it.
|
|
const auto *DelimiterToken = std::next(Builder.findToken(Range.getEnd()));
|
|
if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
|
|
Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
|
|
} else {
|
|
auto *DL = new (allocator()) syntax::DeclaratorList;
|
|
auto DeclarationRange = Builder.getDeclarationRange(D);
|
|
Builder.foldList(DeclarationRange, DL, nullptr);
|
|
|
|
Builder.markChild(DL, syntax::NodeRole::Declarators);
|
|
Builder.foldNode(DeclarationRange,
|
|
new (allocator()) syntax::SimpleDeclaration, D);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Returns the range of the built node.
|
|
syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) {
|
|
assert(L.getTypePtr()->hasTrailingReturn());
|
|
|
|
auto ReturnedType = L.getReturnLoc();
|
|
// Build node for the declarator, if any.
|
|
auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType),
|
|
ReturnedType.getEndLoc());
|
|
syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
|
|
if (ReturnDeclaratorRange.isValid()) {
|
|
ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
|
|
Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
|
|
ReturnDeclarator, nullptr);
|
|
}
|
|
|
|
// Build node for trailing return type.
|
|
auto Return = Builder.getRange(ReturnedType.getSourceRange());
|
|
const auto *Arrow = Return.begin() - 1;
|
|
assert(Arrow->kind() == tok::arrow);
|
|
auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
|
|
Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
|
|
if (ReturnDeclarator)
|
|
Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator);
|
|
auto *R = new (allocator()) syntax::TrailingReturnType;
|
|
Builder.foldNode(Tokens, R, L);
|
|
return R;
|
|
}
|
|
|
|
void foldExplicitTemplateInstantiation(
|
|
ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
|
|
const syntax::Token *TemplateKW,
|
|
syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
|
|
assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
|
|
assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
|
|
Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
|
|
Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration);
|
|
Builder.foldNode(
|
|
Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
|
|
}
|
|
|
|
syntax::TemplateDeclaration *foldTemplateDeclaration(
|
|
ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
|
|
ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
|
|
assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
|
|
Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
|
|
|
|
auto *N = new (allocator()) syntax::TemplateDeclaration;
|
|
Builder.foldNode(Range, N, From);
|
|
Builder.markChild(N, syntax::NodeRole::Declaration);
|
|
return N;
|
|
}
|
|
|
|
/// A small helper to save some typing.
|
|
llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
|
|
|
|
syntax::TreeBuilder &Builder;
|
|
const ASTContext &Context;
|
|
};
|
|
} // namespace
|
|
|
|
void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
|
|
DeclsWithoutSemicolons.insert(D);
|
|
}
|
|
|
|
void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
|
|
if (Loc.isInvalid())
|
|
return;
|
|
Pending.assignRole(*findToken(Loc), Role);
|
|
}
|
|
|
|
void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
|
|
if (!T)
|
|
return;
|
|
Pending.assignRole(*T, R);
|
|
}
|
|
|
|
void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
|
|
assert(N);
|
|
setRole(N, R);
|
|
}
|
|
|
|
void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
|
|
auto *SN = Mapping.find(N);
|
|
assert(SN != nullptr);
|
|
setRole(SN, R);
|
|
}
|
|
void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) {
|
|
auto *SN = Mapping.find(NNSLoc);
|
|
assert(SN != nullptr);
|
|
setRole(SN, R);
|
|
}
|
|
|
|
void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
|
|
if (!Child)
|
|
return;
|
|
|
|
syntax::Tree *ChildNode;
|
|
if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
|
|
// This is an expression in a statement position, consume the trailing
|
|
// semicolon and form an 'ExpressionStatement' node.
|
|
markExprChild(ChildExpr, NodeRole::Expression);
|
|
ChildNode = new (allocator()) syntax::ExpressionStatement;
|
|
// (!) 'getStmtRange()' ensures this covers a trailing semicolon.
|
|
Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
|
|
} else {
|
|
ChildNode = Mapping.find(Child);
|
|
}
|
|
assert(ChildNode != nullptr);
|
|
setRole(ChildNode, Role);
|
|
}
|
|
|
|
void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
|
|
if (!Child)
|
|
return;
|
|
Child = IgnoreImplicit(Child);
|
|
|
|
syntax::Tree *ChildNode = Mapping.find(Child);
|
|
assert(ChildNode != nullptr);
|
|
setRole(ChildNode, Role);
|
|
}
|
|
|
|
const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
|
|
if (L.isInvalid())
|
|
return nullptr;
|
|
auto It = LocationToToken.find(L);
|
|
assert(It != LocationToToken.end());
|
|
return It->second;
|
|
}
|
|
|
|
syntax::TranslationUnit *syntax::buildSyntaxTree(Arena &A,
|
|
ASTContext &Context) {
|
|
TreeBuilder Builder(A);
|
|
BuildTreeVisitor(Context, Builder).TraverseAST(Context);
|
|
return std::move(Builder).finalize();
|
|
}
|