llvm-project/flang/lib/Lower/IO.cpp

2279 lines
104 KiB
C++

//===-- IO.cpp -- IO statement lowering -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/IO.h"
#include "flang/Common/uint128.h"
#include "flang/Lower/Allocatable.h"
#include "flang/Lower/Bridge.h"
#include "flang/Lower/ConvertExpr.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/Runtime.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/Support/Utils.h"
#include "flang/Lower/VectorSubscripts.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/Complex.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Support/FIRContext.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Runtime/io-api.h"
#include "flang/Semantics/tools.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "flang-lower-io"
// Define additional runtime type models specific to IO.
namespace fir::runtime {
template <>
constexpr TypeBuilderFunc getModel<Fortran::runtime::io::IoStatementState *>() {
return getModel<char *>();
}
template <>
constexpr TypeBuilderFunc
getModel<const Fortran::runtime::io::NamelistGroup &>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return fir::ReferenceType::get(mlir::TupleType::get(context));
};
}
template <>
constexpr TypeBuilderFunc getModel<Fortran::runtime::io::Iostat>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return mlir::IntegerType::get(context,
8 * sizeof(Fortran::runtime::io::Iostat));
};
}
} // namespace fir::runtime
using namespace Fortran::runtime::io;
#define mkIOKey(X) FirmkKey(IONAME(X))
namespace Fortran::lower {
/// Static table of IO runtime calls
///
/// This logical map contains the name and type builder function for each IO
/// runtime function listed in the tuple. This table is fully constructed at
/// compile-time. Use the `mkIOKey` macro to access the table.
static constexpr std::tuple<
mkIOKey(BeginInternalArrayListOutput), mkIOKey(BeginInternalArrayListInput),
mkIOKey(BeginInternalArrayFormattedOutput),
mkIOKey(BeginInternalArrayFormattedInput), mkIOKey(BeginInternalListOutput),
mkIOKey(BeginInternalListInput), mkIOKey(BeginInternalFormattedOutput),
mkIOKey(BeginInternalFormattedInput), mkIOKey(BeginExternalListOutput),
mkIOKey(BeginExternalListInput), mkIOKey(BeginExternalFormattedOutput),
mkIOKey(BeginExternalFormattedInput), mkIOKey(BeginUnformattedOutput),
mkIOKey(BeginUnformattedInput), mkIOKey(BeginWait), mkIOKey(BeginWaitAll),
mkIOKey(BeginClose), mkIOKey(BeginFlush), mkIOKey(BeginBackspace),
mkIOKey(BeginEndfile), mkIOKey(BeginRewind), mkIOKey(BeginOpenUnit),
mkIOKey(BeginOpenNewUnit), mkIOKey(BeginInquireUnit),
mkIOKey(BeginInquireFile), mkIOKey(BeginInquireIoLength),
mkIOKey(CheckUnitNumberInRange64), mkIOKey(CheckUnitNumberInRange128),
mkIOKey(EnableHandlers), mkIOKey(SetAdvance), mkIOKey(SetBlank),
mkIOKey(SetDecimal), mkIOKey(SetDelim), mkIOKey(SetPad), mkIOKey(SetPos),
mkIOKey(SetRec), mkIOKey(SetRound), mkIOKey(SetSign),
mkIOKey(OutputNamelist), mkIOKey(InputNamelist), mkIOKey(OutputDescriptor),
mkIOKey(InputDescriptor), mkIOKey(OutputUnformattedBlock),
mkIOKey(InputUnformattedBlock), mkIOKey(OutputInteger8),
mkIOKey(OutputInteger16), mkIOKey(OutputInteger32),
mkIOKey(OutputInteger64), mkIOKey(OutputInteger128), mkIOKey(InputInteger),
mkIOKey(OutputReal32), mkIOKey(InputReal32), mkIOKey(OutputReal64),
mkIOKey(InputReal64), mkIOKey(OutputComplex32), mkIOKey(InputComplex32),
mkIOKey(OutputComplex64), mkIOKey(InputComplex64), mkIOKey(OutputAscii),
mkIOKey(InputAscii), mkIOKey(OutputLogical), mkIOKey(InputLogical),
mkIOKey(SetAccess), mkIOKey(SetAction), mkIOKey(SetAsynchronous),
mkIOKey(SetCarriagecontrol), mkIOKey(SetEncoding), mkIOKey(SetForm),
mkIOKey(SetPosition), mkIOKey(SetRecl), mkIOKey(SetStatus),
mkIOKey(SetFile), mkIOKey(GetNewUnit), mkIOKey(GetSize),
mkIOKey(GetIoLength), mkIOKey(GetIoMsg), mkIOKey(InquireCharacter),
mkIOKey(InquireLogical), mkIOKey(InquirePendingId),
mkIOKey(InquireInteger64), mkIOKey(EndIoStatement), mkIOKey(SetConvert)>
newIOTable;
} // namespace Fortran::lower
namespace {
/// IO statements may require exceptional condition handling. A statement that
/// encounters an exceptional condition may branch to a label given on an ERR
/// (error), END (end-of-file), or EOR (end-of-record) specifier. An IOSTAT
/// specifier variable may be set to a value that indicates some condition,
/// and an IOMSG specifier variable may be set to a description of a condition.
struct ConditionSpecInfo {
const Fortran::lower::SomeExpr *ioStatExpr{};
llvm::Optional<fir::ExtendedValue> ioMsg;
bool hasErr{};
bool hasEnd{};
bool hasEor{};
fir::IfOp bigUnitIfOp;
/// Check for any condition specifier that applies to specifier processing.
bool hasErrorConditionSpec() const { return ioStatExpr != nullptr || hasErr; }
/// Check for any condition specifier that applies to data transfer items
/// in a PRINT, READ, WRITE, or WAIT statement. (WAIT may be irrelevant.)
bool hasTransferConditionSpec() const {
return hasErrorConditionSpec() || hasEnd || hasEor;
}
/// Check for any condition specifier, including IOMSG.
bool hasAnyConditionSpec() const {
return hasTransferConditionSpec() || ioMsg;
}
};
} // namespace
template <typename D>
static void genIoLoop(Fortran::lower::AbstractConverter &converter,
mlir::Value cookie, const D &ioImpliedDo,
bool isFormatted, bool checkResult, mlir::Value &ok,
bool inLoop);
/// Helper function to retrieve the name of the IO function given the key `A`
template <typename A>
static constexpr const char *getName() {
return std::get<A>(Fortran::lower::newIOTable).name;
}
/// Helper function to retrieve the type model signature builder of the IO
/// function as defined by the key `A`
template <typename A>
static constexpr fir::runtime::FuncTypeBuilderFunc getTypeModel() {
return std::get<A>(Fortran::lower::newIOTable).getTypeModel();
}
inline int64_t getLength(mlir::Type argTy) {
return argTy.cast<fir::SequenceType>().getShape()[0];
}
/// Get (or generate) the MLIR FuncOp for a given IO runtime function.
template <typename E>
static mlir::func::FuncOp getIORuntimeFunc(mlir::Location loc,
fir::FirOpBuilder &builder) {
llvm::StringRef name = getName<E>();
mlir::func::FuncOp func = builder.getNamedFunction(name);
if (func)
return func;
auto funTy = getTypeModel<E>()(builder.getContext());
func = builder.createFunction(loc, name, funTy);
func->setAttr("fir.runtime", builder.getUnitAttr());
func->setAttr("fir.io", builder.getUnitAttr());
return func;
}
/// Generate calls to end an IO statement. Return the IOSTAT value, if any.
/// It is the caller's responsibility to generate branches on that value.
static mlir::Value genEndIO(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie,
ConditionSpecInfo &csi,
Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
if (csi.ioMsg) {
mlir::func::FuncOp getIoMsg =
getIORuntimeFunc<mkIOKey(GetIoMsg)>(loc, builder);
builder.create<fir::CallOp>(
loc, getIoMsg,
mlir::ValueRange{
cookie,
builder.createConvert(loc, getIoMsg.getFunctionType().getInput(1),
fir::getBase(*csi.ioMsg)),
builder.createConvert(loc, getIoMsg.getFunctionType().getInput(2),
fir::getLen(*csi.ioMsg))});
}
mlir::func::FuncOp endIoStatement =
getIORuntimeFunc<mkIOKey(EndIoStatement)>(loc, builder);
auto call = builder.create<fir::CallOp>(loc, endIoStatement,
mlir::ValueRange{cookie});
mlir::Value iostat = call.getResult(0);
if (csi.bigUnitIfOp) {
stmtCtx.finalizeAndPop();
builder.create<fir::ResultOp>(loc, iostat);
builder.setInsertionPointAfter(csi.bigUnitIfOp);
iostat = csi.bigUnitIfOp.getResult(0);
}
if (csi.ioStatExpr) {
mlir::Value ioStatVar =
fir::getBase(converter.genExprAddr(loc, csi.ioStatExpr, stmtCtx));
mlir::Value ioStatResult =
builder.createConvert(loc, converter.genType(*csi.ioStatExpr), iostat);
builder.create<fir::StoreOp>(loc, ioStatResult, ioStatVar);
}
return csi.hasTransferConditionSpec() ? iostat : mlir::Value{};
}
/// Make the next call in the IO statement conditional on runtime result `ok`.
/// If a call returns `ok==false`, further suboperation calls for an IO
/// statement will be skipped. This may generate branch heavy, deeply nested
/// conditionals for IO statements with a large number of suboperations.
static void makeNextConditionalOn(fir::FirOpBuilder &builder,
mlir::Location loc, bool checkResult,
mlir::Value ok, bool inLoop = false) {
if (!checkResult || !ok)
// Either no IO calls need to be checked, or this will be the first call.
return;
// A previous IO call for a statement returned the bool `ok`. If this call
// is in a fir.iterate_while loop, the result must be propagated up to the
// loop scope as an extra ifOp result. (The propagation is done in genIoLoop.)
mlir::TypeRange resTy;
if (inLoop)
resTy = builder.getI1Type();
auto ifOp = builder.create<fir::IfOp>(loc, resTy, ok,
/*withElseRegion=*/inLoop);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
}
/// Retrieve or generate a runtime description of NAMELIST group `symbol`.
/// The form of the description is defined in runtime header file namelist.h.
/// Static descriptors are generated for global objects; local descriptors for
/// local objects. If all descriptors are static, the NamelistGroup is static.
static mlir::Value
getNamelistGroup(Fortran::lower::AbstractConverter &converter,
const Fortran::semantics::Symbol &symbol,
Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Location loc = converter.getCurrentLocation();
std::string groupMangleName = converter.mangleName(symbol);
if (auto group = builder.getNamedGlobal(groupMangleName))
return builder.create<fir::AddrOfOp>(loc, group.resultType(),
group.getSymbol());
const auto &details =
symbol.GetUltimate().get<Fortran::semantics::NamelistDetails>();
mlir::MLIRContext *context = builder.getContext();
mlir::StringAttr linkOnce = builder.createLinkOnceLinkage();
mlir::IndexType idxTy = builder.getIndexType();
mlir::IntegerType sizeTy = builder.getIntegerType(8 * sizeof(std::size_t));
fir::ReferenceType charRefTy =
fir::ReferenceType::get(builder.getIntegerType(8));
fir::ReferenceType descRefTy =
fir::ReferenceType::get(fir::BoxType::get(mlir::NoneType::get(context)));
fir::SequenceType listTy = fir::SequenceType::get(
details.objects().size(),
mlir::TupleType::get(context, {charRefTy, descRefTy}));
mlir::TupleType groupTy = mlir::TupleType::get(
context, {charRefTy, sizeTy, fir::ReferenceType::get(listTy)});
auto stringAddress = [&](const Fortran::semantics::Symbol &symbol) {
return fir::factory::createStringLiteral(builder, loc,
symbol.name().ToString() + '\0');
};
// Define object names, and static descriptors for global objects.
bool groupIsLocal = false;
stringAddress(symbol);
for (const Fortran::semantics::Symbol &s : details.objects()) {
stringAddress(s);
if (!Fortran::lower::symbolIsGlobal(s)) {
groupIsLocal = true;
continue;
}
// We know we have a global item. It it's not a pointer or allocatable,
// create a static pointer to it.
if (!IsAllocatableOrPointer(s)) {
std::string mangleName = converter.mangleName(s) + ".desc";
if (builder.getNamedGlobal(mangleName))
continue;
const auto expr = Fortran::evaluate::AsGenericExpr(s);
fir::BoxType boxTy =
fir::BoxType::get(fir::PointerType::get(converter.genType(s)));
auto descFunc = [&](fir::FirOpBuilder &b) {
auto box =
Fortran::lower::genInitialDataTarget(converter, loc, boxTy, *expr);
b.create<fir::HasValueOp>(loc, box);
};
builder.createGlobalConstant(loc, boxTy, mangleName, descFunc, linkOnce);
}
}
// Define the list of Items.
