llvm-project/llvm/lib/VMCore/Pass.cpp

497 lines
17 KiB
C++

//===- Pass.cpp - LLVM Pass Infrastructure Implementation -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LLVM Pass infrastructure. It is primarily
// responsible with ensuring that passes are executed and batched together
// optimally.
//
//===----------------------------------------------------------------------===//
#include "llvm/PassManager.h"
#include "PassManagerT.h" // PassManagerT implementation
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/TypeInfo.h"
#include <iostream>
#include <set>
using namespace llvm;
// IncludeFile - Stub function used to help linking out.
IncludeFile::IncludeFile(void*) {}
//===----------------------------------------------------------------------===//
// AnalysisID Class Implementation
//
// getCFGOnlyAnalyses - A wrapper around the CFGOnlyAnalyses which make it
// initializer order independent.
static std::vector<const PassInfo*> &getCFGOnlyAnalyses() {
static std::vector<const PassInfo*> CFGOnlyAnalyses;
return CFGOnlyAnalyses;
}
void RegisterPassBase::setOnlyUsesCFG() {
getCFGOnlyAnalyses().push_back(&PIObj);
}
//===----------------------------------------------------------------------===//
// AnalysisResolver Class Implementation
//
AnalysisResolver::~AnalysisResolver() {
}
void AnalysisResolver::setAnalysisResolver(Pass *P, AnalysisResolver *AR) {
assert(P->Resolver == 0 && "Pass already in a PassManager!");
P->Resolver = AR;
}
//===----------------------------------------------------------------------===//
// AnalysisUsage Class Implementation
//
// setPreservesCFG - This function should be called to by the pass, iff they do
// not:
//
// 1. Add or remove basic blocks from the function
// 2. Modify terminator instructions in any way.
//
// This function annotates the AnalysisUsage info object to say that analyses
// that only depend on the CFG are preserved by this pass.
//
void AnalysisUsage::setPreservesCFG() {
// Since this transformation doesn't modify the CFG, it preserves all analyses
// that only depend on the CFG (like dominators, loop info, etc...)
//
Preserved.insert(Preserved.end(),
getCFGOnlyAnalyses().begin(), getCFGOnlyAnalyses().end());
}
//===----------------------------------------------------------------------===//
// PassManager implementation - The PassManager class is a simple Pimpl class
// that wraps the PassManagerT template.
//
PassManager::PassManager() : PM(new ModulePassManager()) {}
PassManager::~PassManager() { delete PM; }
void PassManager::add(Pass *P) {
ModulePass *MP = dynamic_cast<ModulePass*>(P);
assert(MP && "Not a modulepass?");
PM->add(MP);
}
bool PassManager::run(Module &M) { return PM->runOnModule(M); }
//===----------------------------------------------------------------------===//
// FunctionPassManager implementation - The FunctionPassManager class
// is a simple Pimpl class that wraps the PassManagerT template. It
// is like PassManager, but only deals in FunctionPasses.
//
FunctionPassManager::FunctionPassManager(ModuleProvider *P) :
PM(new FunctionPassManagerT()), MP(P) {}
FunctionPassManager::~FunctionPassManager() { delete PM; }
void FunctionPassManager::add(FunctionPass *P) { PM->add(P); }
void FunctionPassManager::add(ImmutablePass *IP) { PM->add(IP); }
bool FunctionPassManager::run(Function &F) {
try {
MP->materializeFunction(&F);
} catch (std::string& errstr) {
std::cerr << "Error reading bytecode file: " << errstr << "\n";
abort();
} catch (...) {
std::cerr << "Error reading bytecode file!\n";
abort();
}
return PM->run(F);
}
//===----------------------------------------------------------------------===//
// TimingInfo Class - This class is used to calculate information about the
// amount of time each pass takes to execute. This only happens with
// -time-passes is enabled on the command line.
//
bool llvm::TimePassesIsEnabled = false;
static cl::opt<bool,true>
EnableTiming("time-passes", cl::location(TimePassesIsEnabled),
cl::desc("Time each pass, printing elapsed time for each on exit"));
// createTheTimeInfo - This method either initializes the TheTimeInfo pointer to
// a non null value (if the -time-passes option is enabled) or it leaves it
// null. It may be called multiple times.
void TimingInfo::createTheTimeInfo() {
if (!TimePassesIsEnabled || TheTimeInfo) return;
// Constructed the first time this is called, iff -time-passes is enabled.
