llvm-project/clang/lib/ExtractAPI/DeclarationFragments.cpp

800 lines
31 KiB
C++

//===- ExtractAPI/DeclarationFragments.cpp ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements Declaration Fragments related classes.
///
//===----------------------------------------------------------------------===//
#include "clang/ExtractAPI/DeclarationFragments.h"
#include "TypedefUnderlyingTypeResolver.h"
#include "clang/Index/USRGeneration.h"
#include "llvm/ADT/StringSwitch.h"
using namespace clang::extractapi;
using namespace llvm;
DeclarationFragments &DeclarationFragments::appendSpace() {
if (!Fragments.empty()) {
Fragment &Last = Fragments.back();
if (Last.Kind == FragmentKind::Text) {
// Merge the extra space into the last fragment if the last fragment is
// also text.
if (Last.Spelling.back() != ' ') { // avoid extra trailing spaces.
Last.Spelling.push_back(' ');
}
} else {
append(" ", FragmentKind::Text);
}
}
return *this;
}
StringRef DeclarationFragments::getFragmentKindString(
DeclarationFragments::FragmentKind Kind) {
switch (Kind) {
case DeclarationFragments::FragmentKind::None:
return "none";
case DeclarationFragments::FragmentKind::Keyword:
return "keyword";
case DeclarationFragments::FragmentKind::Attribute:
return "attribute";
case DeclarationFragments::FragmentKind::NumberLiteral:
return "number";
case DeclarationFragments::FragmentKind::StringLiteral:
return "string";
case DeclarationFragments::FragmentKind::Identifier:
return "identifier";
case DeclarationFragments::FragmentKind::TypeIdentifier:
return "typeIdentifier";
case DeclarationFragments::FragmentKind::GenericParameter:
return "genericParameter";
case DeclarationFragments::FragmentKind::ExternalParam:
return "externalParam";
case DeclarationFragments::FragmentKind::InternalParam:
return "internalParam";
case DeclarationFragments::FragmentKind::Text:
return "text";
}
llvm_unreachable("Unhandled FragmentKind");
}
DeclarationFragments::FragmentKind
DeclarationFragments::parseFragmentKindFromString(StringRef S) {
return llvm::StringSwitch<FragmentKind>(S)
.Case("keyword", DeclarationFragments::FragmentKind::Keyword)
.Case("attribute", DeclarationFragments::FragmentKind::Attribute)
.Case("number", DeclarationFragments::FragmentKind::NumberLiteral)
.Case("string", DeclarationFragments::FragmentKind::StringLiteral)
.Case("identifier", DeclarationFragments::FragmentKind::Identifier)
.Case("typeIdentifier",
DeclarationFragments::FragmentKind::TypeIdentifier)
.Case("genericParameter",
DeclarationFragments::FragmentKind::GenericParameter)
.Case("internalParam", DeclarationFragments::FragmentKind::InternalParam)
.Case("externalParam", DeclarationFragments::FragmentKind::ExternalParam)
.Case("text", DeclarationFragments::FragmentKind::Text)
.Default(DeclarationFragments::FragmentKind::None);
}
// NNS stores C++ nested name specifiers, which are prefixes to qualified names.
// Build declaration fragments for NNS recursively so that we have the USR for
// every part in a qualified name, and also leaves the actual underlying type
// cleaner for its own fragment.
DeclarationFragments
DeclarationFragmentsBuilder::getFragmentsForNNS(const NestedNameSpecifier *NNS,
ASTContext &Context,
DeclarationFragments &After) {
DeclarationFragments Fragments;
if (NNS->getPrefix())
Fragments.append(getFragmentsForNNS(NNS->getPrefix(), Context, After));
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier:
Fragments.append(NNS->getAsIdentifier()->getName(),
DeclarationFragments::FragmentKind::Identifier);
break;
case NestedNameSpecifier::Namespace: {
const NamespaceDecl *NS = NNS->getAsNamespace();
if (NS->isAnonymousNamespace())
return Fragments;
SmallString<128> USR;
index::generateUSRForDecl(NS, USR);
Fragments.append(NS->getName(),
DeclarationFragments::FragmentKind::Identifier, USR);
break;
}
case NestedNameSpecifier::NamespaceAlias: {
const NamespaceAliasDecl *Alias = NNS->getAsNamespaceAlias();
SmallString<128> USR;
index::generateUSRForDecl(Alias, USR);
Fragments.append(Alias->getName(),
DeclarationFragments::FragmentKind::Identifier, USR);
break;
}
case NestedNameSpecifier::Global:
// The global specifier `::` at the beginning. No stored value.
break;
case NestedNameSpecifier::Super:
// Microsoft's `__super` specifier.