mlir::Value listAddr =
groupIsLocal ? builder.create<fir::AllocaOp>(loc, listTy) : mlir::Value{};
std::string listMangleName = groupMangleName + ".list";
auto listFunc = [&](fir::FirOpBuilder &builder) {
mlir::Value list = builder.create<fir::UndefOp>(loc, listTy);
mlir::IntegerAttr zero = builder.getIntegerAttr(idxTy, 0);
mlir::IntegerAttr one = builder.getIntegerAttr(idxTy, 1);
llvm::SmallVector<mlir::Attribute, 2> idx = {mlir::Attribute{},
mlir::Attribute{}};
size_t n = 0;
for (const Fortran::semantics::Symbol &s : details.objects()) {
idx[0] = builder.getIntegerAttr(idxTy, n);
idx[1] = zero;
mlir::Value nameAddr =
builder.createConvert(loc, charRefTy, fir::getBase(stringAddress(s)));
list = builder.create<fir::InsertValueOp>(loc, listTy, list, nameAddr,
builder.getArrayAttr(idx));
idx[1] = one;
mlir::Value descAddr;
// Items that we created end in ".desc".
std::string suffix = IsAllocatableOrPointer(s) ? "" : ".desc";
if (auto desc =
builder.getNamedGlobal(converter.mangleName(s) + suffix)) {
descAddr = builder.create<fir::AddrOfOp>(loc, desc.resultType(),
desc.getSymbol());
} else {
const auto expr = Fortran::evaluate::AsGenericExpr(s);
fir::ExtendedValue exv = converter.genExprAddr(*expr, stmtCtx);
mlir::Type type = fir::getBase(exv).getType();
if (mlir::Type baseTy = fir::dyn_cast_ptrOrBoxEleTy(type))
type = baseTy;
fir::BoxType boxType = fir::BoxType::get(fir::PointerType::get(type));
descAddr = builder.createTemporary(loc, boxType);
fir::MutableBoxValue box = fir::MutableBoxValue(descAddr, {}, {});
fir::factory::associateMutableBox(builder, loc, box, exv,
/*lbounds=*/llvm::None);
}
descAddr = builder.createConvert(loc, descRefTy, descAddr);
list = builder.create<fir::InsertValueOp>(loc, listTy, list, descAddr,
builder.getArrayAttr(idx));
++n;
}
if (groupIsLocal)
builder.create<fir::StoreOp>(loc, list, listAddr);
else
builder.create<fir::HasValueOp>(loc, list);
};
if (groupIsLocal)
listFunc(builder);
else
builder.createGlobalConstant(loc, listTy, listMangleName, listFunc,
linkOnce);
// Define the group.
mlir::Value groupAddr = groupIsLocal
? builder.create<fir::AllocaOp>(loc, groupTy)
: mlir::Value{};
auto groupFunc = [&](fir::FirOpBuilder &builder) {
mlir::IntegerAttr zero = builder.getIntegerAttr(idxTy, 0);
mlir::IntegerAttr one = builder.getIntegerAttr(idxTy, 1);
mlir::IntegerAttr two = builder.getIntegerAttr(idxTy, 2);
mlir::Value group = builder.create<fir::UndefOp>(loc, groupTy);
mlir::Value nameAddr = builder.createConvert(
loc, charRefTy, fir::getBase(stringAddress(symbol)));
group = builder.create<fir::InsertValueOp>(loc, groupTy, group, nameAddr,
builder.getArrayAttr(zero));
mlir::Value itemCount =
builder.createIntegerConstant(loc, sizeTy, details.objects().size());
group = builder.create<fir::InsertValueOp>(loc, groupTy, group, itemCount,
builder.getArrayAttr(one));
if (fir::GlobalOp list = builder.getNamedGlobal(listMangleName))
listAddr = builder.create<fir::AddrOfOp>(loc, list.resultType(),
list.getSymbol());
assert(listAddr && "missing namelist object list");
group = builder.create<fir::InsertValueOp>(loc, groupTy, group, listAddr,
builder.getArrayAttr(two));
if (groupIsLocal)
builder.create<fir::StoreOp>(loc, group, groupAddr);
else
builder.create<fir::HasValueOp>(loc, group);
};
if (groupIsLocal) {
groupFunc(builder);
} else {
fir::GlobalOp group =
builder.createGlobal(loc, groupTy, groupMangleName,
/*isConst=*/true, groupFunc, linkOnce);
groupAddr = builder.create<fir::AddrOfOp>(loc, group.resultType(),
group.getSymbol());
}
assert(groupAddr && "missing namelist group result");
return groupAddr;
}
/// Generate a namelist IO call.
static void genNamelistIO(Fortran::lower::AbstractConverter &converter,
mlir::Value cookie, mlir::func::FuncOp funcOp,
Fortran::semantics::Symbol &symbol, bool checkResult,
mlir::Value &ok,
Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Location loc = converter.getCurrentLocation();
makeNextConditionalOn(builder, loc, checkResult, ok);
mlir::Type argType = funcOp.getFunctionType().getInput(1);
mlir::Value groupAddr = getNamelistGroup(converter, symbol, stmtCtx);
groupAddr = builder.createConvert(loc, argType, groupAddr);
llvm::SmallVector<mlir::Value> args = {cookie, groupAddr};
ok = builder.create<fir::CallOp>(loc, funcOp, args).getResult(0);
}
/// Get the output function to call for a value of the given type.
static mlir::func::FuncOp getOutputFunc(mlir::Location loc,
fir::FirOpBuilder &builder,
mlir::Type type, bool isFormatted) {
if (!isFormatted)
return getIORuntimeFunc<mkIOKey(OutputDescriptor)>(loc, builder);
if (auto ty = type.dyn_cast<mlir::IntegerType>()) {
switch (ty.getWidth()) {
case 1:
return getIORuntimeFunc<mkIOKey(OutputLogical)>(loc, builder);
case 8:
return getIORuntimeFunc<mkIOKey(OutputInteger8)>(loc, builder);
case 16:
return getIORuntimeFunc<mkIOKey(OutputInteger16)>(loc, builder);
case 32:
return getIORuntimeFunc<mkIOKey(OutputInteger32)>(loc, builder);
case 64:
return getIORuntimeFunc<mkIOKey(OutputInteger64)>(loc, builder);
case 128:
return getIORuntimeFunc<mkIOKey(OutputInteger128)>(loc, builder);
}
llvm_unreachable("unknown OutputInteger kind");
}
if (auto ty = type.dyn_cast<mlir::FloatType>()) {
if (auto width = ty.getWidth(); width == 32)
return getIORuntimeFunc<mkIOKey(OutputReal32)>(loc, builder);
else if (width == 64)
return getIORuntimeFunc<mkIOKey(OutputReal64)>(loc, builder);
}
auto kindMap = fir::getKindMapping(builder.getModule());
if (auto ty = type.dyn_cast<fir::ComplexType>()) {
// COMPLEX(KIND=k) corresponds to a pair of REAL(KIND=k).
auto width = kindMap.getRealBitsize(ty.getFKind());
if (width == 32)
return getIORuntimeFunc<mkIOKey(OutputComplex32)>(loc, builder);
else if (width == 64)
return getIORuntimeFunc<mkIOKey(OutputComplex64)>(loc, builder);
}
if (type.isa<fir::LogicalType>())
return getIORuntimeFunc<mkIOKey(OutputLogical)>(loc, builder);
if (fir::factory::CharacterExprHelper::isCharacterScalar(type)) {
// TODO: What would it mean if the default CHARACTER KIND is set to a wide
// character encoding scheme? How do we handle UTF-8? Is it a distinct KIND
// value? For now, assume that if the default CHARACTER KIND is 8 bit,
// then it is an ASCII string and UTF-8 is unsupported.
auto asciiKind = kindMap.defaultCharacterKind();
if (kindMap.getCharacterBitsize(asciiKind) == 8 &&
fir::factory::CharacterExprHelper::getCharacterKind(type) == asciiKind)
return getIORuntimeFunc<mkIOKey(OutputAscii)>(loc, builder);
}
return getIORuntimeFunc<mkIOKey(OutputDescriptor)>(loc, builder);
}
/// Generate a sequence of output data transfer calls.
static void genOutputItemList(
Fortran::lower::AbstractConverter &converter, mlir::Value cookie,
const std::list<Fortran::parser::OutputItem> &items, bool isFormatted,
bool checkResult, mlir::Value &ok, bool inLoop) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
for (const Fortran::parser::OutputItem &item : items) {
if (const auto &impliedDo = std::get_if<1>(&item.u)) {
genIoLoop(converter, cookie, impliedDo->value(), isFormatted, checkResult,
ok, inLoop);
continue;
}
auto &pExpr = std::get<Fortran::parser::Expr>(item.u);
mlir::Location loc = converter.genLocation(pExpr.source);
makeNextConditionalOn(builder, loc, checkResult, ok, inLoop);
Fortran::lower::StatementContext stmtCtx;
const auto *expr = Fortran::semantics::GetExpr(pExpr);
if (!expr)
fir::emitFatalError(loc, "internal error: could not get evaluate::Expr");
mlir::Type itemTy = converter.genType(*expr);
mlir::func::FuncOp outputFunc =
getOutputFunc(loc, builder, itemTy, isFormatted);
mlir::Type argType = outputFunc.getFunctionType().getInput(1);
assert((isFormatted || argType.isa<fir::BoxType>()) &&
"expect descriptor for unformatted IO runtime");
llvm::SmallVector<mlir::Value> outputFuncArgs = {cookie};
fir::factory::CharacterExprHelper helper{builder, loc};
if (argType.isa<fir::BoxType>()) {
mlir::Value box = fir::getBase(converter.genExprBox(loc, *expr, stmtCtx));
outputFuncArgs.push_back(builder.createConvert(loc, argType, box));
} else if (helper.isCharacterScalar(itemTy)) {
fir::ExtendedValue exv = converter.genExprAddr(loc, expr, stmtCtx);
// scalar allocatable/pointer may also get here, not clear if
// genExprAddr will lower them as CharBoxValue or BoxValue.
if (!exv.getCharBox())
llvm::report_fatal_error(
"internal error: scalar character not in CharBox");
outputFuncArgs.push_back(builder.createConvert(
loc, outputFunc.getFunctionType().getInput(1), fir::getBase(exv)));
outputFuncArgs.push_back(builder.createConvert(
loc, outputFunc.getFunctionType().getInput(2), fir::getLen(exv)));
} else {
fir::ExtendedValue itemBox = converter.genExprValue(loc, expr, stmtCtx);
mlir::Value itemValue = fir::getBase(itemBox);
if (fir::isa_complex(itemTy)) {
auto parts =
fir::factory::Complex{builder, loc}.extractParts(itemValue);
outputFuncArgs.push_back(parts.first);
outputFuncArgs.push_back(parts.second);
} else {
itemValue = builder.createConvert(loc, argType, itemValue);
outputFuncArgs.push_back(itemValue);
}
}
ok = builder.create<fir::CallOp>(loc, outputFunc, outputFuncArgs)
.getResult(0);
}
}
/// Get the input function to call for a value of the given type.
static mlir::func::FuncOp getInputFunc(mlir::Location loc,
fir::FirOpBuilder &builder,
mlir::Type type, bool isFormatted) {
if (!isFormatted)
return getIORuntimeFunc<mkIOKey(InputDescriptor)>(loc, builder);
if (auto ty = type.dyn_cast<mlir::IntegerType>())
return ty.getWidth() == 1
? getIORuntimeFunc<mkIOKey(InputLogical)>(loc, builder)
: getIORuntimeFunc<mkIOKey(InputInteger)>(loc, builder);
if (auto ty = type.dyn_cast<mlir::FloatType>()) {
if (auto width = ty.getWidth(); width == 32)
return getIORuntimeFunc<mkIOKey(InputReal32)>(loc, builder);
else if (width == 64)
return getIORuntimeFunc<mkIOKey(InputReal64)>(loc, builder);
}
auto kindMap = fir::getKindMapping(builder.getModule());
if (auto ty = type.dyn_cast<fir::ComplexType>()) {
auto width = kindMap.getRealBitsize(ty.getFKind());
if (width == 32)
return getIORuntimeFunc<mkIOKey(InputComplex32)>(loc, builder);
else if (width == 64)
return getIORuntimeFunc<mkIOKey(InputComplex64)>(loc, builder);
}
if (type.isa<fir::LogicalType>())
return getIORuntimeFunc<mkIOKey(InputLogical)>(loc, builder);
if (fir::factory::CharacterExprHelper::isCharacterScalar(type)) {
auto asciiKind = kindMap.defaultCharacterKind();
if (kindMap.getCharacterBitsize(asciiKind) == 8 &&
fir::factory::CharacterExprHelper::getCharacterKind(type) == asciiKind)
return getIORuntimeFunc<mkIOKey(InputAscii)>(loc, builder);
}
return getIORuntimeFunc<mkIOKey(InputDescriptor)>(loc, builder);
}
/// Interpret the lowest byte of a LOGICAL and store that value into the full
/// storage of the LOGICAL. The load, convert, and store effectively (sign or
/// zero) extends the lowest byte into the full LOGICAL value storage, as the
/// runtime is unaware of the LOGICAL value's actual bit width (it was passed
/// as a `bool&` to the runtime in order to be set).