// This guarantees that the object will be constructed before static globals,
// thus it will be destroyed before them.
static TimingInfo TTI;
TheTimeInfo = &TTI;
}
void PMDebug::PrintArgumentInformation(const Pass *P) {
// Print out passes in pass manager...
if (const AnalysisResolver *PM = dynamic_cast<const AnalysisResolver*>(P)) {
for (unsigned i = 0, e = PM->getNumContainedPasses(); i != e; ++i)
PrintArgumentInformation(PM->getContainedPass(i));
} else { // Normal pass. Print argument information...
// Print out arguments for registered passes that are _optimizations_
if (const PassInfo *PI = P->getPassInfo())
if (PI->getPassType() & PassInfo::Optimization)
std::cerr << " -" << PI->getPassArgument();
}
}
void PMDebug::PrintPassInformation(unsigned Depth, const char *Action,
Pass *P, Module *M) {
if (PassDebugging >= Executions) {
std::cerr << (void*)P << std::string(Depth*2+1, ' ') << Action << " '"
<< P->getPassName();
if (M) std::cerr << "' on Module '" << M->getModuleIdentifier() << "'\n";
std::cerr << "'...\n";
}
}
void PMDebug::PrintPassInformation(unsigned Depth, const char *Action,
Pass *P, Function *F) {
if (PassDebugging >= Executions) {
std::cerr << (void*)P << std::string(Depth*2+1, ' ') << Action << " '"
<< P->getPassName();
if (F) std::cerr << "' on Function '" << F->getName();
std::cerr << "'...\n";
}
}
void PMDebug::PrintPassInformation(unsigned Depth, const char *Action,
Pass *P, BasicBlock *BB) {
if (PassDebugging >= Executions) {
std::cerr << (void*)P << std::string(Depth*2+1, ' ') << Action << " '"
<< P->getPassName();
if (BB) std::cerr << "' on BasicBlock '" << BB->getName();
std::cerr << "'...\n";
}
}
void PMDebug::PrintAnalysisSetInfo(unsigned Depth, const char *Msg,
Pass *P, const std::vector<AnalysisID> &Set){
if (PassDebugging >= Details && !Set.empty()) {
std::cerr << (void*)P << std::string(Depth*2+3, ' ') << Msg << " Analyses:";
for (unsigned i = 0; i != Set.size(); ++i) {
if (i) std::cerr << ",";
std::cerr << " " << Set[i]->getPassName();
}
std::cerr << "\n";
}
}
//===----------------------------------------------------------------------===//
// Pass Implementation
//
void ModulePass::addToPassManager(ModulePassManager *PM, AnalysisUsage &AU) {
PM->addPass(this, AU);
}
bool Pass::mustPreserveAnalysisID(const PassInfo *AnalysisID) const {
return Resolver->getAnalysisToUpdate(AnalysisID) != 0;
}
// dumpPassStructure - Implement the -debug-passes=Structure option
void Pass::dumpPassStructure(unsigned Offset) {
std::cerr << std::string(Offset*2, ' ') << getPassName() << "\n";
}
// getPassName - Use C++ RTTI to get a SOMEWHAT intelligible name for the pass.
//
const char *Pass::getPassName() const {
if (const PassInfo *PI = getPassInfo())
return PI->getPassName();
return typeid(*this).name();
}
// print - Print out the internal state of the pass. This is called by Analyze
// to print out the contents of an analysis. Otherwise it is not necessary to
// implement this method.
//
void Pass::print(std::ostream &O,const Module*) const {
O << "Pass::print not implemented for pass: '" << getPassName() << "'!\n";
}
// dump - call print(std::cerr);
void Pass::dump() const {
print(std::cerr, 0);
}
//===----------------------------------------------------------------------===//
// ImmutablePass Implementation
//
void ImmutablePass::addToPassManager(ModulePassManager *PM,
AnalysisUsage &AU) {
PM->addPass(this, AU);
}
//===----------------------------------------------------------------------===//
// FunctionPass Implementation
//
// run - On a module, we run this pass by initializing, runOnFunction'ing once
// for every function in the module, then by finalizing.
//
bool FunctionPass::runOnModule(Module &M) {
bool Changed = doInitialization(M);
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal()) // Passes are not run on external functions!
