llvm-project/llvm/lib/VMCore/Constants.cpp

1813 lines
64 KiB
C++

//===-- Constants.cpp - Implement Constant nodes --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Constant* classes...
//
//===----------------------------------------------------------------------===//
#include "llvm/Constants.h"
#include "ConstantFolding.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalValue.h"
#include "llvm/Instructions.h"
#include "llvm/SymbolTable.h"
#include "llvm/Module.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <iostream>
using namespace llvm;
ConstantBool *ConstantBool::True = new ConstantBool(true);
ConstantBool *ConstantBool::False = new ConstantBool(false);
//===----------------------------------------------------------------------===//
// Constant Class
//===----------------------------------------------------------------------===//
void Constant::destroyConstantImpl() {
// When a Constant is destroyed, there may be lingering
// references to the constant by other constants in the constant pool. These
// constants are implicitly dependent on the module that is being deleted,
// but they don't know that. Because we only find out when the CPV is
// deleted, we must now notify all of our users (that should only be
// Constants) that they are, in fact, invalid now and should be deleted.
//
while (!use_empty()) {
Value *V = use_back();
#ifndef NDEBUG // Only in -g mode...
if (!isa<Constant>(V))
std::cerr << "While deleting: " << *this
<< "\n\nUse still stuck around after Def is destroyed: "
<< *V << "\n\n";
#endif
assert(isa<Constant>(V) && "References remain to Constant being destroyed");
Constant *CV = cast<Constant>(V);
CV->destroyConstant();
// The constant should remove itself from our use list...
assert((use_empty() || use_back() != V) && "Constant not removed!");
}
// Value has no outstanding references it is safe to delete it now...
delete this;
}
// Static constructor to create a '0' constant of arbitrary type...
Constant *Constant::getNullValue(const Type *Ty) {
switch (Ty->getTypeID()) {
case Type::BoolTyID: {
static Constant *NullBool = ConstantBool::get(false);
return NullBool;
}
case Type::SByteTyID: {
static Constant *NullSByte = ConstantSInt::get(Type::SByteTy, 0);
return NullSByte;
}
case Type::UByteTyID: {
static Constant *NullUByte = ConstantUInt::get(Type::UByteTy, 0);
return NullUByte;
}
case Type::ShortTyID: {
static Constant *NullShort = ConstantSInt::get(Type::ShortTy, 0);
return NullShort;
}
case Type::UShortTyID: {
static Constant *NullUShort = ConstantUInt::get(Type::UShortTy, 0);
return NullUShort;
}
case Type::IntTyID: {
static Constant *NullInt = ConstantSInt::get(Type::IntTy, 0);
return NullInt;
}
case Type::UIntTyID: {
static Constant *NullUInt = ConstantUInt::get(Type::UIntTy, 0);
return NullUInt;
}
case Type::LongTyID: {
static Constant *NullLong = ConstantSInt::get(Type::LongTy, 0);
return NullLong;
}
case Type::ULongTyID: {
static Constant *NullULong = ConstantUInt::get(Type::ULongTy, 0);
return NullULong;
}
case Type::FloatTyID: {
static Constant *NullFloat = ConstantFP::get(Type::FloatTy, 0);
return NullFloat;
}
case Type::DoubleTyID: {
static Constant *NullDouble = ConstantFP::get(Type::DoubleTy, 0);
return NullDouble;
}
case Type::PointerTyID:
return ConstantPointerNull::get(cast<PointerType>(Ty));
case Type::StructTyID:
case Type::ArrayTyID:
case Type::PackedTyID:
return ConstantAggregateZero::get(Ty);
default:
// Function, Label, or Opaque type?
assert(!"Cannot create a null constant of that type!");
return 0;
}
}
// Static constructor to create the maximum constant of an integral type...
ConstantIntegral *ConstantIntegral::getMaxValue(const Type *Ty) {
switch (Ty->getTypeID()) {
case Type::BoolTyID: return ConstantBool::True;
case Type::SByteTyID:
case Type::ShortTyID:
case Type::IntTyID:
case Type::LongTyID: {
// Calculate 011111111111111...
unsigned TypeBits = Ty->getPrimitiveSize()*8;
int64_t Val = INT64_MAX; // All ones
Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
return ConstantSInt::get(Ty, Val);
}
case Type::UByteTyID:
case Type::UShortTyID:
case Type::UIntTyID:
case Type::ULongTyID: return getAllOnesValue(Ty);
default: return 0;
}
}
// Static constructor to create the minimum constant for an integral type...
ConstantIntegral *ConstantIntegral::getMinValue(const Type *Ty) {
switch (Ty->getTypeID()) {
case Type::BoolTyID: return ConstantBool::False;
case Type::SByteTyID:
case Type::ShortTyID:
case Type::IntTyID:
case Type::LongTyID: {
// Calculate 1111111111000000000000
unsigned TypeBits = Ty->getPrimitiveSize()*8;
int64_t Val = -1; // All ones
Val <<= TypeBits-1; // Shift over to the right spot
return ConstantSInt::get(Ty, Val);
}
case Type::UByteTyID:
case Type::UShortTyID:
case Type::UIntTyID:
case Type::ULongTyID: return ConstantUInt::get(Ty, 0);
default: return 0;
}
}
// Static constructor to create an integral constant with all bits set
ConstantIntegral *ConstantIntegral::getAllOnesValue(const Type *Ty) {
switch (Ty->getTypeID()) {
case Type::BoolTyID: return ConstantBool::True;
case Type::SByteTyID:
case Type::ShortTyID:
case Type::IntTyID:
case Type::LongTyID: return ConstantSInt::get(Ty, -1);
case Type::UByteTyID:
case Type::UShortTyID:
case Type::UIntTyID:
case Type::ULongTyID: {
// Calculate ~0 of the right type...