static void boolRefToLogical(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value addr) {
auto boolType = builder.getRefType(builder.getI1Type());
auto boolAddr = builder.createConvert(loc, boolType, addr);
auto boolValue = builder.create<fir::LoadOp>(loc, boolAddr);
auto logicalType = fir::unwrapPassByRefType(addr.getType());
// The convert avoid making any assumptions about how LOGICALs are actually
// represented (it might end-up being either a signed or zero extension).
auto logicalValue = builder.createConvert(loc, logicalType, boolValue);
builder.create<fir::StoreOp>(loc, logicalValue, addr);
}
static mlir::Value createIoRuntimeCallForItem(mlir::Location loc,
fir::FirOpBuilder &builder,
mlir::func::FuncOp inputFunc,
mlir::Value cookie,
const fir::ExtendedValue &item) {
mlir::Type argType = inputFunc.getFunctionType().getInput(1);
llvm::SmallVector<mlir::Value> inputFuncArgs = {cookie};
if (argType.isa<fir::BoxType>()) {
mlir::Value box = fir::getBase(item);
assert(box.getType().isa<fir::BoxType>() && "must be previously emboxed");
inputFuncArgs.push_back(builder.createConvert(loc, argType, box));
} else {
mlir::Value itemAddr = fir::getBase(item);
mlir::Type itemTy = fir::unwrapPassByRefType(itemAddr.getType());
inputFuncArgs.push_back(builder.createConvert(loc, argType, itemAddr));
fir::factory::CharacterExprHelper charHelper{builder, loc};
if (charHelper.isCharacterScalar(itemTy)) {
mlir::Value len = fir::getLen(item);
inputFuncArgs.push_back(builder.createConvert(
loc, inputFunc.getFunctionType().getInput(2), len));
} else if (itemTy.isa<mlir::IntegerType>()) {
inputFuncArgs.push_back(builder.create<mlir::arith::ConstantOp>(
loc, builder.getI32IntegerAttr(
itemTy.cast<mlir::IntegerType>().getWidth() / 8)));
}
}
auto call = builder.create<fir::CallOp>(loc, inputFunc, inputFuncArgs);
auto itemAddr = fir::getBase(item);
auto itemTy = fir::unwrapRefType(itemAddr.getType());
if (itemTy.isa<fir::LogicalType>())
boolRefToLogical(loc, builder, itemAddr);
return call.getResult(0);
}
/// Generate a sequence of input data transfer calls.
static void genInputItemList(Fortran::lower::AbstractConverter &converter,
mlir::Value cookie,
const std::list<Fortran::parser::InputItem> &items,
bool isFormatted, bool checkResult,
mlir::Value &ok, bool inLoop) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
for (const Fortran::parser::InputItem &item : items) {
if (const auto &impliedDo = std::get_if<1>(&item.u)) {
genIoLoop(converter, cookie, impliedDo->value(), isFormatted, checkResult,
ok, inLoop);
continue;
}
auto &pVar = std::get<Fortran::parser::Variable>(item.u);
mlir::Location loc = converter.genLocation(pVar.GetSource());
makeNextConditionalOn(builder, loc, checkResult, ok, inLoop);
Fortran::lower::StatementContext stmtCtx;
const auto *expr = Fortran::semantics::GetExpr(pVar);
if (!expr)
fir::emitFatalError(loc, "internal error: could not get evaluate::Expr");
if (Fortran::evaluate::HasVectorSubscript(*expr)) {
auto vectorSubscriptBox =
Fortran::lower::genVectorSubscriptBox(loc, converter, stmtCtx, *expr);
mlir::func::FuncOp inputFunc = getInputFunc(
loc, builder, vectorSubscriptBox.getElementType(), isFormatted);
const bool mustBox =
inputFunc.getFunctionType().getInput(1).isa<fir::BoxType>();
if (!checkResult) {
auto elementalGenerator = [&](const fir::ExtendedValue &element) {
createIoRuntimeCallForItem(loc, builder, inputFunc, cookie,
mustBox ? builder.createBox(loc, element)
: element);
};
vectorSubscriptBox.loopOverElements(builder, loc, elementalGenerator);
} else {
auto elementalGenerator =
[&](const fir::ExtendedValue &element) -> mlir::Value {
return createIoRuntimeCallForItem(
loc, builder, inputFunc, cookie,
mustBox ? builder.createBox(loc, element) : element);
};
if (!ok)
ok = builder.createBool(loc, true);
ok = vectorSubscriptBox.loopOverElementsWhile(builder, loc,
elementalGenerator, ok);
}
continue;
}
mlir::Type itemTy = converter.genType(*expr);
mlir::func::FuncOp inputFunc =
getInputFunc(loc, builder, itemTy, isFormatted);
auto itemExv = inputFunc.getFunctionType().getInput(1).isa<fir::BoxType>()
? converter.genExprBox(loc, *expr, stmtCtx)
: converter.genExprAddr(loc, expr, stmtCtx);
ok = createIoRuntimeCallForItem(loc, builder, inputFunc, cookie, itemExv);
}
}
/// Generate an io-implied-do loop.
template <typename D>
static void genIoLoop(Fortran::lower::AbstractConverter &converter,
mlir::Value cookie, const D &ioImpliedDo,
bool isFormatted, bool checkResult, mlir::Value &ok,
bool inLoop) {
Fortran::lower::StatementContext stmtCtx;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Location loc = converter.getCurrentLocation();
makeNextConditionalOn(builder, loc, checkResult, ok, inLoop);
const auto &itemList = std::get<0>(ioImpliedDo.t);
const auto &control = std::get<1>(ioImpliedDo.t);
const auto &loopSym = *control.name.thing.thing.symbol;
mlir::Value loopVar = fir::getBase(converter.genExprAddr(
Fortran::evaluate::AsGenericExpr(loopSym).value(), stmtCtx));
auto genControlValue = [&](const Fortran::parser::ScalarIntExpr &expr) {
mlir::Value v = fir::getBase(
converter.genExprValue(*Fortran::semantics::GetExpr(expr), stmtCtx));
return builder.createConvert(loc, builder.getIndexType(), v);
};
mlir::Value lowerValue = genControlValue(control.lower);
mlir::Value upperValue = genControlValue(control.upper);
mlir::Value stepValue =
control.step.has_value()
? genControlValue(*control.step)
: builder.create<mlir::arith::ConstantIndexOp>(loc, 1);
auto genItemList = [&](const D &ioImpliedDo) {
if constexpr (std::is_same_v<D, Fortran::parser::InputImpliedDo>)
genInputItemList(converter, cookie, itemList, isFormatted, checkResult,
ok, /*inLoop=*/true);
else
genOutputItemList(converter, cookie, itemList, isFormatted, checkResult,
ok, /*inLoop=*/true);
};
if (!checkResult) {
// No IO call result checks - the loop is a fir.do_loop op.
auto doLoopOp = builder.create<fir::DoLoopOp>(
loc, lowerValue, upperValue, stepValue, /*unordered=*/false,
/*finalCountValue=*/true);
builder.setInsertionPointToStart(doLoopOp.getBody());
mlir::Value lcv = builder.createConvert(
loc, fir::unwrapRefType(loopVar.getType()), doLoopOp.getInductionVar());
builder.create<fir::StoreOp>(loc, lcv, loopVar);
genItemList(ioImpliedDo);
builder.setInsertionPointToEnd(doLoopOp.getBody());
mlir::Value result = builder.create<mlir::arith::AddIOp>(
loc, doLoopOp.getInductionVar(), doLoopOp.getStep());
builder.create<fir::ResultOp>(loc, result);
builder.setInsertionPointAfter(doLoopOp);
// The loop control variable may be used after the loop.
lcv = builder.createConvert(loc, fir::unwrapRefType(loopVar.getType()),
doLoopOp.getResult(0));
builder.create<fir::StoreOp>(loc, lcv, loopVar);
return;
}
// Check IO call results - the loop is a fir.iterate_while op.
if (!ok)
ok = builder.createBool(loc, true);
auto iterWhileOp = builder.create<fir::IterWhileOp>(
loc, lowerValue, upperValue, stepValue, ok, /*finalCountValue*/ true);
builder.setInsertionPointToStart(iterWhileOp.getBody());
mlir::Value lcv =
builder.createConvert(loc, fir::unwrapRefType(loopVar.getType()),
iterWhileOp.getInductionVar());
builder.create<fir::StoreOp>(loc, lcv, loopVar);
ok = iterWhileOp.getIterateVar();
mlir::Value falseValue =
builder.createIntegerConstant(loc, builder.getI1Type(), 0);
genItemList(ioImpliedDo);
// Unwind nested IO call scopes, filling in true and false ResultOp's.
for (mlir::Operation *op = builder.getBlock()->getParentOp();
mlir::isa<fir::IfOp>(op); op = op->getBlock()->getParentOp()) {
auto ifOp = mlir::dyn_cast<fir::IfOp>(op);
mlir::Operation *lastOp = &ifOp.getThenRegion().front().back();
builder.setInsertionPointAfter(lastOp);
// The primary ifOp result is the result of an IO call or loop.
if (mlir::isa<fir::CallOp, fir::IfOp>(*lastOp))
builder.create<fir::ResultOp>(loc, lastOp->getResult(0));
else
builder.create<fir::ResultOp>(loc, ok); // loop result
// The else branch propagates an early exit false result.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<fir::ResultOp>(loc, falseValue);
}
builder.setInsertionPointToEnd(iterWhileOp.getBody());
mlir::OpResult iterateResult = builder.getBlock()->back().getResult(0);
mlir::Value inductionResult0 = iterWhileOp.getInductionVar();
auto inductionResult1 = builder.create<mlir::arith::AddIOp>(
loc, inductionResult0, iterWhileOp.getStep());
auto inductionResult = builder.create<mlir::arith::SelectOp>(
loc, iterateResult, inductionResult1, inductionResult0);
llvm::SmallVector<mlir::Value> results = {inductionResult, iterateResult};
builder.create<fir::ResultOp>(loc, results);
ok = iterWhileOp.getResult(1);
builder.setInsertionPointAfter(iterWhileOp);
// The loop control variable may be used after the loop.
lcv = builder.createConvert(loc, fir::unwrapRefType(loopVar.getType()),
iterWhileOp.getResult(0));
builder.create<fir::StoreOp>(loc, lcv, loopVar);
}
//===----------------------------------------------------------------------===//
// Default argument generation.
//===----------------------------------------------------------------------===//
static mlir::Value locToFilename(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Type toType) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
return builder.createConvert(loc, toType,
fir::factory::locationToFilename(builder, loc));
}
static mlir::Value locToLineNo(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Type toType) {
return fir::factory::locationToLineNo(converter.getFirOpBuilder(), loc,
toType);
}
static mlir::Value getDefaultScratch(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type toType) {
mlir::Value null = builder.create<mlir::arith::ConstantOp>(
loc, builder.getI64IntegerAttr(0));
return builder.createConvert(loc, toType, null);
}
static mlir::Value getDefaultScratchLen(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type toType) {
return builder.create<mlir::arith::ConstantOp>(
loc, builder.getIntegerAttr(toType, 0));
}
/// Generate a reference to a buffer and the length of buffer given
/// a character expression. An array expression will be cast to scalar
/// character as long as they are contiguous.
static std::tuple<mlir::Value, mlir::Value>
genBuffer(Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::lower::SomeExpr &expr, mlir::Type strTy,
mlir::Type lenTy, Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
fir::ExtendedValue exprAddr = converter.genExprAddr(expr, stmtCtx);
fir::factory::CharacterExprHelper helper(builder, loc);
using ValuePair = std::pair<mlir::Value, mlir::Value>;
auto [buff, len] = exprAddr.match(
[&](const fir::CharBoxValue &x) -> ValuePair {
return {x.getBuffer(), x.getLen()};
},
[&](const fir::CharArrayBoxValue &x) -> ValuePair {
fir::CharBoxValue scalar = helper.toScalarCharacter(x);
return {scalar.getBuffer(), scalar.getLen()};
},
[&](const fir::BoxValue &) -> ValuePair {
// May need to copy before after IO to handle contiguous
// aspect. Not sure descriptor can get here though.