Fragments.append("__super", DeclarationFragments::FragmentKind::Keyword);
break;
case NestedNameSpecifier::TypeSpecWithTemplate:
// A type prefixed by the `template` keyword.
Fragments.append("template", DeclarationFragments::FragmentKind::Keyword);
Fragments.appendSpace();
// Fallthrough after adding the keyword to handle the actual type.
LLVM_FALLTHROUGH;
case NestedNameSpecifier::TypeSpec: {
const Type *T = NNS->getAsType();
// FIXME: Handle C++ template specialization type
Fragments.append(getFragmentsForType(T, Context, After));
break;
}
}
// Add the separator text `::` for this segment.
return Fragments.append("::", DeclarationFragments::FragmentKind::Text);
}
// Recursively build the declaration fragments for an underlying `Type` with
// qualifiers removed.
DeclarationFragments DeclarationFragmentsBuilder::getFragmentsForType(
const Type *T, ASTContext &Context, DeclarationFragments &After) {
assert(T && "invalid type");
DeclarationFragments Fragments;
// Declaration fragments of a pointer type is the declaration fragments of
// the pointee type followed by a `*`, except for Objective-C `id` and `Class`
// pointers, where we do not spell out the `*`.
if (T->isPointerType() ||
(T->isObjCObjectPointerType() &&
!T->getAs<ObjCObjectPointerType>()->isObjCIdOrClassType())) {
return Fragments
.append(getFragmentsForType(T->getPointeeType(), Context, After))
.append(" *", DeclarationFragments::FragmentKind::Text);
}
// Declaration fragments of a lvalue reference type is the declaration
// fragments of the underlying type followed by a `&`.
if (const LValueReferenceType *LRT = dyn_cast<LValueReferenceType>(T))
return Fragments
.append(
getFragmentsForType(LRT->getPointeeTypeAsWritten(), Context, After))
.append(" &", DeclarationFragments::FragmentKind::Text);
// Declaration fragments of a rvalue reference type is the declaration
// fragments of the underlying type followed by a `&&`.
if (const RValueReferenceType *RRT = dyn_cast<RValueReferenceType>(T))
return Fragments
.append(
getFragmentsForType(RRT->getPointeeTypeAsWritten(), Context, After))
.append(" &&", DeclarationFragments::FragmentKind::Text);
// Declaration fragments of an array-typed variable have two parts:
// 1. the element type of the array that appears before the variable name;
// 2. array brackets `[(0-9)?]` that appear after the variable name.
if (const ArrayType *AT = T->getAsArrayTypeUnsafe()) {
// Build the "after" part first because the inner element type might also
// be an array-type. For example `int matrix[3][4]` which has a type of
// "(array 3 of (array 4 of ints))."
// Push the array size part first to make sure they are in the right order.
After.append("[", DeclarationFragments::FragmentKind::Text);
switch (AT->getSizeModifier()) {
case ArrayType::Normal:
break;
case ArrayType::Static:
Fragments.append("static", DeclarationFragments::FragmentKind::Keyword);
break;
case ArrayType::Star:
Fragments.append("*", DeclarationFragments::FragmentKind::Text);
break;
}
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
// FIXME: right now this would evaluate any expressions/macros written in
// the original source to concrete values. For example
// `int nums[MAX]` -> `int nums[100]`
// `char *str[5 + 1]` -> `char *str[6]`
SmallString<128> Size;
CAT->getSize().toStringUnsigned(Size);
After.append(Size, DeclarationFragments::FragmentKind::NumberLiteral);
}
After.append("]", DeclarationFragments::FragmentKind::Text);
return Fragments.append(
getFragmentsForType(AT->getElementType(), Context, After));
}
// An ElaboratedType is a sugar for types that are referred to using an
// elaborated keyword, e.g., `struct S`, `enum E`, or (in C++) via a
// qualified name, e.g., `N::M::type`, or both.
if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(T)) {
ElaboratedTypeKeyword Keyword = ET->getKeyword();
if (Keyword != ETK_None) {
Fragments
.append(ElaboratedType::getKeywordName(Keyword),
DeclarationFragments::FragmentKind::Keyword)
.appendSpace();
}
if (const NestedNameSpecifier *NNS = ET->getQualifier())
Fragments.append(getFragmentsForNNS(NNS, Context, After));
// After handling the elaborated keyword or qualified name, build
// declaration fragments for the desugared underlying type.
return Fragments.append(getFragmentsForType(ET->desugar(), Context, After));
}
// Everything we care about has been handled now, reduce to the canonical
// unqualified base type.