unsigned TypeBits = Ty->getPrimitiveSize()*8;
uint64_t Val = ~0ULL; // All ones
Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
return ConstantUInt::get(Ty, Val);
}
default: return 0;
}
}
bool ConstantUInt::isAllOnesValue() const {
unsigned TypeBits = getType()->getPrimitiveSize()*8;
uint64_t Val = ~0ULL; // All ones
Val >>= 64-TypeBits; // Shift out inappropriate bits
return getValue() == Val;
}
//===----------------------------------------------------------------------===//
// ConstantXXX Classes
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Normal Constructors
ConstantIntegral::ConstantIntegral(const Type *Ty, ValueTy VT, uint64_t V)
: Constant(Ty, VT, 0, 0) {
Val.Unsigned = V;
}
ConstantBool::ConstantBool(bool V)
: ConstantIntegral(Type::BoolTy, ConstantBoolVal, V) {
}
ConstantInt::ConstantInt(const Type *Ty, ValueTy VT, uint64_t V)
: ConstantIntegral(Ty, VT, V) {
}
ConstantSInt::ConstantSInt(const Type *Ty, int64_t V)
: ConstantInt(Ty, ConstantSIntVal, V) {
assert(Ty->isInteger() && Ty->isSigned() &&
"Illegal type for signed integer constant!");
assert(isValueValidForType(Ty, V) && "Value too large for type!");
}
ConstantUInt::ConstantUInt(const Type *Ty, uint64_t V)
: ConstantInt(Ty, ConstantUIntVal, V) {
assert(Ty->isInteger() && Ty->isUnsigned() &&
"Illegal type for unsigned integer constant!");
assert(isValueValidForType(Ty, V) && "Value too large for type!");
}
ConstantFP::ConstantFP(const Type *Ty, double V)
: Constant(Ty, ConstantFPVal, 0, 0) {
assert(isValueValidForType(Ty, V) && "Value too large for type!");
Val = V;
}
ConstantArray::ConstantArray(const ArrayType *T,
const std::vector<Constant*> &V)
: Constant(T, ConstantArrayVal, new Use[V.size()], V.size()) {
assert(V.size() == T->getNumElements() &&
"Invalid initializer vector for constant array");
Use *OL = OperandList;
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
I != E; ++I, ++OL) {
Constant *C = *I;
assert((C->getType() == T->getElementType() ||
(T->isAbstract() &&
C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
"Initializer for array element doesn't match array element type!");
OL->init(C, this);
}
}
ConstantArray::~ConstantArray() {
delete [] OperandList;
}
ConstantStruct::ConstantStruct(const StructType *T,
const std::vector<Constant*> &V)
: Constant(T, ConstantStructVal, new Use[V.size()], V.size()) {
assert(V.size() == T->getNumElements() &&
"Invalid initializer vector for constant structure");
Use *OL = OperandList;
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
I != E; ++I, ++OL) {
Constant *C = *I;
assert((C->getType() == T->getElementType(I-V.begin()) ||
((T->getElementType(I-V.begin())->isAbstract() ||
C->getType()->isAbstract()) &&
T->getElementType(I-V.begin())->getTypeID() ==
C->getType()->getTypeID())) &&
"Initializer for struct element doesn't match struct element type!");
OL->init(C, this);
}
}
ConstantStruct::~ConstantStruct() {
delete [] OperandList;
}
ConstantPacked::ConstantPacked(const PackedType *T,
const std::vector<Constant*> &V)
: Constant(T, ConstantPackedVal, new Use[V.size()], V.size()) {
Use *OL = OperandList;
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
I != E; ++I, ++OL) {
Constant *C = *I;
assert((C->getType() == T->getElementType() ||
(T->isAbstract() &&
C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
"Initializer for packed element doesn't match packed element type!");
OL->init(C, this);
}
}
ConstantPacked::~ConstantPacked() {
delete [] OperandList;
}
/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement unary constant exprs.
class UnaryConstantExpr : public ConstantExpr {
Use Op;
public:
UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
: ConstantExpr(Ty, Opcode, &Op, 1), Op(C, this) {}
};
static bool isSetCC(unsigned Opcode) {
return Opcode == Instruction::SetEQ || Opcode == Instruction::SetNE ||
Opcode == Instruction::SetLT || Opcode == Instruction::SetGT ||
Opcode == Instruction::SetLE || Opcode == Instruction::SetGE;
}
/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement binary constant exprs.
class BinaryConstantExpr : public ConstantExpr {
Use Ops[2];
public:
BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
: ConstantExpr(isSetCC(Opcode) ? Type::BoolTy : C1->getType(),
Opcode, Ops, 2) {
Ops[0].init(C1, this);
Ops[1].init(C2, this);
}
};
/// SelectConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement select constant exprs.
class SelectConstantExpr : public ConstantExpr {
Use Ops[3];
public:
SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(C2->getType(), Instruction::Select, Ops, 3) {
Ops[0].init(C1, this);
Ops[1].init(C2, this);
Ops[2].init(C3, this);
}
};
/// ExtractElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// extractelement constant exprs.
class ExtractElementConstantExpr : public ConstantExpr {
Use Ops[2];
public:
ExtractElementConstantExpr(Constant *C1, Constant *C2)
: ConstantExpr(cast<PackedType>(C1->getType())->getElementType(),
Instruction::ExtractElement, Ops, 2) {
Ops[0].init(C1, this);
Ops[1].init(C2, this);
}
};
/// InsertElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// insertelement constant exprs.
class InsertElementConstantExpr : public ConstantExpr {
Use Ops[3];
public:
InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(C1->getType(), Instruction::InsertElement,
Ops, 3) {
Ops[0].init(C1, this);
Ops[1].init(C2, this);
Ops[2].init(C3, this);
}
};
/// ShuffleVectorConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// shufflevector constant exprs.
class ShuffleVectorConstantExpr : public ConstantExpr {
Use Ops[3];
public:
ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
: ConstantExpr(C1->getType(), Instruction::ShuffleVector,
Ops, 3) {
Ops[0].init(C1, this);
Ops[1].init(C2, this);
Ops[2].init(C3, this);
}
};
/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
/// used behind the scenes to implement getelementpr constant exprs.
struct GetElementPtrConstantExpr : public ConstantExpr {
GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
const Type *DestTy)
: ConstantExpr(DestTy, Instruction::GetElementPtr,
new Use[IdxList.size()+1], IdxList.size()+1) {
OperandList[0].init(C, this);
for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
OperandList[i+1].init(IdxList[i], this);
}
~GetElementPtrConstantExpr() {
delete [] OperandList;
}
};
/// ConstantExpr::get* - Return some common constants without having to
/// specify the full Instruction::OPCODE identifier.