Changed |= runOnFunction(*I);
return Changed | doFinalization(M);
}
// run - On a function, we simply initialize, run the function, then finalize.
//
bool FunctionPass::run(Function &F) {
if (F.isExternal()) return false;// Passes are not run on external functions!
bool Changed = doInitialization(*F.getParent());
Changed |= runOnFunction(F);
return Changed | doFinalization(*F.getParent());
}
void FunctionPass::addToPassManager(ModulePassManager *PM,
AnalysisUsage &AU) {
PM->addPass(this, AU);
}
void FunctionPass::addToPassManager(FunctionPassManagerT *PM,
AnalysisUsage &AU) {
PM->addPass(this, AU);
}
//===----------------------------------------------------------------------===//
// BasicBlockPass Implementation
//
// To run this pass on a function, we simply call runOnBasicBlock once for each
// function.
//
bool BasicBlockPass::runOnFunction(Function &F) {
bool Changed = doInitialization(F);
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
Changed |= runOnBasicBlock(*I);
return Changed | doFinalization(F);
}
// To run directly on the basic block, we initialize, runOnBasicBlock, then
// finalize.
//
bool BasicBlockPass::runPass(BasicBlock &BB) {
Function &F = *BB.getParent();
Module &M = *F.getParent();
bool Changed = doInitialization(M);
Changed |= doInitialization(F);
Changed |= runOnBasicBlock(BB);
Changed |= doFinalization(F);
Changed |= doFinalization(M);
return Changed;
}
void BasicBlockPass::addToPassManager(FunctionPassManagerT *PM,
AnalysisUsage &AU) {
PM->addPass(this, AU);
}
void BasicBlockPass::addToPassManager(BasicBlockPassManager *PM,
AnalysisUsage &AU) {
PM->addPass(this, AU);
}
//===----------------------------------------------------------------------===//
// Pass Registration mechanism
//
static std::map<TypeInfo, PassInfo*> *PassInfoMap = 0;
static std::vector<PassRegistrationListener*> *Listeners = 0;
// getPassInfo - Return the PassInfo data structure that corresponds to this
// pass...
const PassInfo *Pass::getPassInfo() const {
if (PassInfoCache) return PassInfoCache;
return lookupPassInfo(typeid(*this));
}
const PassInfo *Pass::lookupPassInfo(const std::type_info &TI) {
if (PassInfoMap == 0) return 0;
std::map<TypeInfo, PassInfo*>::iterator I = PassInfoMap->find(TI);
return (I != PassInfoMap->end()) ? I->second : 0;
}
void RegisterPassBase::registerPass() {
if (PassInfoMap == 0)
PassInfoMap = new std::map<TypeInfo, PassInfo*>();
assert(PassInfoMap->find(PIObj.getTypeInfo()) == PassInfoMap->end() &&
"Pass already registered!");
PassInfoMap->insert(std::make_pair(TypeInfo(PIObj.getTypeInfo()), &PIObj));
// Notify any listeners...
if (Listeners)
for (std::vector<PassRegistrationListener*>::iterator
I = Listeners->begin(), E = Listeners->end(); I != E; ++I)
(*I)->passRegistered(&PIObj);
}
void RegisterPassBase::unregisterPass() {
assert(PassInfoMap && "Pass registered but not in map!");
std::map<TypeInfo, PassInfo*>::iterator I =
PassInfoMap->find(PIObj.getTypeInfo());
assert(I != PassInfoMap->end() && "Pass registered but not in map!");
// Remove pass from the map...
PassInfoMap->erase(I);
if (PassInfoMap->empty()) {
delete PassInfoMap;
PassInfoMap = 0;
}
// Notify any listeners...
if (Listeners)
for (std::vector<PassRegistrationListener*>::iterator
I = Listeners->begin(), E = Listeners->end(); I != E; ++I)
(*I)->passUnregistered(&PIObj);
}
//===----------------------------------------------------------------------===//
// Analysis Group Implementation Code
//===----------------------------------------------------------------------===//
struct AnalysisGroupInfo {
const PassInfo *DefaultImpl;
std::set<const PassInfo *> Implementations;
AnalysisGroupInfo() : DefaultImpl(0) {}
};
static std::map<const PassInfo *, AnalysisGroupInfo> *AnalysisGroupInfoMap = 0;
// RegisterAGBase implementation
//
RegisterAGBase::RegisterAGBase(const std::type_info &Interface,
const std::type_info *Pass, bool isDefault)
: RegisterPassBase(Interface, PassInfo::AnalysisGroup),
ImplementationInfo(0), isDefaultImplementation(isDefault) {
InterfaceInfo = const_cast<PassInfo*>(Pass::lookupPassInfo(Interface));
if (InterfaceInfo == 0) {
// First reference to Interface, register it now.