TODO(loc, "character descriptor to contiguous buffer");
},
[&](const auto &) -> ValuePair {
llvm::report_fatal_error(
"internal error: IO buffer is not a character");
});
buff = builder.createConvert(loc, strTy, buff);
len = builder.createConvert(loc, lenTy, len);
return {buff, len};
}
/// Lower a string literal. Many arguments to the runtime are conveyed as
/// Fortran CHARACTER literals.
template <typename A>
static std::tuple<mlir::Value, mlir::Value, mlir::Value>
lowerStringLit(Fortran::lower::AbstractConverter &converter, mlir::Location loc,
Fortran::lower::StatementContext &stmtCtx, const A &syntax,
mlir::Type strTy, mlir::Type lenTy, mlir::Type ty2 = {}) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto *expr = Fortran::semantics::GetExpr(syntax);
if (!expr)
fir::emitFatalError(loc, "internal error: null semantic expr in IO");
auto [buff, len] = genBuffer(converter, loc, *expr, strTy, lenTy, stmtCtx);
mlir::Value kind;
if (ty2) {
auto kindVal = expr->GetType().value().kind();
kind = builder.create<mlir::arith::ConstantOp>(
loc, builder.getIntegerAttr(ty2, kindVal));
}
return {buff, len, kind};
}
/// Pass the body of the FORMAT statement in as if it were a CHARACTER literal
/// constant. NB: This is the prescribed manner in which the front-end passes
/// this information to lowering.
static std::tuple<mlir::Value, mlir::Value, mlir::Value>
lowerSourceTextAsStringLit(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, llvm::StringRef text,
mlir::Type strTy, mlir::Type lenTy) {
text = text.drop_front(text.find('('));
text = text.take_front(text.rfind(')') + 1);
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Value addrGlobalStringLit =
fir::getBase(fir::factory::createStringLiteral(builder, loc, text));
mlir::Value buff = builder.createConvert(loc, strTy, addrGlobalStringLit);
mlir::Value len = builder.createIntegerConstant(loc, lenTy, text.size());
return {buff, len, mlir::Value{}};
}
//===----------------------------------------------------------------------===//
// Handle IO statement specifiers.
// These are threaded together for a single statement via the passed cookie.
//===----------------------------------------------------------------------===//
/// Generic to build an integral argument to the runtime.
template <typename A, typename B>
mlir::Value genIntIOOption(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie,
const B &spec) {
Fortran::lower::StatementContext localStatementCtx;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp ioFunc = getIORuntimeFunc<A>(loc, builder);
mlir::FunctionType ioFuncTy = ioFunc.getFunctionType();
mlir::Value expr = fir::getBase(converter.genExprValue(
loc, Fortran::semantics::GetExpr(spec.v), localStatementCtx));
mlir::Value val = builder.createConvert(loc, ioFuncTy.getInput(1), expr);
llvm::SmallVector<mlir::Value> ioArgs = {cookie, val};
return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0);
}
/// Generic to build a string argument to the runtime. This passes a CHARACTER
/// as a pointer to the buffer and a LEN parameter.
template <typename A, typename B>
mlir::Value genCharIOOption(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie,
const B &spec) {
Fortran::lower::StatementContext localStatementCtx;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp ioFunc = getIORuntimeFunc<A>(loc, builder);
mlir::FunctionType ioFuncTy = ioFunc.getFunctionType();
std::tuple<mlir::Value, mlir::Value, mlir::Value> tup =
lowerStringLit(converter, loc, localStatementCtx, spec,
ioFuncTy.getInput(1), ioFuncTy.getInput(2));
llvm::SmallVector<mlir::Value> ioArgs = {cookie, std::get<0>(tup),
std::get<1>(tup)};
return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0);
}
template <typename A>
mlir::Value genIOOption(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie, const A &spec) {
// These specifiers are processed in advance elsewhere - skip them here.
using PreprocessedSpecs =
std::tuple<Fortran::parser::EndLabel, Fortran::parser::EorLabel,
Fortran::parser::ErrLabel, Fortran::parser::FileUnitNumber,
Fortran::parser::Format, Fortran::parser::IoUnit,
Fortran::parser::MsgVariable, Fortran::parser::Name,
Fortran::parser::StatVariable>;
static_assert(Fortran::common::HasMember<A, PreprocessedSpecs>,
"missing genIOOPtion specialization");
return {};
}
template <>
mlir::Value genIOOption<Fortran::parser::FileNameExpr>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, const Fortran::parser::FileNameExpr &spec) {
Fortran::lower::StatementContext localStatementCtx;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
// has an extra KIND argument
mlir::func::FuncOp ioFunc = getIORuntimeFunc<mkIOKey(SetFile)>(loc, builder);
mlir::FunctionType ioFuncTy = ioFunc.getFunctionType();
std::tuple<mlir::Value, mlir::Value, mlir::Value> tup =
lowerStringLit(converter, loc, localStatementCtx, spec,
ioFuncTy.getInput(1), ioFuncTy.getInput(2));
llvm::SmallVector<mlir::Value> ioArgs{cookie, std::get<0>(tup),
std::get<1>(tup)};
return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0);
}
template <>
mlir::Value genIOOption<Fortran::parser::ConnectSpec::CharExpr>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, const Fortran::parser::ConnectSpec::CharExpr &spec) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp ioFunc;
switch (std::get<Fortran::parser::ConnectSpec::CharExpr::Kind>(spec.t)) {
case Fortran::parser::ConnectSpec::CharExpr::Kind::Access:
ioFunc = getIORuntimeFunc<mkIOKey(SetAccess)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Action:
ioFunc = getIORuntimeFunc<mkIOKey(SetAction)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Asynchronous:
ioFunc = getIORuntimeFunc<mkIOKey(SetAsynchronous)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Blank:
ioFunc = getIORuntimeFunc<mkIOKey(SetBlank)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Decimal:
ioFunc = getIORuntimeFunc<mkIOKey(SetDecimal)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Delim:
ioFunc = getIORuntimeFunc<mkIOKey(SetDelim)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Encoding:
ioFunc = getIORuntimeFunc<mkIOKey(SetEncoding)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Form:
ioFunc = getIORuntimeFunc<mkIOKey(SetForm)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Pad:
ioFunc = getIORuntimeFunc<mkIOKey(SetPad)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Position:
ioFunc = getIORuntimeFunc<mkIOKey(SetPosition)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Round:
ioFunc = getIORuntimeFunc<mkIOKey(SetRound)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Sign:
ioFunc = getIORuntimeFunc<mkIOKey(SetSign)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Carriagecontrol:
ioFunc = getIORuntimeFunc<mkIOKey(SetCarriagecontrol)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Convert:
ioFunc = getIORuntimeFunc<mkIOKey(SetConvert)>(loc, builder);
break;
case Fortran::parser::ConnectSpec::CharExpr::Kind::Dispose:
TODO(loc, "DISPOSE not part of the runtime::io interface");
}
Fortran::lower::StatementContext localStatementCtx;
mlir::FunctionType ioFuncTy = ioFunc.getFunctionType();
std::tuple<mlir::Value, mlir::Value, mlir::Value> tup =
lowerStringLit(converter, loc, localStatementCtx,
std::get<Fortran::parser::ScalarDefaultCharExpr>(spec.t),
ioFuncTy.getInput(1), ioFuncTy.getInput(2));
llvm::SmallVector<mlir::Value> ioArgs = {cookie, std::get<0>(tup),
std::get<1>(tup)};
return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0);
}
template <>
mlir::Value genIOOption<Fortran::parser::ConnectSpec::Recl>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, const Fortran::parser::ConnectSpec::Recl &spec) {
return genIntIOOption<mkIOKey(SetRecl)>(converter, loc, cookie, spec);
}
template <>
mlir::Value genIOOption<Fortran::parser::StatusExpr>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, const Fortran::parser::StatusExpr &spec) {
return genCharIOOption<mkIOKey(SetStatus)>(converter, loc, cookie, spec.v);
}
template <>
mlir::Value genIOOption<Fortran::parser::IoControlSpec::CharExpr>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, const Fortran::parser::IoControlSpec::CharExpr &spec) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp ioFunc;
switch (std::get<Fortran::parser::IoControlSpec::CharExpr::Kind>(spec.t)) {
case Fortran::parser::IoControlSpec::CharExpr::Kind::Advance:
ioFunc = getIORuntimeFunc<mkIOKey(SetAdvance)>(loc, builder);
break;
case Fortran::parser::IoControlSpec::CharExpr::Kind::Blank:
ioFunc = getIORuntimeFunc<mkIOKey(SetBlank)>(loc, builder);
break;
case Fortran::parser::IoControlSpec::CharExpr::Kind::Decimal:
ioFunc = getIORuntimeFunc<mkIOKey(SetDecimal)>(loc, builder);
break;
case Fortran::parser::IoControlSpec::CharExpr::Kind::Delim:
ioFunc = getIORuntimeFunc<mkIOKey(SetDelim)>(loc, builder);
break;
case Fortran::parser::IoControlSpec::CharExpr::Kind::Pad:
ioFunc = getIORuntimeFunc<mkIOKey(SetPad)>(loc, builder);
break;
case Fortran::parser::IoControlSpec::CharExpr::Kind::Round:
ioFunc = getIORuntimeFunc<mkIOKey(SetRound)>(loc, builder);
break;
case Fortran::parser::IoControlSpec::CharExpr::Kind::Sign:
ioFunc = getIORuntimeFunc<mkIOKey(SetSign)>(loc, builder);
break;
}
Fortran::lower::StatementContext localStatementCtx;
mlir::FunctionType ioFuncTy = ioFunc.getFunctionType();
std::tuple<mlir::Value, mlir::Value, mlir::Value> tup =
lowerStringLit(converter, loc, localStatementCtx,
std::get<Fortran::parser::ScalarDefaultCharExpr>(spec.t),
ioFuncTy.getInput(1), ioFuncTy.getInput(2));
llvm::SmallVector<mlir::Value> ioArgs = {cookie, std::get<0>(tup),
std::get<1>(tup)};
return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0);
}
template <>
mlir::Value genIOOption<Fortran::parser::IoControlSpec::Asynchronous>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie,
const Fortran::parser::IoControlSpec::Asynchronous &spec) {
return genCharIOOption<mkIOKey(SetAsynchronous)>(converter, loc, cookie,
spec.v);
}
template <>
mlir::Value genIOOption<Fortran::parser::IdVariable>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, const Fortran::parser::IdVariable &spec) {
TODO(loc, "asynchronous ID not implemented");
}
template <>
mlir::Value genIOOption<Fortran::parser::IoControlSpec::Pos>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, const Fortran::parser::IoControlSpec::Pos &spec) {
return genIntIOOption<mkIOKey(SetPos)>(converter, loc, cookie, spec);
}
template <>
mlir::Value genIOOption<Fortran::parser::IoControlSpec::Rec>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, const Fortran::parser::IoControlSpec::Rec &spec) {
return genIntIOOption<mkIOKey(SetRec)>(converter, loc, cookie, spec);
}
/// Generate runtime call to query the read size after an input statement if
/// the statement has SIZE control-spec.
template <typename A>
static void genIOReadSize(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie,
const A &specList, bool checkResult) {
// This call is not conditional on the current IO status (ok) because the size
// needs to be filled even if some error condition (end-of-file...) was met
// during the input statement (in which case the runtime may return zero for
// the size read).
for (const auto &spec : specList)
if (const auto *size =
std::get_if<Fortran::parser::IoControlSpec::Size>(&spec.u)) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp ioFunc =
getIORuntimeFunc<mkIOKey(GetSize)>(loc, builder);
auto sizeValue =
builder.create<fir::CallOp>(loc, ioFunc, mlir::ValueRange{cookie})
.getResult(0);
Fortran::lower::StatementContext localStatementCtx;
fir::ExtendedValue var = converter.genExprAddr(
loc, Fortran::semantics::GetExpr(size->v), localStatementCtx);
mlir::Value varAddr = fir::getBase(var);
mlir::Type varType = fir::unwrapPassByRefType(varAddr.getType());
mlir::Value sizeCast = builder.createConvert(loc, varType, sizeValue);
builder.create<fir::StoreOp>(loc, sizeCast, varAddr);
break;
}
}
//===----------------------------------------------------------------------===//
// Gather IO statement condition specifier information (if any).