///
Constant *ConstantExpr::getNeg(Constant *C) {
if (!C->getType()->isFloatingPoint())
return get(Instruction::Sub, getNullValue(C->getType()), C);
else
return get(Instruction::Sub, ConstantFP::get(C->getType(), -0.0), C);
}
Constant *ConstantExpr::getNot(Constant *C) {
assert(isa<ConstantIntegral>(C) && "Cannot NOT a nonintegral type!");
return get(Instruction::Xor, C,
ConstantIntegral::getAllOnesValue(C->getType()));
}
Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) {
return get(Instruction::Add, C1, C2);
}
Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) {
return get(Instruction::Sub, C1, C2);
}
Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) {
return get(Instruction::Mul, C1, C2);
}
Constant *ConstantExpr::getDiv(Constant *C1, Constant *C2) {
return get(Instruction::Div, C1, C2);
}
Constant *ConstantExpr::getRem(Constant *C1, Constant *C2) {
return get(Instruction::Rem, C1, C2);
}
Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
return get(Instruction::And, C1, C2);
}
Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
return get(Instruction::Or, C1, C2);
}
Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
return get(Instruction::Xor, C1, C2);
}
Constant *ConstantExpr::getSetEQ(Constant *C1, Constant *C2) {
return get(Instruction::SetEQ, C1, C2);
}
Constant *ConstantExpr::getSetNE(Constant *C1, Constant *C2) {
return get(Instruction::SetNE, C1, C2);
}
Constant *ConstantExpr::getSetLT(Constant *C1, Constant *C2) {
return get(Instruction::SetLT, C1, C2);
}
Constant *ConstantExpr::getSetGT(Constant *C1, Constant *C2) {
return get(Instruction::SetGT, C1, C2);
}
Constant *ConstantExpr::getSetLE(Constant *C1, Constant *C2) {
return get(Instruction::SetLE, C1, C2);
}
Constant *ConstantExpr::getSetGE(Constant *C1, Constant *C2) {
return get(Instruction::SetGE, C1, C2);
}
Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) {
return get(Instruction::Shl, C1, C2);
}
Constant *ConstantExpr::getShr(Constant *C1, Constant *C2) {
return get(Instruction::Shr, C1, C2);
}
Constant *ConstantExpr::getUShr(Constant *C1, Constant *C2) {
if (C1->getType()->isUnsigned()) return getShr(C1, C2);
return getCast(getShr(getCast(C1,
C1->getType()->getUnsignedVersion()), C2), C1->getType());
}
Constant *ConstantExpr::getSShr(Constant *C1, Constant *C2) {
if (C1->getType()->isSigned()) return getShr(C1, C2);
return getCast(getShr(getCast(C1,
C1->getType()->getSignedVersion()), C2), C1->getType());
}
//===----------------------------------------------------------------------===//
// isValueValidForType implementations
bool ConstantSInt::isValueValidForType(const Type *Ty, int64_t Val) {
switch (Ty->getTypeID()) {
default:
return false; // These can't be represented as integers!!!
// Signed types...
case Type::SByteTyID:
return (Val <= INT8_MAX && Val >= INT8_MIN);
case Type::ShortTyID:
return (Val <= INT16_MAX && Val >= INT16_MIN);
case Type::IntTyID:
return (Val <= int(INT32_MAX) && Val >= int(INT32_MIN));
case Type::LongTyID:
return true; // This is the largest type...
}
}
bool ConstantUInt::isValueValidForType(const Type *Ty, uint64_t Val) {
switch (Ty->getTypeID()) {
default:
return false; // These can't be represented as integers!!!
// Unsigned types...
case Type::UByteTyID:
return (Val <= UINT8_MAX);
case Type::UShortTyID:
return (Val <= UINT16_MAX);
case Type::UIntTyID:
return (Val <= UINT32_MAX);
case Type::ULongTyID:
return true; // This is the largest type...
}
}
bool ConstantFP::isValueValidForType(const Type *Ty, double Val) {
switch (Ty->getTypeID()) {
default:
return false; // These can't be represented as floating point!
// TODO: Figure out how to test if a double can be cast to a float!
case Type::FloatTyID:
case Type::DoubleTyID:
return true; // This is the largest type...
}
};
//===----------------------------------------------------------------------===//
// Factory Function Implementation
// ConstantCreator - A class that is used to create constants by
// ValueMap*. This class should be partially specialized if there is
// something strange that needs to be done to interface to the ctor for the
// constant.
//
namespace llvm {
template<class ConstantClass, class TypeClass, class ValType>
struct ConstantCreator {
static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
return new ConstantClass(Ty, V);
}
};
template<class ConstantClass, class TypeClass>
struct ConvertConstantType {
static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
assert(0 && "This type cannot be converted!\n");
abort();
}
};
}
namespace {
template<class ValType, class TypeClass, class ConstantClass,
bool HasLargeKey = false /*true for arrays and structs*/ >
class ValueMap : public AbstractTypeUser {
public:
typedef std::pair<const TypeClass*, ValType> MapKey;
typedef std::map<MapKey, ConstantClass *> MapTy;
typedef typename MapTy::iterator MapIterator;
private:
/// Map - This is the main map from the element descriptor to the Constants.
/// This is the primary way we avoid creating two of the same shape
/// constant.
MapTy Map;
/// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
/// from the constants to their element in Map. This is important for
/// removal of constants from the array, which would otherwise have to scan
/// through the map with very large keys.
std::map<ConstantClass*, MapIterator> InverseMap;
typedef std::map<const TypeClass*, MapIterator> AbstractTypeMapTy;
AbstractTypeMapTy AbstractTypeMap;
friend void Constant::clearAllValueMaps();
private:
void clear(std::vector<Constant *> &Constants) {
for(MapIterator I = Map.begin(); I != Map.end(); ++I)
Constants.push_back(I->second);
Map.clear();
AbstractTypeMap.clear();
InverseMap.clear();
}
public:
MapIterator map_end() { return Map.end(); }
/// InsertOrGetItem - Return an iterator for the specified element.
/// If the element exists in the map, the returned iterator points to the
/// entry and Exists=true. If not, the iterator points to the newly
/// inserted entry and returns Exists=false. Newly inserted entries have
/// I->second == 0, and should be filled in.
MapIterator InsertOrGetItem(std::pair<MapKey, ConstantClass *> &InsertVal,
bool &Exists) {
std::pair<MapIterator, bool> IP = Map.insert(InsertVal);
Exists = !IP.second;
return IP.first;
}
private:
MapIterator FindExistingElement(ConstantClass *CP) {
if (HasLargeKey) {
typename std::map<ConstantClass*, MapIterator>::iterator
IMI = InverseMap.find(CP);
assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
IMI->second->second == CP &&
"InverseMap corrupt!");
return IMI->second;
}
MapIterator I =
Map.find(MapKey((TypeClass*)CP->getRawType(), getValType(CP)));
if (I == Map.end() || I->second != CP) {
// FIXME: This should not use a linear scan. If this gets to be a
// performance problem, someone should look at this.
for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
/* empty */;
}
return I;
}
public:
/// getOrCreate - Return the specified constant from the map, creating it if
/// necessary.
ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
MapKey Lookup(Ty, V);
MapIterator I = Map.lower_bound(Lookup);
if (I != Map.end() && I->first == Lookup)
return I->second; // Is it in the map?
// If no preexisting value, create one now...
ConstantClass *Result =
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
/// FIXME: why does this assert fail when loading 176.gcc?
//assert(Result->getType() == Ty && "Type specified is not correct!");
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.insert(std::make_pair(Result, I));
// If the type of the constant is abstract, make sure that an entry exists
// for it in the AbstractTypeMap.
if (Ty->isAbstract()) {
typename AbstractTypeMapTy::iterator TI =
AbstractTypeMap.lower_bound(Ty);
if (TI == AbstractTypeMap.end() || TI->first != Ty) {
// Add ourselves to the ATU list of the type.
cast<DerivedType>(Ty)->addAbstractTypeUser(this);
AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
}
}
return Result;
}
void remove(ConstantClass *CP) {
MapIterator I = FindExistingElement(CP);
assert(I != Map.end() && "Constant not found in constant table!");
assert(I->second == CP && "Didn't find correct element?");
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.erase(CP);
// Now that we found the entry, make sure this isn't the entry that
// the AbstractTypeMap points to.
const TypeClass *Ty = I->first.first;
if (Ty->isAbstract()) {
assert(AbstractTypeMap.count(Ty) &&
"Abstract type not in AbstractTypeMap?");
MapIterator &ATMEntryIt = AbstractTypeMap[Ty];
if (ATMEntryIt == I) {
// Yes, we are removing the representative entry for this type.
// See if there are any other entries of the same type.
MapIterator TmpIt = ATMEntryIt;
// First check the entry before this one...
if (TmpIt != Map.begin()) {
--TmpIt;
if (TmpIt->first.first != Ty) // Not the same type, move back...
++TmpIt;
}
// If we didn't find the same type, try to move forward...
if (TmpIt == ATMEntryIt) {
++TmpIt;
if (TmpIt == Map.end() || TmpIt->first.first != Ty)
--TmpIt; // No entry afterwards with the same type
}
// If there is another entry in the map of the same abstract type,
// update the AbstractTypeMap entry now.
if (TmpIt != ATMEntryIt) {
ATMEntryIt = TmpIt;
} else {
// Otherwise, we are removing the last instance of this type
// from the table. Remove from the ATM, and from user list.
cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
AbstractTypeMap.erase(Ty);
}
}
}
Map.erase(I);
}
/// MoveConstantToNewSlot - If we are about to change C to be the element
/// specified by I, update our internal data structures to reflect this
/// fact.
void MoveConstantToNewSlot(ConstantClass *C, MapIterator I) {
// First, remove the old location of the specified constant in the map.
MapIterator OldI = FindExistingElement(C);
assert(OldI != Map.end() && "Constant not found in constant table!");
assert(OldI->second == C && "Didn't find correct element?");
// If this constant is the representative element for its abstract type,
// update the AbstractTypeMap so that the representative element is I.
if (C->getType()->isAbstract()) {
typename AbstractTypeMapTy::iterator ATI =
AbstractTypeMap.find(C->getType());
assert(ATI != AbstractTypeMap.end() &&
"Abstract type not in AbstractTypeMap?");
if (ATI->second == OldI)
ATI->second = I;
}
// Remove the old entry from the map.
Map.erase(OldI);
// Update the inverse map so that we know that this constant is now
// located at descriptor I.
if (HasLargeKey) {
assert(I->second == C && "Bad inversemap entry!");
InverseMap[C] = I;
}
}
void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
typename AbstractTypeMapTy::iterator I =
AbstractTypeMap.find(cast<TypeClass>(OldTy));
assert(I != AbstractTypeMap.end() &&
"Abstract type not in AbstractTypeMap?");
// Convert a constant at a time until the last one is gone. The last one
// leaving will remove() itself, causing the AbstractTypeMapEntry to be
// eliminated eventually.
do {
ConvertConstantType<ConstantClass,
TypeClass>::convert(I->second->second,
cast<TypeClass>(NewTy));
I = AbstractTypeMap.find(cast<TypeClass>(OldTy));
} while (I != AbstractTypeMap.end());
}
// If the type became concrete without being refined to any other existing
// type, we just remove ourselves from the ATU list.
void typeBecameConcrete(const DerivedType *AbsTy) {
AbsTy->removeAbstractTypeUser(this);
}
void dump() const {
std::cerr << "Constant.cpp: ValueMap\n";
}
};
}
//---- ConstantUInt::get() and ConstantSInt::get() implementations...
//
static ValueMap< int64_t, Type, ConstantSInt> SIntConstants;
static ValueMap<uint64_t, Type, ConstantUInt> UIntConstants;
ConstantSInt *ConstantSInt::get(const Type *Ty, int64_t V) {
return SIntConstants.getOrCreate(Ty, V);
}
ConstantUInt *ConstantUInt::get(const Type *Ty, uint64_t V) {
return UIntConstants.getOrCreate(Ty, V);
}
ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) {
assert(V <= 127 && "Can only be used with very small positive constants!");
if (Ty->isSigned()) return ConstantSInt::get(Ty, V);
return ConstantUInt::get(Ty, V);
}
//---- ConstantFP::get() implementation...
//
namespace llvm {
template<>
struct ConstantCreator<ConstantFP, Type, uint64_t> {
static ConstantFP *create(const Type *Ty, uint64_t V) {
assert(Ty == Type::DoubleTy);
return new ConstantFP(Ty, BitsToDouble(V));
}
};
template<>
struct ConstantCreator<ConstantFP, Type, uint32_t> {
static ConstantFP *create(const Type *Ty, uint32_t V) {
assert(Ty == Type::FloatTy);
return new ConstantFP(Ty, BitsToFloat(V));
}
};
}
static ValueMap<uint64_t, Type, ConstantFP> DoubleConstants;
static ValueMap<uint32_t, Type, ConstantFP> FloatConstants;
bool ConstantFP::isNullValue() const {
return DoubleToBits(Val) == 0;
}
bool ConstantFP::isExactlyValue(double V) const {
return DoubleToBits(V) == DoubleToBits(Val);
}
ConstantFP *ConstantFP::get(const Type *Ty, double V) {
if (Ty == Type::FloatTy) {
// Force the value through memory to normalize it.
return FloatConstants.getOrCreate(Ty, FloatToBits(V));
} else {
assert(Ty == Type::DoubleTy);
return DoubleConstants.getOrCreate(Ty, DoubleToBits(V));
}
}
//---- ConstantAggregateZero::get() implementation...