QualType Base = T->getCanonicalTypeUnqualified();
// Render Objective-C `id`/`instancetype` as keywords.
if (T->isObjCIdType())
return Fragments.append(Base.getAsString(),
DeclarationFragments::FragmentKind::Keyword);
// If the type is a typedefed type, get the underlying TypedefNameDecl for a
// direct reference to the typedef instead of the wrapped type.
if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(T)) {
const TypedefNameDecl *Decl = TypedefTy->getDecl();
std::string USR =
TypedefUnderlyingTypeResolver(Context).getUSRForType(QualType(T, 0));
return Fragments.append(Decl->getName(),
DeclarationFragments::FragmentKind::TypeIdentifier,
USR);
}
// If the base type is a TagType (struct/interface/union/class/enum), let's
// get the underlying Decl for better names and USRs.
if (const TagType *TagTy = dyn_cast<TagType>(Base)) {
const TagDecl *Decl = TagTy->getDecl();
// Anonymous decl, skip this fragment.
if (Decl->getName().empty())
return Fragments;
SmallString<128> TagUSR;
clang::index::generateUSRForDecl(Decl, TagUSR);
return Fragments.append(Decl->getName(),
DeclarationFragments::FragmentKind::TypeIdentifier,
TagUSR);
}
// If the base type is an ObjCInterfaceType, use the underlying
// ObjCInterfaceDecl for the true USR.
if (const auto *ObjCIT = dyn_cast<ObjCInterfaceType>(Base)) {
const auto *Decl = ObjCIT->getDecl();
SmallString<128> USR;
index::generateUSRForDecl(Decl, USR);
return Fragments.append(Decl->getName(),
DeclarationFragments::FragmentKind::TypeIdentifier,
USR);
}
// Default fragment builder for other kinds of types (BuiltinType etc.)
SmallString<128> USR;
clang::index::generateUSRForType(Base, Context, USR);
Fragments.append(Base.getAsString(),
DeclarationFragments::FragmentKind::TypeIdentifier, USR);
return Fragments;
}
DeclarationFragments
DeclarationFragmentsBuilder::getFragmentsForQualifiers(const Qualifiers Quals) {
DeclarationFragments Fragments;
if (Quals.hasConst())
Fragments.append("const", DeclarationFragments::FragmentKind::Keyword);
if (Quals.hasVolatile())
Fragments.append("volatile", DeclarationFragments::FragmentKind::Keyword);
if (Quals.hasRestrict())
Fragments.append("restrict", DeclarationFragments::FragmentKind::Keyword);
return Fragments;
}
DeclarationFragments DeclarationFragmentsBuilder::getFragmentsForType(
const QualType QT, ASTContext &Context, DeclarationFragments &After) {
assert(!QT.isNull() && "invalid type");
if (const ParenType *PT = dyn_cast<ParenType>(QT)) {
After.append(")", DeclarationFragments::FragmentKind::Text);
return getFragmentsForType(PT->getInnerType(), Context, After)
.append("(", DeclarationFragments::FragmentKind::Text);
}
const SplitQualType SQT = QT.split();
DeclarationFragments QualsFragments = getFragmentsForQualifiers(SQT.Quals),
TypeFragments =
getFragmentsForType(SQT.Ty, Context, After);
if (QualsFragments.getFragments().empty())
return TypeFragments;
// Use east qualifier for pointer types
// For example:
// ```
// int * const
// ^---- ^----
// type qualifier
// ^-----------------
// const pointer to int
// ```
// should not be reconstructed as
// ```
// const int *
// ^---- ^--
// qualifier type
// ^---------------- ^
// pointer to const int
// ```
if (SQT.Ty->isAnyPointerType())
return TypeFragments.appendSpace().append(std::move(QualsFragments));
return QualsFragments.appendSpace().append(std::move(TypeFragments));
}
DeclarationFragments
DeclarationFragmentsBuilder::getFragmentsForVar(const VarDecl *Var) {
DeclarationFragments Fragments;
StorageClass SC = Var->getStorageClass();
if (SC != SC_None)
Fragments
.append(VarDecl::getStorageClassSpecifierString(SC),
DeclarationFragments::FragmentKind::Keyword)
.appendSpace();
QualType T =
Var->getTypeSourceInfo()