//===----------------------------------------------------------------------===//
template <typename SEEK, typename A>
static bool hasX(const A &list) {
for (const auto &spec : list)
if (std::holds_alternative<SEEK>(spec.u))
return true;
return false;
}
template <typename SEEK, typename A>
static bool hasSpec(const A &stmt) {
return hasX<SEEK>(stmt.v);
}
/// Get the sought expression from the specifier list.
template <typename SEEK, typename A>
static const Fortran::lower::SomeExpr *getExpr(const A &stmt) {
for (const auto &spec : stmt.v)
if (auto *f = std::get_if<SEEK>(&spec.u))
return Fortran::semantics::GetExpr(f->v);
llvm::report_fatal_error("must have a file unit");
}
/// For each specifier, build the appropriate call, threading the cookie.
template <typename A>
static void threadSpecs(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie,
const A &specList, bool checkResult, mlir::Value &ok) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
for (const auto &spec : specList) {
makeNextConditionalOn(builder, loc, checkResult, ok);
ok = std::visit(
Fortran::common::visitors{
[&](const Fortran::parser::IoControlSpec::Size &x) -> mlir::Value {
// Size must be queried after the related READ runtime calls, not
// before.
return ok;
},
[&](const Fortran::parser::ConnectSpec::Newunit &x) -> mlir::Value {
// Newunit must be queried after OPEN specifier runtime calls
// that may fail to avoid modifying the newunit variable if
// there is an error.
return ok;
},
[&](const auto &x) {
return genIOOption(converter, loc, cookie, x);
}},
spec.u);
}
}
/// Most IO statements allow one or more of five optional exception condition
/// handling specifiers: ERR, EOR, END, IOSTAT, and IOMSG. The first three
/// cause control flow to transfer to another statement. The final two return
/// information from the runtime, via a variable, about the nature of the
/// condition that occurred. These condition specifiers are handled here.
template <typename A>
ConditionSpecInfo lowerErrorSpec(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, const A &specList) {
ConditionSpecInfo csi;
const Fortran::lower::SomeExpr *ioMsgExpr = nullptr;
for (const auto &spec : specList) {
std::visit(
Fortran::common::visitors{
[&](const Fortran::parser::StatVariable &var) {
csi.ioStatExpr = Fortran::semantics::GetExpr(var);
},
[&](const Fortran::parser::InquireSpec::IntVar &var) {
if (std::get<Fortran::parser::InquireSpec::IntVar::Kind>(var.t) ==
Fortran::parser::InquireSpec::IntVar::Kind::Iostat)
csi.ioStatExpr = Fortran::semantics::GetExpr(
std::get<Fortran::parser::ScalarIntVariable>(var.t));
},
[&](const Fortran::parser::MsgVariable &var) {
ioMsgExpr = Fortran::semantics::GetExpr(var);
},
[&](const Fortran::parser::InquireSpec::CharVar &var) {
if (std::get<Fortran::parser::InquireSpec::CharVar::Kind>(
var.t) ==
Fortran::parser::InquireSpec::CharVar::Kind::Iomsg)
ioMsgExpr = Fortran::semantics::GetExpr(
std::get<Fortran::parser::ScalarDefaultCharVariable>(
var.t));
},
[&](const Fortran::parser::EndLabel &) { csi.hasEnd = true; },
[&](const Fortran::parser::EorLabel &) { csi.hasEor = true; },
[&](const Fortran::parser::ErrLabel &) { csi.hasErr = true; },
[](const auto &) {}},
spec.u);
}
if (ioMsgExpr) {
// iomsg is a variable, its evaluation may require temps, but it cannot
// itself be a temp, and it is ok to us a local statement context here.
Fortran::lower::StatementContext stmtCtx;
csi.ioMsg = converter.genExprAddr(loc, ioMsgExpr, stmtCtx);
}
return csi;
}
template <typename A>
static void
genConditionHandlerCall(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie,
const A &specList, ConditionSpecInfo &csi) {
if (!csi.hasAnyConditionSpec())
return;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp enableHandlers =
getIORuntimeFunc<mkIOKey(EnableHandlers)>(loc, builder);
mlir::Type boolType = enableHandlers.getFunctionType().getInput(1);
auto boolValue = [&](bool specifierIsPresent) {
return builder.create<mlir::arith::ConstantOp>(
loc, builder.getIntegerAttr(boolType, specifierIsPresent));
};
llvm::SmallVector<mlir::Value> ioArgs = {cookie,
boolValue(csi.ioStatExpr != nullptr),
boolValue(csi.hasErr),
boolValue(csi.hasEnd),
boolValue(csi.hasEor),
boolValue(csi.ioMsg.has_value())};
builder.create<fir::CallOp>(loc, enableHandlers, ioArgs);
}
//===----------------------------------------------------------------------===//
// Data transfer helpers
//===----------------------------------------------------------------------===//
template <typename SEEK, typename A>
static bool hasIOControl(const A &stmt) {
return hasX<SEEK>(stmt.controls);
}
template <typename SEEK, typename A>
static const auto *getIOControl(const A &stmt) {
for (const auto &spec : stmt.controls)
if (const auto *result = std::get_if<SEEK>(&spec.u))
return result;
return static_cast<const SEEK *>(nullptr);
}
/// Returns true iff the expression in the parse tree is not really a format but
/// rather a namelist group.
template <typename A>
static bool formatIsActuallyNamelist(const A &format) {
if (auto *e = std::get_if<Fortran::parser::Expr>(&format.u)) {
auto *expr = Fortran::semantics::GetExpr(*e);
if (const Fortran::semantics::Symbol *y =
Fortran::evaluate::UnwrapWholeSymbolDataRef(*expr))
return y->has<Fortran::semantics::NamelistDetails>();
}
return false;
}
template <typename A>
static bool isDataTransferFormatted(const A &stmt) {
if (stmt.format)
return !formatIsActuallyNamelist(*stmt.format);
return hasIOControl<Fortran::parser::Format>(stmt);
}
template <>
constexpr bool isDataTransferFormatted<Fortran::parser::PrintStmt>(
const Fortran::parser::PrintStmt &) {
return true; // PRINT is always formatted
}
template <typename A>
static bool isDataTransferList(const A &stmt) {
if (stmt.format)
return std::holds_alternative<Fortran::parser::Star>(stmt.format->u);
if (auto *mem = getIOControl<Fortran::parser::Format>(stmt))
return std::holds_alternative<Fortran::parser::Star>(mem->u);
return false;
}
template <>
bool isDataTransferList<Fortran::parser::PrintStmt>(
const Fortran::parser::PrintStmt &stmt) {
return std::holds_alternative<Fortran::parser::Star>(
std::get<Fortran::parser::Format>(stmt.t).u);
}
template <typename A>
static bool isDataTransferInternal(const A &stmt) {
if (stmt.iounit.has_value())
return std::holds_alternative<Fortran::parser::Variable>(stmt.iounit->u);
if (auto *unit = getIOControl<Fortran::parser::IoUnit>(stmt))
return std::holds_alternative<Fortran::parser::Variable>(unit->u);
return false;
}
template <>
constexpr bool isDataTransferInternal<Fortran::parser::PrintStmt>(
const Fortran::parser::PrintStmt &) {
return false;
}
/// If the variable `var` is an array or of a KIND other than the default
/// (normally 1), then a descriptor is required by the runtime IO API. This
/// condition holds even in F77 sources.
static llvm::Optional<fir::ExtendedValue> getVariableBufferRequiredDescriptor(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::parser::Variable &var,
Fortran::lower::StatementContext &stmtCtx) {
fir::ExtendedValue varBox =
converter.genExprBox(loc, var.typedExpr->v.value(), stmtCtx);
fir::KindTy defCharKind = converter.getKindMap().defaultCharacterKind();
mlir::Value varAddr = fir::getBase(varBox);
if (fir::factory::CharacterExprHelper::getCharacterOrSequenceKind(
varAddr.getType()) != defCharKind)
return varBox;
if (fir::factory::CharacterExprHelper::isArray(varAddr.getType()))
return varBox;
return llvm::None;
}
template <typename A>
static llvm::Optional<fir::ExtendedValue>
maybeGetInternalIODescriptor(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, const A &stmt,
Fortran::lower::StatementContext &stmtCtx) {
if (stmt.iounit.has_value())
if (auto *var = std::get_if<Fortran::parser::Variable>(&stmt.iounit->u))
return getVariableBufferRequiredDescriptor(converter, loc, *var, stmtCtx);
if (auto *unit = getIOControl<Fortran::parser::IoUnit>(stmt))
if (auto *var = std::get_if<Fortran::parser::Variable>(&unit->u))
return getVariableBufferRequiredDescriptor(converter, loc, *var, stmtCtx);
return llvm::None;
}
template <>
inline llvm::Optional<fir::ExtendedValue>
maybeGetInternalIODescriptor<Fortran::parser::PrintStmt>(
Fortran::lower::AbstractConverter &, mlir::Location loc,
const Fortran::parser::PrintStmt &, Fortran::lower::StatementContext &) {
return llvm::None;
}
template <typename A>
static bool isDataTransferAsynchronous(mlir::Location loc, const A &stmt) {
if (auto *asynch =
getIOControl<Fortran::parser::IoControlSpec::Asynchronous>(stmt)) {
// FIXME: should contain a string of YES or NO
TODO(loc, "asynchronous transfers not implemented in runtime");
}
return false;
}
template <>
bool isDataTransferAsynchronous<Fortran::parser::PrintStmt>(
mlir::Location, const Fortran::parser::PrintStmt &) {
return false;
}
template <typename A>
static bool isDataTransferNamelist(const A &stmt) {
if (stmt.format)
return formatIsActuallyNamelist(*stmt.format);
return hasIOControl<Fortran::parser::Name>(stmt);
}
template <>
constexpr bool isDataTransferNamelist<Fortran::parser::PrintStmt>(
const Fortran::parser::PrintStmt &) {
return false;
}
/// Lowers a format statment that uses an assigned variable label reference as
/// a select operation to allow for run-time selection of the format statement.
static std::tuple<mlir::Value, mlir::Value, mlir::Value>
lowerReferenceAsStringSelect(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
const Fortran::lower::SomeExpr &expr,
mlir::Type strTy, mlir::Type lenTy,
Fortran::lower::StatementContext &stmtCtx) {
// Possible optimization TODO: Instead of inlining a selectOp every time there
// is a variable reference to a format statement, a function with the selectOp
// could be generated to reduce code size. It is not clear if such an
// optimization would be deployed very often or improve the object code
// beyond, say, what GVN/GCM might produce.
// Create the requisite blocks to inline a selectOp.
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Block *startBlock = builder.getBlock();
mlir::Block *endBlock = startBlock->splitBlock(builder.getInsertionPoint());
mlir::Block *block = startBlock->splitBlock(builder.getInsertionPoint());
builder.setInsertionPointToEnd(block);
llvm::SmallVector<int64_t> indexList;
llvm::SmallVector<mlir::Block *> blockList;
auto symbol = GetLastSymbol(&expr);
Fortran::lower::pft::LabelSet labels;
[[maybe_unused]] auto foundLabelSet =
converter.lookupLabelSet(*symbol, labels);
assert(foundLabelSet && "Label not found in map");
for (auto label : labels) {
indexList.push_back(label);
auto *eval = converter.lookupLabel(label);
assert(eval && "Label is missing from the table");
llvm::StringRef text = toStringRef(eval->position);
mlir::Value stringRef;
mlir::Value stringLen;
if (eval->isA<Fortran::parser::FormatStmt>()) {
assert(text.contains('(') && "FORMAT is unexpectedly ill-formed");
// This is a format statement, so extract the spec from the text.
std::tuple<mlir::Value, mlir::Value, mlir::Value> stringLit =
lowerSourceTextAsStringLit(converter, loc, text, strTy, lenTy);
stringRef = std::get<0>(stringLit);
stringLen = std::get<1>(stringLit);
} else {
// This is not a format statement, so use null.
stringRef = builder.createConvert(
loc, strTy,
builder.createIntegerConstant(loc, builder.getIndexType(), 0));
stringLen = builder.createIntegerConstant(loc, lenTy, 0);
}
// Pass the format string reference and the string length out of the select
// statement.
llvm::SmallVector<mlir::Value> args = {stringRef, stringLen};
builder.create<mlir::cf::BranchOp>(loc, endBlock, args);
// Add block to the list of cases and make a new one.
blockList.push_back(block);
block = block->splitBlock(builder.getInsertionPoint());
builder.setInsertionPointToEnd(block);
}
// Create the unit case which should result in an error.
auto *unitBlock = block->splitBlock(builder.getInsertionPoint());
builder.setInsertionPointToEnd(unitBlock);
// Crash the program.
builder.create<fir::UnreachableOp>(loc);
// Add unit case to the select statement.
blockList.push_back(unitBlock);
// Lower the selectOp.
builder.setInsertionPointToEnd(startBlock);
auto label = fir::getBase(converter.genExprValue(loc, &expr, stmtCtx));
builder.create<fir::SelectOp>(loc, label, indexList, blockList);
builder.setInsertionPointToEnd(endBlock);
endBlock->addArgument(strTy, loc);
endBlock->addArgument(lenTy, loc);
// Handle and return the string reference and length selected by the selectOp.
auto buff = endBlock->getArgument(0);
auto len = endBlock->getArgument(1);
return {buff, len, mlir::Value{}};
}
/// Generate a reference to a format string. There are four cases - a format
/// statement label, a character format expression, an integer that holds the
/// label of a format statement, and the * case. The first three are done here.