//
namespace llvm {
// ConstantAggregateZero does not take extra "value" argument...
template<class ValType>
struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
return new ConstantAggregateZero(Ty);
}
};
template<>
struct ConvertConstantType<ConstantAggregateZero, Type> {
static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
// Make everyone now use a constant of the new type...
Constant *New = ConstantAggregateZero::get(NewTy);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
}
static ValueMap<char, Type, ConstantAggregateZero> AggZeroConstants;
static char getValType(ConstantAggregateZero *CPZ) { return 0; }
Constant *ConstantAggregateZero::get(const Type *Ty) {
return AggZeroConstants.getOrCreate(Ty, 0);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantAggregateZero::destroyConstant() {
AggZeroConstants.remove(this);
destroyConstantImpl();
}
//---- ConstantArray::get() implementation...
//
namespace llvm {
template<>
struct ConvertConstantType<ConstantArray, ArrayType> {
static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
// Make everyone now use a constant of the new type...
std::vector<Constant*> C;
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
C.push_back(cast<Constant>(OldC->getOperand(i)));
Constant *New = ConstantArray::get(NewTy, C);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
}
static std::vector<Constant*> getValType(ConstantArray *CA) {
std::vector<Constant*> Elements;
Elements.reserve(CA->getNumOperands());
for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
Elements.push_back(cast<Constant>(CA->getOperand(i)));
return Elements;
}
typedef ValueMap<std::vector<Constant*>, ArrayType,
ConstantArray, true /*largekey*/> ArrayConstantsTy;
static ArrayConstantsTy ArrayConstants;
Constant *ConstantArray::get(const ArrayType *Ty,
const std::vector<Constant*> &V) {
// If this is an all-zero array, return a ConstantAggregateZero object
if (!V.empty()) {
Constant *C = V[0];
if (!C->isNullValue())
return ArrayConstants.getOrCreate(Ty, V);
for (unsigned i = 1, e = V.size(); i != e; ++i)
if (V[i] != C)
return ArrayConstants.getOrCreate(Ty, V);
}
return ConstantAggregateZero::get(Ty);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantArray::destroyConstant() {
ArrayConstants.remove(this);
destroyConstantImpl();
}
// ConstantArray::get(const string&) - Return an array that is initialized to
// contain the specified string. A null terminator is added to the specified
// string so that it may be used in a natural way...
//
Constant *ConstantArray::get(const std::string &Str) {
std::vector<Constant*> ElementVals;
for (unsigned i = 0; i < Str.length(); ++i)
ElementVals.push_back(ConstantSInt::get(Type::SByteTy, Str[i]));
// Add a null terminator to the string...
ElementVals.push_back(ConstantSInt::get(Type::SByteTy, 0));
ArrayType *ATy = ArrayType::get(Type::SByteTy, Str.length()+1);
return ConstantArray::get(ATy, ElementVals);
}
/// isString - This method returns true if the array is an array of sbyte or
/// ubyte, and if the elements of the array are all ConstantInt's.
bool ConstantArray::isString() const {
// Check the element type for sbyte or ubyte...
if (getType()->getElementType() != Type::UByteTy &&
getType()->getElementType() != Type::SByteTy)
return false;
// Check the elements to make sure they are all integers, not constant
// expressions.
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (!isa<ConstantInt>(getOperand(i)))
return false;
return true;
}
// getAsString - If the sub-element type of this array is either sbyte or ubyte,
// then this method converts the array to an std::string and returns it.
// Otherwise, it asserts out.
//
std::string ConstantArray::getAsString() const {
assert(isString() && "Not a string!");
std::string Result;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
Result += (char)cast<ConstantInt>(getOperand(i))->getRawValue();
return Result;
}
//---- ConstantStruct::get() implementation...
//
namespace llvm {
template<>
struct ConvertConstantType<ConstantStruct, StructType> {
static void convert(ConstantStruct *OldC, const StructType *NewTy) {
// Make everyone now use a constant of the new type...
std::vector<Constant*> C;
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
C.push_back(cast<Constant>(OldC->getOperand(i)));
Constant *New = ConstantStruct::get(NewTy, C);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
}
typedef ValueMap<std::vector<Constant*>, StructType,
ConstantStruct, true /*largekey*/> StructConstantsTy;
static StructConstantsTy StructConstants;
static std::vector<Constant*> getValType(ConstantStruct *CS) {
std::vector<Constant*> Elements;
Elements.reserve(CS->getNumOperands());
for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
Elements.push_back(cast<Constant>(CS->getOperand(i)));
return Elements;
}
Constant *ConstantStruct::get(const StructType *Ty,
const std::vector<Constant*> &V) {
// Create a ConstantAggregateZero value if all elements are zeros...
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (!V[i]->isNullValue())
return StructConstants.getOrCreate(Ty, V);
return ConstantAggregateZero::get(Ty);
}
Constant *ConstantStruct::get(const std::vector<Constant*> &V) {
std::vector<const Type*> StructEls;
StructEls.reserve(V.size());
for (unsigned i = 0, e = V.size(); i != e; ++i)
StructEls.push_back(V[i]->getType());
return get(StructType::get(StructEls), V);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantStruct::destroyConstant() {
StructConstants.remove(this);
destroyConstantImpl();
}
//---- ConstantPacked::get() implementation...
//
namespace llvm {
template<>
struct ConvertConstantType<ConstantPacked, PackedType> {
static void convert(ConstantPacked *OldC, const PackedType *NewTy) {
// Make everyone now use a constant of the new type...
std::vector<Constant*> C;
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
C.push_back(cast<Constant>(OldC->getOperand(i)));
Constant *New = ConstantPacked::get(NewTy, C);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
}
static std::vector<Constant*> getValType(ConstantPacked *CP) {
std::vector<Constant*> Elements;
Elements.reserve(CP->getNumOperands());
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
Elements.push_back(CP->getOperand(i));
return Elements;
}
static ValueMap<std::vector<Constant*>, PackedType,
ConstantPacked> PackedConstants;
Constant *ConstantPacked::get(const PackedType *Ty,
const std::vector<Constant*> &V) {
// If this is an all-zero packed, return a ConstantAggregateZero object
if (!V.empty()) {
Constant *C = V[0];
if (!C->isNullValue())
return PackedConstants.getOrCreate(Ty, V);
for (unsigned i = 1, e = V.size(); i != e; ++i)
if (V[i] != C)
return PackedConstants.getOrCreate(Ty, V);
}
return ConstantAggregateZero::get(Ty);
}
Constant *ConstantPacked::get(const std::vector<Constant*> &V) {
assert(!V.empty() && "Cannot infer type if V is empty");
return get(PackedType::get(V.front()->getType(),V.size()), V);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantPacked::destroyConstant() {
PackedConstants.remove(this);
destroyConstantImpl();
}
//---- ConstantPointerNull::get() implementation...