? Var->getTypeSourceInfo()->getType()
: Var->getASTContext().getUnqualifiedObjCPointerType(Var->getType());
// Capture potential fragments that needs to be placed after the variable name
// ```
// int nums[5];
// char (*ptr_to_array)[6];
// ```
DeclarationFragments After;
return Fragments.append(getFragmentsForType(T, Var->getASTContext(), After))
.appendSpace()
.append(Var->getName(), DeclarationFragments::FragmentKind::Identifier)
.append(std::move(After));
}
DeclarationFragments
DeclarationFragmentsBuilder::getFragmentsForParam(const ParmVarDecl *Param) {
DeclarationFragments Fragments, After;
QualType T = Param->getTypeSourceInfo()
? Param->getTypeSourceInfo()->getType()
: Param->getASTContext().getUnqualifiedObjCPointerType(
Param->getType());
DeclarationFragments TypeFragments =
getFragmentsForType(T, Param->getASTContext(), After);
if (Param->isObjCMethodParameter())
Fragments.append("(", DeclarationFragments::FragmentKind::Text)
.append(std::move(TypeFragments))
.append(") ", DeclarationFragments::FragmentKind::Text);
else
Fragments.append(std::move(TypeFragments)).appendSpace();
return Fragments
.append(Param->getName(),
DeclarationFragments::FragmentKind::InternalParam)
.append(std::move(After));
}
DeclarationFragments
DeclarationFragmentsBuilder::getFragmentsForFunction(const FunctionDecl *Func) {
DeclarationFragments Fragments;
// FIXME: Handle template specialization
switch (Func->getStorageClass()) {
case SC_None:
case SC_PrivateExtern:
break;
case SC_Extern:
Fragments.append("extern", DeclarationFragments::FragmentKind::Keyword)
.appendSpace();
break;
case SC_Static:
Fragments.append("static", DeclarationFragments::FragmentKind::Keyword)
.appendSpace();
break;
case SC_Auto:
case SC_Register:
llvm_unreachable("invalid for functions");
}
// FIXME: Handle C++ function specifiers: constexpr, consteval, explicit, etc.
// FIXME: Is `after` actually needed here?
DeclarationFragments After;
Fragments
.append(getFragmentsForType(Func->getReturnType(), Func->getASTContext(),
After))
.appendSpace()
.append(Func->getName(), DeclarationFragments::FragmentKind::Identifier)
.append(std::move(After));
Fragments.append("(", DeclarationFragments::FragmentKind::Text);
for (unsigned i = 0, end = Func->getNumParams(); i != end; ++i) {
if (i)
Fragments.append(", ", DeclarationFragments::FragmentKind::Text);
Fragments.append(getFragmentsForParam(Func->getParamDecl(i)));
}
Fragments.append(")", DeclarationFragments::FragmentKind::Text);
// FIXME: Handle exception specifiers: throw, noexcept
return Fragments;
}
DeclarationFragments DeclarationFragmentsBuilder::getFragmentsForEnumConstant(
const EnumConstantDecl *EnumConstDecl) {
DeclarationFragments Fragments;
return Fragments.append(EnumConstDecl->getName(),
DeclarationFragments::FragmentKind::Identifier);
}
DeclarationFragments
DeclarationFragmentsBuilder::getFragmentsForEnum(const EnumDecl *EnumDecl) {
if (const auto *TypedefNameDecl = EnumDecl->getTypedefNameForAnonDecl())
return getFragmentsForTypedef(TypedefNameDecl);
DeclarationFragments Fragments, After;
Fragments.append("enum", DeclarationFragments::FragmentKind::Keyword);
if (!EnumDecl->getName().empty())
Fragments.appendSpace().append(
EnumDecl->getName(), DeclarationFragments::FragmentKind::Identifier);
QualType IntegerType = EnumDecl->getIntegerType();
if (!IntegerType.isNull())
Fragments.append(": ", DeclarationFragments::FragmentKind::Text)
.append(
getFragmentsForType(IntegerType, EnumDecl->getASTContext(), After))
.append(std::move(After));
return Fragments;
}
DeclarationFragments
DeclarationFragmentsBuilder::getFragmentsForField(const FieldDecl *Field) {
DeclarationFragments After;
return getFragmentsForType(Field->getType(), Field->getASTContext(), After)