registerPass();
InterfaceInfo = &PIObj;
}
assert(InterfaceInfo->getPassType() == PassInfo::AnalysisGroup &&
"Trying to join an analysis group that is a normal pass!");
if (Pass) {
ImplementationInfo = Pass::lookupPassInfo(*Pass);
assert(ImplementationInfo &&
"Must register pass before adding to AnalysisGroup!");
// Make sure we keep track of the fact that the implementation implements
// the interface.
PassInfo *IIPI = const_cast<PassInfo*>(ImplementationInfo);
IIPI->addInterfaceImplemented(InterfaceInfo);
// Lazily allocate to avoid nasty initialization order dependencies
if (AnalysisGroupInfoMap == 0)
AnalysisGroupInfoMap = new std::map<const PassInfo *,AnalysisGroupInfo>();
AnalysisGroupInfo &AGI = (*AnalysisGroupInfoMap)[InterfaceInfo];
assert(AGI.Implementations.count(ImplementationInfo) == 0 &&
"Cannot add a pass to the same analysis group more than once!");
AGI.Implementations.insert(ImplementationInfo);
if (isDefault) {
assert(AGI.DefaultImpl == 0 && InterfaceInfo->getNormalCtor() == 0 &&
"Default implementation for analysis group already specified!");
assert(ImplementationInfo->getNormalCtor() &&
"Cannot specify pass as default if it does not have a default ctor");
AGI.DefaultImpl = ImplementationInfo;
InterfaceInfo->setNormalCtor(ImplementationInfo->getNormalCtor());
}
}
}
void RegisterAGBase::setGroupName(const char *Name) {
assert(InterfaceInfo->getPassName()[0] == 0 && "Interface Name already set!");
InterfaceInfo->setPassName(Name);
}
RegisterAGBase::~RegisterAGBase() {
if (ImplementationInfo) {
assert(AnalysisGroupInfoMap && "Inserted into map, but map doesn't exist?");
AnalysisGroupInfo &AGI = (*AnalysisGroupInfoMap)[InterfaceInfo];
assert(AGI.Implementations.count(ImplementationInfo) &&
"Pass not a member of analysis group?");
if (AGI.DefaultImpl == ImplementationInfo)
AGI.DefaultImpl = 0;
AGI.Implementations.erase(ImplementationInfo);
// Last member of this analysis group? Unregister PassInfo, delete map entry
if (AGI.Implementations.empty()) {
assert(AGI.DefaultImpl == 0 &&
"Default implementation didn't unregister?");
AnalysisGroupInfoMap->erase(InterfaceInfo);
if (AnalysisGroupInfoMap->empty()) { // Delete map if empty
delete AnalysisGroupInfoMap;
AnalysisGroupInfoMap = 0;
}
}
}
if (InterfaceInfo == &PIObj)
unregisterPass();
}
//===----------------------------------------------------------------------===//
// PassRegistrationListener implementation
//
// PassRegistrationListener ctor - Add the current object to the list of
// PassRegistrationListeners...
PassRegistrationListener::PassRegistrationListener() {
if (!Listeners) Listeners = new std::vector<PassRegistrationListener*>();
Listeners->push_back(this);
}
// dtor - Remove object from list of listeners...
PassRegistrationListener::~PassRegistrationListener() {
std::vector<PassRegistrationListener*>::iterator I =
std::find(Listeners->begin(), Listeners->end(), this);
assert(Listeners && I != Listeners->end() &&
"PassRegistrationListener not registered!");
Listeners->erase(I);
if (Listeners->empty()) {
delete Listeners;
Listeners = 0;
}
}
// enumeratePasses - Iterate over the registered passes, calling the
// passEnumerate callback on each PassInfo object.
//
void PassRegistrationListener::enumeratePasses() {
if (PassInfoMap)
for (std::map<TypeInfo, PassInfo*>::iterator I = PassInfoMap->begin(),
E = PassInfoMap->end(); I != E; ++I)
passEnumerate(I->second);
}