//
namespace llvm {
// ConstantPointerNull does not take extra "value" argument...
template<class ValType>
struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
return new ConstantPointerNull(Ty);
}
};
template<>
struct ConvertConstantType<ConstantPointerNull, PointerType> {
static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
// Make everyone now use a constant of the new type...
Constant *New = ConstantPointerNull::get(NewTy);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
}
static ValueMap<char, PointerType, ConstantPointerNull> NullPtrConstants;
static char getValType(ConstantPointerNull *) {
return 0;
}
ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
return NullPtrConstants.getOrCreate(Ty, 0);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantPointerNull::destroyConstant() {
NullPtrConstants.remove(this);
destroyConstantImpl();
}
//---- UndefValue::get() implementation...
//
namespace llvm {
// UndefValue does not take extra "value" argument...
template<class ValType>
struct ConstantCreator<UndefValue, Type, ValType> {
static UndefValue *create(const Type *Ty, const ValType &V) {
return new UndefValue(Ty);
}
};
template<>
struct ConvertConstantType<UndefValue, Type> {
static void convert(UndefValue *OldC, const Type *NewTy) {
// Make everyone now use a constant of the new type.
Constant *New = UndefValue::get(NewTy);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
}
static ValueMap<char, Type, UndefValue> UndefValueConstants;
static char getValType(UndefValue *) {
return 0;
}
UndefValue *UndefValue::get(const Type *Ty) {
return UndefValueConstants.getOrCreate(Ty, 0);
}
// destroyConstant - Remove the constant from the constant table.
//
void UndefValue::destroyConstant() {
UndefValueConstants.remove(this);
destroyConstantImpl();
}
//---- ConstantExpr::get() implementations...
//
typedef std::pair<unsigned, std::vector<Constant*> > ExprMapKeyType;
namespace llvm {
template<>
struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V) {
if (V.first == Instruction::Cast)
return new UnaryConstantExpr(Instruction::Cast, V.second[0], Ty);
if ((V.first >= Instruction::BinaryOpsBegin &&
V.first < Instruction::BinaryOpsEnd) ||
V.first == Instruction::Shl || V.first == Instruction::Shr)
return new BinaryConstantExpr(V.first, V.second[0], V.second[1]);
if (V.first == Instruction::Select)
return new SelectConstantExpr(V.second[0], V.second[1], V.second[2]);
if (V.first == Instruction::ExtractElement)
return new ExtractElementConstantExpr(V.second[0], V.second[1]);
if (V.first == Instruction::InsertElement)
return new InsertElementConstantExpr(V.second[0], V.second[1],
V.second[2]);
if (V.first == Instruction::ShuffleVector)
return new ShuffleVectorConstantExpr(V.second[0], V.second[1],
V.second[2]);
assert(V.first == Instruction::GetElementPtr && "Invalid ConstantExpr!");
std::vector<Constant*> IdxList(V.second.begin()+1, V.second.end());
return new GetElementPtrConstantExpr(V.second[0], IdxList, Ty);
}
};
template<>
struct ConvertConstantType<ConstantExpr, Type> {
static void convert(ConstantExpr *OldC, const Type *NewTy) {
Constant *New;
switch (OldC->getOpcode()) {
case Instruction::Cast:
New = ConstantExpr::getCast(OldC->getOperand(0), NewTy);
break;
case Instruction::Select:
New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
OldC->getOperand(1),
OldC->getOperand(2));
break;
case Instruction::Shl:
case Instruction::Shr:
New = ConstantExpr::getShiftTy(NewTy, OldC->getOpcode(),
OldC->getOperand(0), OldC->getOperand(1));
break;
default:
assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
OldC->getOpcode() < Instruction::BinaryOpsEnd);
New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
OldC->getOperand(1));
break;
case Instruction::GetElementPtr:
// Make everyone now use a constant of the new type...
std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), Idx);
break;
}
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
} // end namespace llvm
static ExprMapKeyType getValType(ConstantExpr *CE) {
std::vector<Constant*> Operands;
Operands.reserve(CE->getNumOperands());
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
Operands.push_back(cast<Constant>(CE->getOperand(i)));
return ExprMapKeyType(CE->getOpcode(), Operands);
}
static ValueMap<ExprMapKeyType, Type, ConstantExpr> ExprConstants;
Constant *ConstantExpr::getCast(Constant *C, const Type *Ty) {
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
if (Constant *FC = ConstantFoldCastInstruction(C, Ty))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> argVec(1, C);
ExprMapKeyType Key = std::make_pair(Instruction::Cast, argVec);
return ExprConstants.getOrCreate(Ty, Key);
}
Constant *ConstantExpr::getSignExtend(Constant *C, const Type *Ty) {
assert(C->getType()->isIntegral() && Ty->isIntegral() &&
C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() &&
"This is an illegal sign extension!");
if (C->getType() != Type::BoolTy) {
C = ConstantExpr::getCast(C, C->getType()->getSignedVersion());
return ConstantExpr::getCast(C, Ty);
} else {
if (C == ConstantBool::True)
return ConstantIntegral::getAllOnesValue(Ty);
else
return ConstantIntegral::getNullValue(Ty);
}
}
Constant *ConstantExpr::getZeroExtend(Constant *C, const Type *Ty) {
assert(C->getType()->isIntegral() && Ty->isIntegral() &&
C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() &&
"This is an illegal zero extension!");
if (C->getType() != Type::BoolTy)
C = ConstantExpr::getCast(C, C->getType()->getUnsignedVersion());
return ConstantExpr::getCast(C, Ty);
}
Constant *ConstantExpr::getSizeOf(const Type *Ty) {
// sizeof is implemented as: (ulong) gep (Ty*)null, 1
return getCast(
getGetElementPtr(getNullValue(PointerType::get(Ty)),
std::vector<Constant*>(1, ConstantInt::get(Type::UIntTy, 1))),
Type::ULongTy);
}
Constant *ConstantExpr::getPtrPtrFromArrayPtr(Constant *C) {
// pointer from array is implemented as: getelementptr arr ptr, 0, 0
static std::vector<Constant*> Indices(2, ConstantUInt::get(Type::UIntTy, 0));
return ConstantExpr::getGetElementPtr(C, Indices);
}
Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
Constant *C1, Constant *C2) {
if (Opcode == Instruction::Shl || Opcode == Instruction::Shr)
return getShiftTy(ReqTy, Opcode, C1, C2);
// Check the operands for consistency first
assert((Opcode >= Instruction::BinaryOpsBegin &&
Opcode < Instruction::BinaryOpsEnd) &&
"Invalid opcode in binary constant expression");
assert(C1->getType() == C2->getType() &&
"Operand types in binary constant expression should match");
if (ReqTy == C1->getType() || (Instruction::isRelational(Opcode) &&
ReqTy == Type::BoolTy))
if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
return FC; // Fold a few common cases...