.appendSpace()
.append(Field->getName(), DeclarationFragments::FragmentKind::Identifier)
.append(std::move(After));
}
DeclarationFragments
DeclarationFragmentsBuilder::getFragmentsForStruct(const RecordDecl *Record) {
if (const auto *TypedefNameDecl = Record->getTypedefNameForAnonDecl())
return getFragmentsForTypedef(TypedefNameDecl);
DeclarationFragments Fragments;
Fragments.append("struct", DeclarationFragments::FragmentKind::Keyword);
if (!Record->getName().empty())
Fragments.appendSpace().append(
Record->getName(), DeclarationFragments::FragmentKind::Identifier);
return Fragments;
}
DeclarationFragments
DeclarationFragmentsBuilder::getFragmentsForMacro(StringRef Name,
const MacroDirective *MD) {
DeclarationFragments Fragments;
Fragments.append("#define", DeclarationFragments::FragmentKind::Keyword)
.appendSpace();
Fragments.append(Name, DeclarationFragments::FragmentKind::Identifier);
auto *MI = MD->getMacroInfo();
if (MI->isFunctionLike()) {
Fragments.append("(", DeclarationFragments::FragmentKind::Text);
unsigned numParameters = MI->getNumParams();
if (MI->isC99Varargs())
--numParameters;
for (unsigned i = 0; i < numParameters; ++i) {
if (i)
Fragments.append(", ", DeclarationFragments::FragmentKind::Text);
Fragments.append(MI->params()[i]->getName(),
DeclarationFragments::FragmentKind::InternalParam);
}
if (MI->isVariadic()) {
if (numParameters && MI->isC99Varargs())
Fragments.append(", ", DeclarationFragments::FragmentKind::Text);
Fragments.append("...", DeclarationFragments::FragmentKind::Text);
}
Fragments.append(")", DeclarationFragments::FragmentKind::Text);
}
return Fragments;
}
DeclarationFragments DeclarationFragmentsBuilder::getFragmentsForObjCCategory(
const ObjCCategoryDecl *Category) {
DeclarationFragments Fragments;
SmallString<128> InterfaceUSR;
index::generateUSRForDecl(Category->getClassInterface(), InterfaceUSR);
Fragments.append("@interface", DeclarationFragments::FragmentKind::Keyword)
.appendSpace()
.append(Category->getClassInterface()->getName(),
DeclarationFragments::FragmentKind::TypeIdentifier, InterfaceUSR)
.append(" (", DeclarationFragments::FragmentKind::Text)
.append(Category->getName(),
DeclarationFragments::FragmentKind::Identifier)
.append(")", DeclarationFragments::FragmentKind::Text);
return Fragments;
}
DeclarationFragments DeclarationFragmentsBuilder::getFragmentsForObjCInterface(
const ObjCInterfaceDecl *Interface) {
DeclarationFragments Fragments;
// Build the base of the Objective-C interface declaration.
Fragments.append("@interface", DeclarationFragments::FragmentKind::Keyword)
.appendSpace()
.append(Interface->getName(),
DeclarationFragments::FragmentKind::Identifier);
// Build the inheritance part of the declaration.
if (const ObjCInterfaceDecl *SuperClass = Interface->getSuperClass()) {
SmallString<128> SuperUSR;
index::generateUSRForDecl(SuperClass, SuperUSR);
Fragments.append(" : ", DeclarationFragments::FragmentKind::Text)
.append(SuperClass->getName(),
DeclarationFragments::FragmentKind::TypeIdentifier, SuperUSR);
}
return Fragments;
}
DeclarationFragments DeclarationFragmentsBuilder::getFragmentsForObjCMethod(
const ObjCMethodDecl *Method) {
DeclarationFragments Fragments, After;
// Build the instance/class method indicator.
if (Method->isClassMethod())
Fragments.append("+ ", DeclarationFragments::FragmentKind::Text);
else if (Method->isInstanceMethod())
Fragments.append("- ", DeclarationFragments::FragmentKind::Text);
// Build the return type.
Fragments.append("(", DeclarationFragments::FragmentKind::Text)
.append(getFragmentsForType(Method->getReturnType(),
Method->getASTContext(), After))
.append(std::move(After))
.append(")", DeclarationFragments::FragmentKind::Text);
// Build the selector part.