/// The * case is done elsewhere.
static std::tuple<mlir::Value, mlir::Value, mlir::Value>
genFormat(Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::parser::Format &format, mlir::Type strTy,
mlir::Type lenTy, Fortran::lower::StatementContext &stmtCtx) {
if (const auto *label = std::get_if<Fortran::parser::Label>(&format.u)) {
// format statement label
auto eval = converter.lookupLabel(*label);
assert(eval && "FORMAT not found in PROCEDURE");
return lowerSourceTextAsStringLit(
converter, loc, toStringRef(eval->position), strTy, lenTy);
}
const auto *pExpr = std::get_if<Fortran::parser::Expr>(&format.u);
assert(pExpr && "missing format expression");
auto e = Fortran::semantics::GetExpr(*pExpr);
if (Fortran::semantics::ExprHasTypeCategory(
*e, Fortran::common::TypeCategory::Character)) {
// character expression
if (e->Rank())
// Array: return address(descriptor) and no length (and no kind value).
return {fir::getBase(converter.genExprBox(loc, *e, stmtCtx)),
mlir::Value{}, mlir::Value{}};
// Scalar: return address(format) and format length (and no kind value).
return lowerStringLit(converter, loc, stmtCtx, *pExpr, strTy, lenTy);
}
if (Fortran::semantics::ExprHasTypeCategory(
*e, Fortran::common::TypeCategory::Integer) &&
e->Rank() == 0 && Fortran::evaluate::UnwrapWholeSymbolDataRef(*e)) {
// Treat as a scalar integer variable containing an ASSIGN label.
return lowerReferenceAsStringSelect(converter, loc, *e, strTy, lenTy,
stmtCtx);
}
// Legacy extension: it is possible that `*e` is not a scalar INTEGER
// variable containing a label value. The output appears to be the source text
// that initialized the variable? Needs more investigatation.
TODO(loc, "io-control-spec contains a reference to a non-integer, "
"non-scalar, or non-variable");
}
template <typename A>
std::tuple<mlir::Value, mlir::Value, mlir::Value>
getFormat(Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const A &stmt, mlir::Type strTy, mlir::Type lenTy,
Fortran ::lower::StatementContext &stmtCtx) {
if (stmt.format && !formatIsActuallyNamelist(*stmt.format))
return genFormat(converter, loc, *stmt.format, strTy, lenTy, stmtCtx);
return genFormat(converter, loc, *getIOControl<Fortran::parser::Format>(stmt),
strTy, lenTy, stmtCtx);
}
template <>
std::tuple<mlir::Value, mlir::Value, mlir::Value>
getFormat<Fortran::parser::PrintStmt>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const Fortran::parser::PrintStmt &stmt, mlir::Type strTy, mlir::Type lenTy,
Fortran::lower::StatementContext &stmtCtx) {
return genFormat(converter, loc, std::get<Fortran::parser::Format>(stmt.t),
strTy, lenTy, stmtCtx);
}
/// Get a buffer for an internal file data transfer.
template <typename A>
std::tuple<mlir::Value, mlir::Value>
getBuffer(Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const A &stmt, mlir::Type strTy, mlir::Type lenTy,
Fortran::lower::StatementContext &stmtCtx) {
const Fortran::parser::IoUnit *iounit =
stmt.iounit ? &*stmt.iounit : getIOControl<Fortran::parser::IoUnit>(stmt);
if (iounit)
if (auto *var = std::get_if<Fortran::parser::Variable>(&iounit->u))
if (auto *expr = Fortran::semantics::GetExpr(*var))
return genBuffer(converter, loc, *expr, strTy, lenTy, stmtCtx);
llvm::report_fatal_error("failed to get IoUnit expr");
}
static mlir::Value genIOUnitNumber(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
const Fortran::lower::SomeExpr *iounit,
mlir::Type ty, ConditionSpecInfo &csi,
Fortran::lower::StatementContext &stmtCtx) {
auto &builder = converter.getFirOpBuilder();
auto rawUnit = fir::getBase(converter.genExprValue(loc, iounit, stmtCtx));
unsigned rawUnitWidth =
rawUnit.getType().cast<mlir::IntegerType>().getWidth();
unsigned runtimeArgWidth = ty.cast<mlir::IntegerType>().getWidth();
// The IO runtime supports `int` unit numbers, if the unit number may
// overflow when passed to the IO runtime, check that the unit number is
// in range before calling the BeginXXX.
if (rawUnitWidth > runtimeArgWidth) {
mlir::func::FuncOp check =
rawUnitWidth <= 64
? getIORuntimeFunc<mkIOKey(CheckUnitNumberInRange64)>(loc, builder)
: getIORuntimeFunc<mkIOKey(CheckUnitNumberInRange128)>(loc,
builder);
mlir::FunctionType funcTy = check.getFunctionType();
llvm::SmallVector<mlir::Value> args;
args.push_back(builder.createConvert(loc, funcTy.getInput(0), rawUnit));
args.push_back(builder.createBool(loc, csi.hasErrorConditionSpec()));
if (csi.ioMsg) {
args.push_back(builder.createConvert(loc, funcTy.getInput(2),
fir::getBase(*csi.ioMsg)));
args.push_back(builder.createConvert(loc, funcTy.getInput(3),
fir::getLen(*csi.ioMsg)));
} else {
args.push_back(builder.createNullConstant(loc, funcTy.getInput(2)));
args.push_back(
fir::factory::createZeroValue(builder, loc, funcTy.getInput(3)));
}
mlir::Value file = locToFilename(converter, loc, funcTy.getInput(4));
mlir::Value line = locToLineNo(converter, loc, funcTy.getInput(5));
args.push_back(file);
args.push_back(line);
auto checkCall = builder.create<fir::CallOp>(loc, check, args);
if (csi.hasErrorConditionSpec()) {
mlir::Value iostat = checkCall.getResult(0);
mlir::Type iostatTy = iostat.getType();
mlir::Value zero = fir::factory::createZeroValue(builder, loc, iostatTy);
mlir::Value unitIsOK = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::eq, iostat, zero);
auto ifOp = builder.create<fir::IfOp>(loc, iostatTy, unitIsOK,
/*withElseRegion=*/true);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<fir::ResultOp>(loc, iostat);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
stmtCtx.pushScope();
csi.bigUnitIfOp = ifOp;
}
}
return builder.createConvert(loc, ty, rawUnit);
}
static mlir::Value genIOUnit(Fortran::lower::AbstractConverter &converter,
mlir::Location loc,
const Fortran::parser::IoUnit *iounit,
mlir::Type ty, ConditionSpecInfo &csi,
Fortran::lower::StatementContext &stmtCtx) {
auto &builder = converter.getFirOpBuilder();
if (iounit)
if (auto *e = std::get_if<Fortran::parser::FileUnitNumber>(&iounit->u))
return genIOUnitNumber(converter, loc, Fortran::semantics::GetExpr(*e),
ty, csi, stmtCtx);
return builder.create<mlir::arith::ConstantOp>(
loc, builder.getIntegerAttr(ty, Fortran::runtime::io::DefaultUnit));
}
template <typename A>
static mlir::Value getIOUnit(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, const A &stmt, mlir::Type ty,
ConditionSpecInfo &csi,
Fortran::lower::StatementContext &stmtCtx) {
const Fortran::parser::IoUnit *iounit =
stmt.iounit ? &*stmt.iounit : getIOControl<Fortran::parser::IoUnit>(stmt);
return genIOUnit(converter, loc, iounit, ty, csi, stmtCtx);
}
//===----------------------------------------------------------------------===//
// Generators for each IO statement type.
//===----------------------------------------------------------------------===//
template <typename K, typename S>
static mlir::Value genBasicIOStmt(Fortran::lower::AbstractConverter &converter,
const S &stmt) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
Fortran::lower::StatementContext stmtCtx;
mlir::Location loc = converter.getCurrentLocation();
ConditionSpecInfo csi = lowerErrorSpec(converter, loc, stmt.v);
mlir::func::FuncOp beginFunc = getIORuntimeFunc<K>(loc, builder);
mlir::FunctionType beginFuncTy = beginFunc.getFunctionType();
mlir::Value unit = genIOUnitNumber(
converter, loc, getExpr<Fortran::parser::FileUnitNumber>(stmt),
beginFuncTy.getInput(0), csi, stmtCtx);
mlir::Value un = builder.createConvert(loc, beginFuncTy.getInput(0), unit);
mlir::Value file = locToFilename(converter, loc, beginFuncTy.getInput(1));
mlir::Value line = locToLineNo(converter, loc, beginFuncTy.getInput(2));
auto call = builder.create<fir::CallOp>(loc, beginFunc,
mlir::ValueRange{un, file, line});
mlir::Value cookie = call.getResult(0);
genConditionHandlerCall(converter, loc, cookie, stmt.v, csi);
mlir::Value ok;
auto insertPt = builder.saveInsertionPoint();
threadSpecs(converter, loc, cookie, stmt.v, csi.hasErrorConditionSpec(), ok);
builder.restoreInsertionPoint(insertPt);
return genEndIO(converter, converter.getCurrentLocation(), cookie, csi,
stmtCtx);
}
mlir::Value Fortran::lower::genBackspaceStatement(
Fortran::lower::AbstractConverter &converter,
const Fortran::parser::BackspaceStmt &stmt) {
return genBasicIOStmt<mkIOKey(BeginBackspace)>(converter, stmt);
}
mlir::Value Fortran::lower::genEndfileStatement(
Fortran::lower::AbstractConverter &converter,
const Fortran::parser::EndfileStmt &stmt) {
return genBasicIOStmt<mkIOKey(BeginEndfile)>(converter, stmt);
}
mlir::Value
Fortran::lower::genFlushStatement(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::FlushStmt &stmt) {
return genBasicIOStmt<mkIOKey(BeginFlush)>(converter, stmt);
}
mlir::Value
Fortran::lower::genRewindStatement(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::RewindStmt &stmt) {
return genBasicIOStmt<mkIOKey(BeginRewind)>(converter, stmt);
}
static mlir::Value
genNewunitSpec(Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie,
const std::list<Fortran::parser::ConnectSpec> &specList) {
for (const auto &spec : specList)
if (auto *newunit =
std::get_if<Fortran::parser::ConnectSpec::Newunit>(&spec.u)) {
Fortran::lower::StatementContext stmtCtx;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp ioFunc =
getIORuntimeFunc<mkIOKey(GetNewUnit)>(loc, builder);
mlir::FunctionType ioFuncTy = ioFunc.getFunctionType();
const auto *var = Fortran::semantics::GetExpr(newunit->v);
mlir::Value addr = builder.createConvert(
loc, ioFuncTy.getInput(1),
fir::getBase(converter.genExprAddr(loc, var, stmtCtx)));
auto kind = builder.createIntegerConstant(loc, ioFuncTy.getInput(2),
var->GetType().value().kind());
llvm::SmallVector<mlir::Value> ioArgs = {cookie, addr, kind};
return builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0);
}
llvm_unreachable("missing Newunit spec");
}
mlir::Value
Fortran::lower::genOpenStatement(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::OpenStmt &stmt) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
Fortran::lower::StatementContext stmtCtx;
mlir::func::FuncOp beginFunc;
llvm::SmallVector<mlir::Value> beginArgs;
mlir::Location loc = converter.getCurrentLocation();
ConditionSpecInfo csi = lowerErrorSpec(converter, loc, stmt.v);
bool hasNewunitSpec = false;
if (hasSpec<Fortran::parser::FileUnitNumber>(stmt)) {
beginFunc = getIORuntimeFunc<mkIOKey(BeginOpenUnit)>(loc, builder);
mlir::FunctionType beginFuncTy = beginFunc.getFunctionType();
mlir::Value unit = genIOUnitNumber(
converter, loc, getExpr<Fortran::parser::FileUnitNumber>(stmt),
beginFuncTy.getInput(0), csi, stmtCtx);
beginArgs.push_back(unit);
beginArgs.push_back(locToFilename(converter, loc, beginFuncTy.getInput(1)));
beginArgs.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(2)));
} else {
hasNewunitSpec = hasSpec<Fortran::parser::ConnectSpec::Newunit>(stmt);
assert(hasNewunitSpec && "missing unit specifier");
beginFunc = getIORuntimeFunc<mkIOKey(BeginOpenNewUnit)>(loc, builder);
mlir::FunctionType beginFuncTy = beginFunc.getFunctionType();
beginArgs.push_back(locToFilename(converter, loc, beginFuncTy.getInput(0)));
beginArgs.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(1)));
}
auto cookie =
builder.create<fir::CallOp>(loc, beginFunc, beginArgs).getResult(0);
genConditionHandlerCall(converter, loc, cookie, stmt.v, csi);
mlir::Value ok;
auto insertPt = builder.saveInsertionPoint();
threadSpecs(converter, loc, cookie, stmt.v, csi.hasErrorConditionSpec(), ok);
if (hasNewunitSpec)
genNewunitSpec(converter, loc, cookie, stmt.v);
builder.restoreInsertionPoint(insertPt);
return genEndIO(converter, loc, cookie, csi, stmtCtx);
}
mlir::Value
Fortran::lower::genCloseStatement(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::CloseStmt &stmt) {
return genBasicIOStmt<mkIOKey(BeginClose)>(converter, stmt);
}
mlir::Value
Fortran::lower::genWaitStatement(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::WaitStmt &stmt) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
Fortran::lower::StatementContext stmtCtx;
mlir::Location loc = converter.getCurrentLocation();
ConditionSpecInfo csi = lowerErrorSpec(converter, loc, stmt.v);
bool hasId = hasSpec<Fortran::parser::IdExpr>(stmt);
mlir::func::FuncOp beginFunc =
hasId ? getIORuntimeFunc<mkIOKey(BeginWait)>(loc, builder)
: getIORuntimeFunc<mkIOKey(BeginWaitAll)>(loc, builder);
mlir::FunctionType beginFuncTy = beginFunc.getFunctionType();
mlir::Value unit = genIOUnitNumber(
converter, loc, getExpr<Fortran::parser::FileUnitNumber>(stmt),
beginFuncTy.getInput(0), csi, stmtCtx);
llvm::SmallVector<mlir::Value> args{unit};
if (hasId) {
mlir::Value id = fir::getBase(converter.genExprValue(
loc, getExpr<Fortran::parser::IdExpr>(stmt), stmtCtx));
args.push_back(builder.createConvert(loc, beginFuncTy.getInput(1), id));
args.push_back(locToFilename(converter, loc, beginFuncTy.getInput(2)));
args.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(3)));
} else {
args.push_back(locToFilename(converter, loc, beginFuncTy.getInput(1)));
args.push_back(locToLineNo(converter, loc, beginFuncTy.getInput(2)));
}
auto cookie = builder.create<fir::CallOp>(loc, beginFunc, args).getResult(0);
genConditionHandlerCall(converter, loc, cookie, stmt.v, csi);
return genEndIO(converter, converter.getCurrentLocation(), cookie, csi,
stmtCtx);
}
//===----------------------------------------------------------------------===//
// Data transfer statements.