std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
ExprMapKeyType Key = std::make_pair(Opcode, argVec);
return ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
#ifndef NDEBUG
switch (Opcode) {
case Instruction::Add: case Instruction::Sub:
case Instruction::Mul: case Instruction::Div:
case Instruction::Rem:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint() ||
isa<PackedType>(C1->getType())) &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert((C1->getType()->isIntegral() || isa<PackedType>(C1->getType())) &&
"Tried to create a logical operation on a non-integral type!");
break;
case Instruction::SetLT: case Instruction::SetGT: case Instruction::SetLE:
case Instruction::SetGE: case Instruction::SetEQ: case Instruction::SetNE:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
break;
case Instruction::Shl:
case Instruction::Shr:
assert(C2->getType() == Type::UByteTy && "Shift should be by ubyte!");
assert((C1->getType()->isInteger() || isa<PackedType>(C1->getType())) &&
"Tried to create a shift operation on a non-integer type!");
break;
default:
break;
}
#endif
if (Instruction::isRelational(Opcode))
return getTy(Type::BoolTy, Opcode, C1, C2);
else
return getTy(C1->getType(), Opcode, C1, C2);
}
Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
Constant *V1, Constant *V2) {
assert(C->getType() == Type::BoolTy && "Select condition must be bool!");
assert(V1->getType() == V2->getType() && "Select value types must match!");
assert(V1->getType()->isFirstClassType() && "Cannot select aggregate type!");
if (ReqTy == V1->getType())
if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
return SC; // Fold common cases
std::vector<Constant*> argVec(3, C);
argVec[1] = V1;
argVec[2] = V2;
ExprMapKeyType Key = std::make_pair(Instruction::Select, argVec);
return ExprConstants.getOrCreate(ReqTy, Key);
}
/// getShiftTy - Return a shift left or shift right constant expr
Constant *ConstantExpr::getShiftTy(const Type *ReqTy, unsigned Opcode,
Constant *C1, Constant *C2) {
// Check the operands for consistency first
assert((Opcode == Instruction::Shl ||
Opcode == Instruction::Shr) &&
"Invalid opcode in binary constant expression");
assert(C1->getType()->isIntegral() && C2->getType() == Type::UByteTy &&
"Invalid operand types for Shift constant expr!");
if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
ExprMapKeyType Key = std::make_pair(Opcode, argVec);
return ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
const std::vector<Value*> &IdxList) {
assert(GetElementPtrInst::getIndexedType(C->getType(), IdxList, true) &&
"GEP indices invalid!");
if (Constant *FC = ConstantFoldGetElementPtr(C, IdxList))
return FC; // Fold a few common cases...
assert(isa<PointerType>(C->getType()) &&
"Non-pointer type for constant GetElementPtr expression");
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.reserve(IdxList.size()+1);
ArgVec.push_back(C);
for (unsigned i = 0, e = IdxList.size(); i != e; ++i)
ArgVec.push_back(cast<Constant>(IdxList[i]));
const ExprMapKeyType &Key = std::make_pair(Instruction::GetElementPtr,ArgVec);
return ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getGetElementPtr(Constant *C,
const std::vector<Constant*> &IdxList){
// Get the result type of the getelementptr!
std::vector<Value*> VIdxList(IdxList.begin(), IdxList.end());
const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), VIdxList,
true);
assert(Ty && "GEP indices invalid!");
return getGetElementPtrTy(PointerType::get(Ty), C, VIdxList);
}
Constant *ConstantExpr::getGetElementPtr(Constant *C,
const std::vector<Value*> &IdxList) {
// Get the result type of the getelementptr!
const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
true);
assert(Ty && "GEP indices invalid!");
return getGetElementPtrTy(PointerType::get(Ty), C, IdxList);
}
Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
Constant *Idx) {
if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, Val);
ArgVec.push_back(Idx);
const ExprMapKeyType &Key = std::make_pair(Instruction::ExtractElement,ArgVec);
return ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
assert(isa<PackedType>(Val->getType()) &&
"Tried to create extractelement operation on non-packed type!");
assert(Idx->getType() == Type::UIntTy &&
"Extractelement index must be uint type!");
return getExtractElementTy(cast<PackedType>(Val->getType())->getElementType(),
Val, Idx);
}
Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
Constant *Elt, Constant *Idx) {
if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, Val);
ArgVec.push_back(Elt);
ArgVec.push_back(Idx);
const ExprMapKeyType &Key = std::make_pair(Instruction::InsertElement,ArgVec);
return ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
Constant *Idx) {
assert(isa<PackedType>(Val->getType()) &&
"Tried to create insertelement operation on non-packed type!");
assert(Elt->getType() == cast<PackedType>(Val->getType())->getElementType()
&& "Insertelement types must match!");
assert(Idx->getType() == Type::UIntTy &&
"Insertelement index must be uint type!");
return getInsertElementTy(cast<PackedType>(Val->getType())->getElementType(),
Val, Elt, Idx);
}
Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
Constant *V2, Constant *Mask) {
if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, V1);
ArgVec.push_back(V2);
ArgVec.push_back(Mask);
const ExprMapKeyType &Key = std::make_pair(Instruction::ShuffleVector,ArgVec);
return ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
Constant *Mask) {
assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector constant expr operands!");
return getShuffleVectorTy(V1->getType(), V1, V2, Mask);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantExpr::destroyConstant() {
ExprConstants.remove(this);
destroyConstantImpl();
}
const char *ConstantExpr::getOpcodeName() const {
return Instruction::getOpcodeName(getOpcode());
}
//===----------------------------------------------------------------------===//
// replaceUsesOfWithOnConstant implementations
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
unsigned OperandToUpdate = U-OperandList;
assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
std::pair<ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
Lookup.first.first = getType();
Lookup.second = this;
std::vector<Constant*> &Values = Lookup.first.second;
Values.reserve(getNumOperands()); // Build replacement array.