Selector Selector = Method->getSelector();
if (Selector.getNumArgs() == 0)
// For Objective-C methods that don't take arguments, the first (and only)
// slot of the selector is the method name.
Fragments.appendSpace().append(
Selector.getNameForSlot(0),
DeclarationFragments::FragmentKind::Identifier);
// For Objective-C methods that take arguments, build the selector slots.
for (unsigned i = 0, end = Method->param_size(); i != end; ++i) {
// Objective-C method selector parts are considered as identifiers instead
// of "external parameters" as in Swift. This is because Objective-C method
// symbols are referenced with the entire selector, instead of just the
// method name in Swift.
SmallString<32> ParamID(Selector.getNameForSlot(i));
ParamID.append(":");
Fragments.appendSpace().append(
ParamID, DeclarationFragments::FragmentKind::Identifier);
// Build the internal parameter.
const ParmVarDecl *Param = Method->getParamDecl(i);
Fragments.append(getFragmentsForParam(Param));
}
return Fragments.append(";", DeclarationFragments::FragmentKind::Text);
}
DeclarationFragments DeclarationFragmentsBuilder::getFragmentsForObjCProperty(
const ObjCPropertyDecl *Property) {
DeclarationFragments Fragments, After;
// Build the Objective-C property keyword.
Fragments.append("@property", DeclarationFragments::FragmentKind::Keyword);
const auto Attributes = Property->getPropertyAttributes();
// Build the attributes if there is any associated with the property.
if (Attributes != ObjCPropertyAttribute::kind_noattr) {
// No leading comma for the first attribute.
bool First = true;
Fragments.append(" (", DeclarationFragments::FragmentKind::Text);
// Helper function to render the attribute.
auto RenderAttribute =
[&](ObjCPropertyAttribute::Kind Kind, StringRef Spelling,
StringRef Arg = "",
DeclarationFragments::FragmentKind ArgKind =
DeclarationFragments::FragmentKind::Identifier) {
// Check if the `Kind` attribute is set for this property.
if ((Attributes & Kind) && !Spelling.empty()) {
// Add a leading comma if this is not the first attribute rendered.
if (!First)
Fragments.append(", ", DeclarationFragments::FragmentKind::Text);
// Render the spelling of this attribute `Kind` as a keyword.
Fragments.append(Spelling,
DeclarationFragments::FragmentKind::Keyword);
// If this attribute takes in arguments (e.g. `getter=getterName`),
// render the arguments.
if (!Arg.empty())
Fragments.append("=", DeclarationFragments::FragmentKind::Text)
.append(Arg, ArgKind);
First = false;
}
};
// Go through all possible Objective-C property attributes and render set
// ones.
RenderAttribute(ObjCPropertyAttribute::kind_class, "class");
RenderAttribute(ObjCPropertyAttribute::kind_direct, "direct");
RenderAttribute(ObjCPropertyAttribute::kind_nonatomic, "nonatomic");
RenderAttribute(ObjCPropertyAttribute::kind_atomic, "atomic");
RenderAttribute(ObjCPropertyAttribute::kind_assign, "assign");
RenderAttribute(ObjCPropertyAttribute::kind_retain, "retain");
RenderAttribute(ObjCPropertyAttribute::kind_strong, "strong");
RenderAttribute(ObjCPropertyAttribute::kind_copy, "copy");
RenderAttribute(ObjCPropertyAttribute::kind_weak, "weak");
RenderAttribute(ObjCPropertyAttribute::kind_unsafe_unretained,
"unsafe_unretained");
RenderAttribute(ObjCPropertyAttribute::kind_readwrite, "readwrite");
RenderAttribute(ObjCPropertyAttribute::kind_readonly, "readonly");
RenderAttribute(ObjCPropertyAttribute::kind_getter, "getter",
Property->getGetterName().getAsString());
RenderAttribute(ObjCPropertyAttribute::kind_setter, "setter",
Property->getSetterName().getAsString());
// Render nullability attributes.
if (Attributes & ObjCPropertyAttribute::kind_nullability) {
QualType Type = Property->getType();
if (const auto Nullability =
AttributedType::stripOuterNullability(Type)) {
if (!First)
Fragments.append(", ", DeclarationFragments::FragmentKind::Text);
if (*Nullability == NullabilityKind::Unspecified &&
(Attributes & ObjCPropertyAttribute::kind_null_resettable))
Fragments.append("null_resettable",
DeclarationFragments::FragmentKind::Keyword);
else
Fragments.append(
getNullabilitySpelling(*Nullability, /*isContextSensitive=*/true),
DeclarationFragments::FragmentKind::Keyword);
First = false;
}
}
Fragments.append(")", DeclarationFragments::FragmentKind::Text);
}
// Build the property type and name, and return the completed fragments.