//
// There are several dimensions to the API with regard to data transfer
// statements that need to be considered.
//
// - input (READ) vs. output (WRITE, PRINT)
// - unformatted vs. formatted vs. list vs. namelist
// - synchronous vs. asynchronous
// - external vs. internal
//===----------------------------------------------------------------------===//
// Get the begin data transfer IO function to call for the given values.
template <bool isInput>
mlir::func::FuncOp
getBeginDataTransferFunc(mlir::Location loc, fir::FirOpBuilder &builder,
bool isFormatted, bool isListOrNml, bool isInternal,
bool isInternalWithDesc, bool isAsync) {
if constexpr (isInput) {
if (isFormatted || isListOrNml) {
if (isInternal) {
if (isInternalWithDesc) {
if (isListOrNml)
return getIORuntimeFunc<mkIOKey(BeginInternalArrayListInput)>(
loc, builder);
return getIORuntimeFunc<mkIOKey(BeginInternalArrayFormattedInput)>(
loc, builder);
}
if (isListOrNml)
return getIORuntimeFunc<mkIOKey(BeginInternalListInput)>(loc,
builder);
return getIORuntimeFunc<mkIOKey(BeginInternalFormattedInput)>(loc,
builder);
}
if (isListOrNml)
return getIORuntimeFunc<mkIOKey(BeginExternalListInput)>(loc, builder);
return getIORuntimeFunc<mkIOKey(BeginExternalFormattedInput)>(loc,
builder);
}
return getIORuntimeFunc<mkIOKey(BeginUnformattedInput)>(loc, builder);
} else {
if (isFormatted || isListOrNml) {
if (isInternal) {
if (isInternalWithDesc) {
if (isListOrNml)
return getIORuntimeFunc<mkIOKey(BeginInternalArrayListOutput)>(
loc, builder);
return getIORuntimeFunc<mkIOKey(BeginInternalArrayFormattedOutput)>(
loc, builder);
}
if (isListOrNml)
return getIORuntimeFunc<mkIOKey(BeginInternalListOutput)>(loc,
builder);
return getIORuntimeFunc<mkIOKey(BeginInternalFormattedOutput)>(loc,
builder);
}
if (isListOrNml)
return getIORuntimeFunc<mkIOKey(BeginExternalListOutput)>(loc, builder);
return getIORuntimeFunc<mkIOKey(BeginExternalFormattedOutput)>(loc,
builder);
}
return getIORuntimeFunc<mkIOKey(BeginUnformattedOutput)>(loc, builder);
}
}
/// Generate the arguments of a begin data transfer statement call.
template <bool hasIOCtrl, typename A>
void genBeginDataTransferCallArgs(
llvm::SmallVectorImpl<mlir::Value> &ioArgs,
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const A &stmt, mlir::FunctionType ioFuncTy, bool isFormatted,
bool isListOrNml, [[maybe_unused]] bool isInternal,
[[maybe_unused]] bool isAsync,
const llvm::Optional<fir::ExtendedValue> &descRef, ConditionSpecInfo &csi,
Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto maybeGetFormatArgs = [&]() {
if (!isFormatted || isListOrNml)
return;
std::tuple triple =
getFormat(converter, loc, stmt, ioFuncTy.getInput(ioArgs.size()),
ioFuncTy.getInput(ioArgs.size() + 1), stmtCtx);
mlir::Value address = std::get<0>(triple);
mlir::Value length = std::get<1>(triple);
if (length) {
// Scalar format: string arg + length arg; no format descriptor arg
ioArgs.push_back(address); // format string
ioArgs.push_back(length); // format length
ioArgs.push_back(
builder.createNullConstant(loc, ioFuncTy.getInput(ioArgs.size())));
return;
}
// Array format: no string arg, no length arg; format descriptor arg
ioArgs.push_back(
builder.createNullConstant(loc, ioFuncTy.getInput(ioArgs.size())));
ioArgs.push_back(
builder.createNullConstant(loc, ioFuncTy.getInput(ioArgs.size())));
ioArgs.push_back( // format descriptor
builder.createConvert(loc, ioFuncTy.getInput(ioArgs.size()), address));
};
if constexpr (hasIOCtrl) { // READ or WRITE
if (isInternal) {
// descriptor or scalar variable; maybe explicit format; scratch area
if (descRef) {
mlir::Value desc = builder.createBox(loc, *descRef);
ioArgs.push_back(
builder.createConvert(loc, ioFuncTy.getInput(ioArgs.size()), desc));
} else {
std::tuple<mlir::Value, mlir::Value> pair =
getBuffer(converter, loc, stmt, ioFuncTy.getInput(ioArgs.size()),
ioFuncTy.getInput(ioArgs.size() + 1), stmtCtx);
ioArgs.push_back(std::get<0>(pair)); // scalar character variable
ioArgs.push_back(std::get<1>(pair)); // character length
}
maybeGetFormatArgs();
ioArgs.push_back( // internal scratch area buffer
getDefaultScratch(builder, loc, ioFuncTy.getInput(ioArgs.size())));
ioArgs.push_back( // buffer length
getDefaultScratchLen(builder, loc, ioFuncTy.getInput(ioArgs.size())));
} else { // external IO - maybe explicit format; unit
if (isAsync)
TODO(loc, "asynchronous");
maybeGetFormatArgs();
ioArgs.push_back(getIOUnit(converter, loc, stmt,
ioFuncTy.getInput(ioArgs.size()), csi,
stmtCtx));
}
} else { // PRINT - maybe explicit format; default unit
maybeGetFormatArgs();
ioArgs.push_back(builder.create<mlir::arith::ConstantOp>(
loc, builder.getIntegerAttr(ioFuncTy.getInput(ioArgs.size()),
Fortran::runtime::io::DefaultUnit)));
}
// File name and line number are always the last two arguments.
ioArgs.push_back(
locToFilename(converter, loc, ioFuncTy.getInput(ioArgs.size())));
ioArgs.push_back(
locToLineNo(converter, loc, ioFuncTy.getInput(ioArgs.size())));
}
template <bool isInput, bool hasIOCtrl = true, typename A>
static mlir::Value
genDataTransferStmt(Fortran::lower::AbstractConverter &converter,
const A &stmt) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
Fortran::lower::StatementContext stmtCtx;
mlir::Location loc = converter.getCurrentLocation();
const bool isFormatted = isDataTransferFormatted(stmt);
const bool isList = isFormatted ? isDataTransferList(stmt) : false;
const bool isInternal = isDataTransferInternal(stmt);
llvm::Optional<fir::ExtendedValue> descRef =
isInternal ? maybeGetInternalIODescriptor(converter, loc, stmt, stmtCtx)
: llvm::None;
const bool isInternalWithDesc = descRef.has_value();
const bool isAsync = isDataTransferAsynchronous(loc, stmt);
const bool isNml = isDataTransferNamelist(stmt);
// Generate an EnableHandlers call and remaining specifier calls.
ConditionSpecInfo csi;
if constexpr (hasIOCtrl) {
csi = lowerErrorSpec(converter, loc, stmt.controls);
}
// Generate the begin data transfer function call.
mlir::func::FuncOp ioFunc = getBeginDataTransferFunc<isInput>(
loc, builder, isFormatted, isList || isNml, isInternal,
isInternalWithDesc, isAsync);
llvm::SmallVector<mlir::Value> ioArgs;
genBeginDataTransferCallArgs<hasIOCtrl>(
ioArgs, converter, loc, stmt, ioFunc.getFunctionType(), isFormatted,
isList || isNml, isInternal, isAsync, descRef, csi, stmtCtx);
mlir::Value cookie =
builder.create<fir::CallOp>(loc, ioFunc, ioArgs).getResult(0);
auto insertPt = builder.saveInsertionPoint();
mlir::Value ok;
if constexpr (hasIOCtrl) {
genConditionHandlerCall(converter, loc, cookie, stmt.controls, csi);
threadSpecs(converter, loc, cookie, stmt.controls,
csi.hasErrorConditionSpec(), ok);
}
// Generate data transfer list calls.
if constexpr (isInput) { // READ
if (isNml)
genNamelistIO(converter, cookie,
getIORuntimeFunc<mkIOKey(InputNamelist)>(loc, builder),
*getIOControl<Fortran::parser::Name>(stmt)->symbol,
csi.hasTransferConditionSpec(), ok, stmtCtx);
else
genInputItemList(converter, cookie, stmt.items, isFormatted,
csi.hasTransferConditionSpec(), ok, /*inLoop=*/false);
} else if constexpr (std::is_same_v<A, Fortran::parser::WriteStmt>) {
if (isNml)
genNamelistIO(converter, cookie,
getIORuntimeFunc<mkIOKey(OutputNamelist)>(loc, builder),
*getIOControl<Fortran::parser::Name>(stmt)->symbol,
csi.hasTransferConditionSpec(), ok, stmtCtx);
else
genOutputItemList(converter, cookie, stmt.items, isFormatted,
csi.hasTransferConditionSpec(), ok,
/*inLoop=*/false);
} else { // PRINT
genOutputItemList(converter, cookie, std::get<1>(stmt.t), isFormatted,
csi.hasTransferConditionSpec(), ok,
/*inLoop=*/false);
}
stmtCtx.finalize();
builder.restoreInsertionPoint(insertPt);
if constexpr (hasIOCtrl) {
genIOReadSize(converter, loc, cookie, stmt.controls,
csi.hasErrorConditionSpec());
}
// Generate end statement call/s.
return genEndIO(converter, loc, cookie, csi, stmtCtx);
}
void Fortran::lower::genPrintStatement(
Fortran::lower::AbstractConverter &converter,
const Fortran::parser::PrintStmt &stmt) {
// PRINT does not take an io-control-spec. It only has a format specifier, so
// it is a simplified case of WRITE.