// Fill values with the modified operands of the constant array. Also,
// compute whether this turns into an all-zeros array.
bool isAllZeros = false;
if (!ToC->isNullValue()) {
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
Values.push_back(cast<Constant>(O->get()));
} else {
isAllZeros = true;
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
Values.push_back(Val);
if (isAllZeros) isAllZeros = Val->isNullValue();
}
}
Values[OperandToUpdate] = ToC;
Constant *Replacement = 0;
if (isAllZeros) {
Replacement = ConstantAggregateZero::get(getType());
} else {
// Check to see if we have this array type already.
bool Exists;
ArrayConstantsTy::MapIterator I =
ArrayConstants.InsertOrGetItem(Lookup, Exists);
if (Exists) {
Replacement = I->second;
} else {
// Okay, the new shape doesn't exist in the system yet. Instead of
// creating a new constant array, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
ArrayConstants.MoveConstantToNewSlot(this, I);
// Update to the new value.
setOperand(OperandToUpdate, ToC);
return;
}
}
// Otherwise, I do need to replace this with an existing value.
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
unsigned OperandToUpdate = U-OperandList;
assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
std::pair<StructConstantsTy::MapKey, ConstantStruct*> Lookup;
Lookup.first.first = getType();
Lookup.second = this;
std::vector<Constant*> &Values = Lookup.first.second;
Values.reserve(getNumOperands()); // Build replacement struct.
// Fill values with the modified operands of the constant struct. Also,
// compute whether this turns into an all-zeros struct.
bool isAllZeros = false;
if (!ToC->isNullValue()) {
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
Values.push_back(cast<Constant>(O->get()));
} else {
isAllZeros = true;
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
Values.push_back(Val);
if (isAllZeros) isAllZeros = Val->isNullValue();
}
}
Values[OperandToUpdate] = ToC;
Constant *Replacement = 0;
if (isAllZeros) {
Replacement = ConstantAggregateZero::get(getType());
} else {
// Check to see if we have this array type already.
bool Exists;
StructConstantsTy::MapIterator I =
StructConstants.InsertOrGetItem(Lookup, Exists);
if (Exists) {
Replacement = I->second;
} else {
// Okay, the new shape doesn't exist in the system yet. Instead of
// creating a new constant struct, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
StructConstants.MoveConstantToNewSlot(this, I);
// Update to the new value.
setOperand(OperandToUpdate, ToC);
return;
}
}
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
void ConstantPacked::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
std::vector<Constant*> Values;
Values.reserve(getNumOperands()); // Build replacement array...
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Constant *Val = getOperand(i);
if (Val == From) Val = cast<Constant>(To);
Values.push_back(Val);
}
Constant *Replacement = ConstantPacked::get(getType(), Values);
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
Use *U) {
assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
Constant *To = cast<Constant>(ToV);
Constant *Replacement = 0;
if (getOpcode() == Instruction::GetElementPtr) {
std::vector<Constant*> Indices;
Constant *Pointer = getOperand(0);
Indices.reserve(getNumOperands()-1);
if (Pointer == From) Pointer = To;
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Constant *Val = getOperand(i);
if (Val == From) Val = To;
Indices.push_back(Val);
}
Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices);
} else if (getOpcode() == Instruction::Cast) {
assert(getOperand(0) == From && "Cast only has one use!");
Replacement = ConstantExpr::getCast(To, getType());
} else if (getOpcode() == Instruction::Select) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
Constant *C3 = getOperand(2);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
if (C3 == From) C3 = To;
Replacement = ConstantExpr::getSelect(C1, C2, C3);
} else if (getOpcode() == Instruction::ExtractElement) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
Replacement = ConstantExpr::getExtractElement(C1, C2);
} else if (getOpcode() == Instruction::InsertElement) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
Constant *C3 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
if (C3 == From) C3 = To;
Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
} else if (getOpcode() == Instruction::ShuffleVector) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
Constant *C3 = getOperand(2);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
if (C3 == From) C3 = To;
Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
} else if (getNumOperands() == 2) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
Replacement = ConstantExpr::get(getOpcode(), C1, C2);
} else {
assert(0 && "Unknown ConstantExpr type!");
return;
}
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
/// clearAllValueMaps - This method frees all internal memory used by the
/// constant subsystem, which can be used in environments where this memory
/// is otherwise reported as a leak.
void Constant::clearAllValueMaps() {
std::vector<Constant *> Constants;
DoubleConstants.clear(Constants);
FloatConstants.clear(Constants);
SIntConstants.clear(Constants);
UIntConstants.clear(Constants);
AggZeroConstants.clear(Constants);
ArrayConstants.clear(Constants);
StructConstants.clear(Constants);
PackedConstants.clear(Constants);
NullPtrConstants.clear(Constants);
UndefValueConstants.clear(Constants);
ExprConstants.clear(Constants);
for (std::vector<Constant *>::iterator I = Constants.begin(),
E = Constants.end(); I != E; ++I)
(*I)->dropAllReferences();
for (std::vector<Constant *>::iterator I = Constants.begin(),
E = Constants.end(); I != E; ++I)
(*I)->destroyConstantImpl();
Constants.clear();
}
/// getStringValue - Turn an LLVM constant pointer that eventually points to a
/// global into a string value. Return an empty string if we can't do it.
/// Parameter Chop determines if the result is chopped at the first null
/// terminator.
///
std::string Constant::getStringValue(bool Chop, unsigned Offset) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(this)) {
if (GV->hasInitializer() && isa<ConstantArray>(GV->getInitializer())) {
ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
if (Init->isString()) {
std::string Result = Init->getAsString();
if (Offset < Result.size()) {
// If we are pointing INTO The string, erase the beginning...
Result.erase(Result.begin(), Result.begin()+Offset);
// Take off the null terminator, and any string fragments after it.
if (Chop) {
std::string::size_type NullPos = Result.find_first_of((char)0);
if (NullPos != std::string::npos)
Result.erase(Result.begin()+NullPos, Result.end());
}
return Result;
}
}
}
} else if (Constant *C = dyn_cast<Constant>(this)) {
if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
return GV->getStringValue(Chop, Offset);
else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::GetElementPtr) {
// Turn a gep into the specified offset.
if (CE->getNumOperands() == 3 &&
cast<Constant>(CE->getOperand(1))->isNullValue() &&
isa<ConstantInt>(CE->getOperand(2))) {
Offset += cast<ConstantInt>(CE->getOperand(2))->getRawValue();
return CE->getOperand(0)->getStringValue(Chop, Offset);
}
}
}
}
return "";
}