return Fragments.appendSpace()
.append(getFragmentsForType(Property->getType(),
Property->getASTContext(), After))
.append(Property->getName(),
DeclarationFragments::FragmentKind::Identifier)
.append(std::move(After));
}
DeclarationFragments DeclarationFragmentsBuilder::getFragmentsForObjCProtocol(
const ObjCProtocolDecl *Protocol) {
DeclarationFragments Fragments;
// Build basic protocol declaration.
Fragments.append("@protocol", DeclarationFragments::FragmentKind::Keyword)
.appendSpace()
.append(Protocol->getName(),
DeclarationFragments::FragmentKind::Identifier);
// If this protocol conforms to other protocols, build the conformance list.
if (!Protocol->protocols().empty()) {
Fragments.append(" <", DeclarationFragments::FragmentKind::Text);
for (ObjCProtocolDecl::protocol_iterator It = Protocol->protocol_begin();
It != Protocol->protocol_end(); It++) {
// Add a leading comma if this is not the first protocol rendered.
if (It != Protocol->protocol_begin())
Fragments.append(", ", DeclarationFragments::FragmentKind::Text);
SmallString<128> USR;
index::generateUSRForDecl(*It, USR);
Fragments.append((*It)->getName(),
DeclarationFragments::FragmentKind::TypeIdentifier, USR);
}
Fragments.append(">", DeclarationFragments::FragmentKind::Text);
}
return Fragments;
}
DeclarationFragments DeclarationFragmentsBuilder::getFragmentsForTypedef(
const TypedefNameDecl *Decl) {
DeclarationFragments Fragments, After;
Fragments.append("typedef", DeclarationFragments::FragmentKind::Keyword)
.appendSpace()
.append(getFragmentsForType(Decl->getUnderlyingType(),
Decl->getASTContext(), After))
.append(std::move(After))
.appendSpace()
.append(Decl->getName(), DeclarationFragments::FragmentKind::Identifier);
return Fragments;
}
template <typename FunctionT>
FunctionSignature
DeclarationFragmentsBuilder::getFunctionSignature(const FunctionT *Function) {
FunctionSignature Signature;
DeclarationFragments ReturnType, After;
ReturnType
.append(getFragmentsForType(Function->getReturnType(),
Function->getASTContext(), After))
.append(std::move(After));
Signature.setReturnType(ReturnType);
for (const auto *Param : Function->parameters())
Signature.addParameter(Param->getName(), getFragmentsForParam(Param));
return Signature;
}
// Instantiate template for FunctionDecl.
template FunctionSignature
DeclarationFragmentsBuilder::getFunctionSignature(const FunctionDecl *);
// Instantiate template for ObjCMethodDecl.
template FunctionSignature
DeclarationFragmentsBuilder::getFunctionSignature(const ObjCMethodDecl *);
// Subheading of a symbol defaults to its name.
DeclarationFragments
DeclarationFragmentsBuilder::getSubHeading(const NamedDecl *Decl) {
DeclarationFragments Fragments;
if (!Decl->getName().empty())
Fragments.append(Decl->getName(),
DeclarationFragments::FragmentKind::Identifier);
return Fragments;
}
// Subheading of an Objective-C method is a `+` or `-` sign indicating whether
// it's a class method or an instance method, followed by the selector name.
DeclarationFragments
DeclarationFragmentsBuilder::getSubHeading(const ObjCMethodDecl *Method) {
DeclarationFragments Fragments;
if (Method->isClassMethod())
Fragments.append("+ ", DeclarationFragments::FragmentKind::Text);
else if (Method->isInstanceMethod())
Fragments.append("- ", DeclarationFragments::FragmentKind::Text);
return Fragments.append(Method->getNameAsString(),
DeclarationFragments::FragmentKind::Identifier);
}
// Subheading of a symbol defaults to its name.
DeclarationFragments
DeclarationFragmentsBuilder::getSubHeadingForMacro(StringRef Name) {
DeclarationFragments Fragments;
Fragments.append(Name, DeclarationFragments::FragmentKind::Identifier);
return Fragments;
}