genDataTransferStmt</*isInput=*/false, /*ioCtrl=*/false>(converter, stmt);
}
mlir::Value
Fortran::lower::genWriteStatement(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::WriteStmt &stmt) {
return genDataTransferStmt</*isInput=*/false>(converter, stmt);
}
mlir::Value
Fortran::lower::genReadStatement(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::ReadStmt &stmt) {
return genDataTransferStmt</*isInput=*/true>(converter, stmt);
}
/// Get the file expression from the inquire spec list. Also return if the
/// expression is a file name.
static std::pair<const Fortran::lower::SomeExpr *, bool>
getInquireFileExpr(const std::list<Fortran::parser::InquireSpec> *stmt) {
if (!stmt)
return {nullptr, /*filename?=*/false};
for (const Fortran::parser::InquireSpec &spec : *stmt) {
if (auto *f = std::get_if<Fortran::parser::FileUnitNumber>(&spec.u))
return {Fortran::semantics::GetExpr(*f), /*filename?=*/false};
if (auto *f = std::get_if<Fortran::parser::FileNameExpr>(&spec.u))
return {Fortran::semantics::GetExpr(*f), /*filename?=*/true};
}
// semantics should have already caught this condition
llvm::report_fatal_error("inquire spec must have a file");
}
/// Generate calls to the four distinct INQUIRE subhandlers. An INQUIRE may
/// return values of type CHARACTER, INTEGER, or LOGICAL. There is one
/// additional special case for INQUIRE with both PENDING and ID specifiers.
template <typename A>
static mlir::Value genInquireSpec(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie,
mlir::Value idExpr, const A &var,
Fortran::lower::StatementContext &stmtCtx) {
// default case: do nothing
return {};
}
/// Specialization for CHARACTER.
template <>
mlir::Value genInquireSpec<Fortran::parser::InquireSpec::CharVar>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, mlir::Value idExpr,
const Fortran::parser::InquireSpec::CharVar &var,
Fortran::lower::StatementContext &stmtCtx) {
// IOMSG is handled with exception conditions
if (std::get<Fortran::parser::InquireSpec::CharVar::Kind>(var.t) ==
Fortran::parser::InquireSpec::CharVar::Kind::Iomsg)
return {};
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp specFunc =
getIORuntimeFunc<mkIOKey(InquireCharacter)>(loc, builder);
mlir::FunctionType specFuncTy = specFunc.getFunctionType();
const auto *varExpr = Fortran::semantics::GetExpr(
std::get<Fortran::parser::ScalarDefaultCharVariable>(var.t));
fir::ExtendedValue str = converter.genExprAddr(loc, varExpr, stmtCtx);
llvm::SmallVector<mlir::Value> args = {
builder.createConvert(loc, specFuncTy.getInput(0), cookie),
builder.createIntegerConstant(
loc, specFuncTy.getInput(1),
Fortran::runtime::io::HashInquiryKeyword(
Fortran::parser::InquireSpec::CharVar::EnumToString(
std::get<Fortran::parser::InquireSpec::CharVar::Kind>(var.t))
.c_str())),
builder.createConvert(loc, specFuncTy.getInput(2), fir::getBase(str)),
builder.createConvert(loc, specFuncTy.getInput(3), fir::getLen(str))};
return builder.create<fir::CallOp>(loc, specFunc, args).getResult(0);
}
/// Specialization for INTEGER.
template <>
mlir::Value genInquireSpec<Fortran::parser::InquireSpec::IntVar>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, mlir::Value idExpr,
const Fortran::parser::InquireSpec::IntVar &var,
Fortran::lower::StatementContext &stmtCtx) {
// IOSTAT is handled with exception conditions
if (std::get<Fortran::parser::InquireSpec::IntVar::Kind>(var.t) ==
Fortran::parser::InquireSpec::IntVar::Kind::Iostat)
return {};
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::func::FuncOp specFunc =
getIORuntimeFunc<mkIOKey(InquireInteger64)>(loc, builder);
mlir::FunctionType specFuncTy = specFunc.getFunctionType();
const auto *varExpr = Fortran::semantics::GetExpr(
std::get<Fortran::parser::ScalarIntVariable>(var.t));
mlir::Value addr = fir::getBase(converter.genExprAddr(loc, varExpr, stmtCtx));
mlir::Type eleTy = fir::dyn_cast_ptrEleTy(addr.getType());
if (!eleTy)
fir::emitFatalError(loc,
"internal error: expected a memory reference type");
auto width = eleTy.cast<mlir::IntegerType>().getWidth();
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value kind = builder.createIntegerConstant(loc, idxTy, width / 8);
llvm::SmallVector<mlir::Value> args = {
builder.createConvert(loc, specFuncTy.getInput(0), cookie),
builder.createIntegerConstant(
loc, specFuncTy.getInput(1),
Fortran::runtime::io::HashInquiryKeyword(
Fortran::parser::InquireSpec::IntVar::EnumToString(
std::get<Fortran::parser::InquireSpec::IntVar::Kind>(var.t))
.c_str())),
builder.createConvert(loc, specFuncTy.getInput(2), addr),
builder.createConvert(loc, specFuncTy.getInput(3), kind)};
return builder.create<fir::CallOp>(loc, specFunc, args).getResult(0);
}
/// Specialization for LOGICAL and (PENDING + ID).
template <>
mlir::Value genInquireSpec<Fortran::parser::InquireSpec::LogVar>(
Fortran::lower::AbstractConverter &converter, mlir::Location loc,
mlir::Value cookie, mlir::Value idExpr,
const Fortran::parser::InquireSpec::LogVar &var,
Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto logVarKind = std::get<Fortran::parser::InquireSpec::LogVar::Kind>(var.t);
bool pendId =
idExpr &&
logVarKind == Fortran::parser::InquireSpec::LogVar::Kind::Pending;
mlir::func::FuncOp specFunc =
pendId ? getIORuntimeFunc<mkIOKey(InquirePendingId)>(loc, builder)
: getIORuntimeFunc<mkIOKey(InquireLogical)>(loc, builder);
mlir::FunctionType specFuncTy = specFunc.getFunctionType();
mlir::Value addr = fir::getBase(converter.genExprAddr(
loc,
Fortran::semantics::GetExpr(
std::get<Fortran::parser::Scalar<
Fortran::parser::Logical<Fortran::parser::Variable>>>(var.t)),
stmtCtx));
llvm::SmallVector<mlir::Value> args = {
builder.createConvert(loc, specFuncTy.getInput(0), cookie)};
if (pendId)
args.push_back(builder.createConvert(loc, specFuncTy.getInput(1), idExpr));
else
args.push_back(builder.createIntegerConstant(
loc, specFuncTy.getInput(1),
Fortran::runtime::io::HashInquiryKeyword(
Fortran::parser::InquireSpec::LogVar::EnumToString(logVarKind)
.c_str())));
args.push_back(builder.createConvert(loc, specFuncTy.getInput(2), addr));
auto call = builder.create<fir::CallOp>(loc, specFunc, args);
boolRefToLogical(loc, builder, addr);
return call.getResult(0);
}
/// If there is an IdExpr in the list of inquire-specs, then lower it and return
/// the resulting Value. Otherwise, return null.
static mlir::Value
lowerIdExpr(Fortran::lower::AbstractConverter &converter, mlir::Location loc,
const std::list<Fortran::parser::InquireSpec> &ispecs,
Fortran::lower::StatementContext &stmtCtx) {
for (const Fortran::parser::InquireSpec &spec : ispecs)
if (mlir::Value v = std::visit(
Fortran::common::visitors{
[&](const Fortran::parser::IdExpr &idExpr) {
return fir::getBase(converter.genExprValue(
loc, Fortran::semantics::GetExpr(idExpr), stmtCtx));
},
[](const auto &) { return mlir::Value{}; }},
spec.u))
return v;
return {};
}
/// For each inquire-spec, build the appropriate call, threading the cookie.
static void threadInquire(Fortran::lower::AbstractConverter &converter,
mlir::Location loc, mlir::Value cookie,
const std::list<Fortran::parser::InquireSpec> &ispecs,
bool checkResult, mlir::Value &ok,
Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Value idExpr = lowerIdExpr(converter, loc, ispecs, stmtCtx);
for (const Fortran::parser::InquireSpec &spec : ispecs) {
makeNextConditionalOn(builder, loc, checkResult, ok);
ok = std::visit(Fortran::common::visitors{[&](const auto &x) {
return genInquireSpec(converter, loc, cookie, idExpr, x,
stmtCtx);
}},
spec.u);
}
}
mlir::Value Fortran::lower::genInquireStatement(
Fortran::lower::AbstractConverter &converter,
const Fortran::parser::InquireStmt &stmt) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
Fortran::lower::StatementContext stmtCtx;
mlir::Location loc = converter.getCurrentLocation();
mlir::func::FuncOp beginFunc;
llvm::SmallVector<mlir::Value> beginArgs;
const auto *list =
std::get_if<std::list<Fortran::parser::InquireSpec>>(&stmt.u);
auto exprPair = getInquireFileExpr(list);
auto inquireFileUnit = [&]() -> bool {
return exprPair.first && !exprPair.second;
};
auto inquireFileName = [&]() -> bool {
return exprPair.first && exprPair.second;
};
ConditionSpecInfo csi =
list ? lowerErrorSpec(converter, loc, *list) : ConditionSpecInfo{};
// Make one of three BeginInquire calls.
if (inquireFileUnit()) {
// Inquire by unit -- [UNIT=]file-unit-number.
beginFunc = getIORuntimeFunc<mkIOKey(BeginInquireUnit)>(loc, builder);
mlir::FunctionType beginFuncTy = beginFunc.getFunctionType();
mlir::Value unit = genIOUnitNumber(converter, loc, exprPair.first,
beginFuncTy.getInput(0), csi, stmtCtx);
beginArgs = {unit, locToFilename(converter, loc, beginFuncTy.getInput(1)),
locToLineNo(converter, loc, beginFuncTy.getInput(2))};
} else if (inquireFileName()) {
// Inquire by file -- FILE=file-name-expr.
beginFunc = getIORuntimeFunc<mkIOKey(BeginInquireFile)>(loc, builder);
mlir::FunctionType beginFuncTy = beginFunc.getFunctionType();
fir::ExtendedValue file =
converter.genExprAddr(loc, exprPair.first, stmtCtx);
beginArgs = {
builder.createConvert(loc, beginFuncTy.getInput(0), fir::getBase(file)),
builder.createConvert(loc, beginFuncTy.getInput(1), fir::getLen(file)),
locToFilename(converter, loc, beginFuncTy.getInput(2)),
locToLineNo(converter, loc, beginFuncTy.getInput(3))};
} else {
// Inquire by output list -- IOLENGTH=scalar-int-variable.
const auto *ioLength =
std::get_if<Fortran::parser::InquireStmt::Iolength>(&stmt.u);
assert(ioLength && "must have an IOLENGTH specifier");
beginFunc = getIORuntimeFunc<mkIOKey(BeginInquireIoLength)>(loc, builder);
mlir::FunctionType beginFuncTy = beginFunc.getFunctionType();
beginArgs = {locToFilename(converter, loc, beginFuncTy.getInput(0)),
locToLineNo(converter, loc, beginFuncTy.getInput(1))};
auto cookie =
builder.create<fir::CallOp>(loc, beginFunc, beginArgs).getResult(0);
mlir::Value ok;
genOutputItemList(
converter, cookie,
std::get<std::list<Fortran::parser::OutputItem>>(ioLength->t),
/*isFormatted=*/false, /*checkResult=*/false, ok, /*inLoop=*/false);
auto *ioLengthVar = Fortran::semantics::GetExpr(
std::get<Fortran::parser::ScalarIntVariable>(ioLength->t));
mlir::Value ioLengthVarAddr =
fir::getBase(converter.genExprAddr(loc, ioLengthVar, stmtCtx));
llvm::SmallVector<mlir::Value> args = {cookie};
mlir::Value length =
builder
.create<fir::CallOp>(
loc, getIORuntimeFunc<mkIOKey(GetIoLength)>(loc, builder), args)
.getResult(0);
mlir::Value length1 =
builder.createConvert(loc, converter.genType(*ioLengthVar), length);
builder.create<fir::StoreOp>(loc, length1, ioLengthVarAddr);
return genEndIO(converter, loc, cookie, csi, stmtCtx);
}
// Common handling for inquire by unit or file.
assert(list && "inquire-spec list must be present");
auto cookie =
builder.create<fir::CallOp>(loc, beginFunc, beginArgs).getResult(0);
genConditionHandlerCall(converter, loc, cookie, *list, csi);
// Handle remaining arguments in specifier list.
mlir::Value ok;
auto insertPt = builder.saveInsertionPoint();
threadInquire(converter, loc, cookie, *list, csi.hasErrorConditionSpec(), ok,
stmtCtx);
builder.restoreInsertionPoint(insertPt);
// Generate end statement call.
return genEndIO(converter, loc, cookie, csi, stmtCtx);
}