forked from OSchip/llvm-project
1206 lines
50 KiB
C++
1206 lines
50 KiB
C++
//===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This provides a class for CUDA code generation targeting the NVIDIA CUDA
|
|
// runtime library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGCUDARuntime.h"
|
|
#include "CGCXXABI.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/Basic/Cuda.h"
|
|
#include "clang/CodeGen/CodeGenABITypes.h"
|
|
#include "clang/CodeGen/ConstantInitBuilder.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/ReplaceConstant.h"
|
|
#include "llvm/Support/Format.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
namespace {
|
|
constexpr unsigned CudaFatMagic = 0x466243b1;
|
|
constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF"
|
|
|
|
class CGNVCUDARuntime : public CGCUDARuntime {
|
|
|
|
private:
|
|
llvm::IntegerType *IntTy, *SizeTy;
|
|
llvm::Type *VoidTy;
|
|
llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;
|
|
|
|
/// Convenience reference to LLVM Context
|
|
llvm::LLVMContext &Context;
|
|
/// Convenience reference to the current module
|
|
llvm::Module &TheModule;
|
|
/// Keeps track of kernel launch stubs and handles emitted in this module
|
|
struct KernelInfo {
|
|
llvm::Function *Kernel; // stub function to help launch kernel
|
|
const Decl *D;
|
|
};
|
|
llvm::SmallVector<KernelInfo, 16> EmittedKernels;
|
|
// Map a device stub function to a symbol for identifying kernel in host code.
|
|
// For CUDA, the symbol for identifying the kernel is the same as the device
|
|
// stub function. For HIP, they are different.
|
|
llvm::DenseMap<llvm::Function *, llvm::GlobalValue *> KernelHandles;
|
|
// Map a kernel handle to the kernel stub.
|
|
llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs;
|
|
struct VarInfo {
|
|
llvm::GlobalVariable *Var;
|
|
const VarDecl *D;
|
|
DeviceVarFlags Flags;
|
|
};
|
|
llvm::SmallVector<VarInfo, 16> DeviceVars;
|
|
/// Keeps track of variable containing handle of GPU binary. Populated by
|
|
/// ModuleCtorFunction() and used to create corresponding cleanup calls in
|
|
/// ModuleDtorFunction()
|
|
llvm::GlobalVariable *GpuBinaryHandle = nullptr;
|
|
/// Whether we generate relocatable device code.
|
|
bool RelocatableDeviceCode;
|
|
/// Mangle context for device.
|
|
std::unique_ptr<MangleContext> DeviceMC;
|
|
|
|
llvm::FunctionCallee getSetupArgumentFn() const;
|
|
llvm::FunctionCallee getLaunchFn() const;
|
|
|
|
llvm::FunctionType *getRegisterGlobalsFnTy() const;
|
|
llvm::FunctionType *getCallbackFnTy() const;
|
|
llvm::FunctionType *getRegisterLinkedBinaryFnTy() const;
|
|
std::string addPrefixToName(StringRef FuncName) const;
|
|
std::string addUnderscoredPrefixToName(StringRef FuncName) const;
|
|
|
|
/// Creates a function to register all kernel stubs generated in this module.
|
|
llvm::Function *makeRegisterGlobalsFn();
|
|
|
|
/// Helper function that generates a constant string and returns a pointer to
|
|
/// the start of the string. The result of this function can be used anywhere
|
|
/// where the C code specifies const char*.
|
|
llvm::Constant *makeConstantString(const std::string &Str,
|
|
const std::string &Name = "",
|
|
const std::string &SectionName = "",
|
|
unsigned Alignment = 0) {
|
|
llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
|
|
llvm::ConstantInt::get(SizeTy, 0)};
|
|
auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
|
|
llvm::GlobalVariable *GV =
|
|
cast<llvm::GlobalVariable>(ConstStr.getPointer());
|
|
if (!SectionName.empty()) {
|
|
GV->setSection(SectionName);
|
|
// Mark the address as used which make sure that this section isn't
|
|
// merged and we will really have it in the object file.
|
|
GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
|
|
}
|
|
if (Alignment)
|
|
GV->setAlignment(llvm::Align(Alignment));
|
|
|
|
return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
|
|
ConstStr.getPointer(), Zeros);
|
|
}
|
|
|
|
/// Helper function that generates an empty dummy function returning void.
|
|
llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) {
|
|
assert(FnTy->getReturnType()->isVoidTy() &&
|
|
"Can only generate dummy functions returning void!");
|
|
llvm::Function *DummyFunc = llvm::Function::Create(
|
|
FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule);
|
|
|
|
llvm::BasicBlock *DummyBlock =
|
|
llvm::BasicBlock::Create(Context, "", DummyFunc);
|
|
CGBuilderTy FuncBuilder(CGM, Context);
|
|
FuncBuilder.SetInsertPoint(DummyBlock);
|
|
FuncBuilder.CreateRetVoid();
|
|
|
|
return DummyFunc;
|
|
}
|
|
|
|
void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args);
|
|
void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args);
|
|
std::string getDeviceSideName(const NamedDecl *ND) override;
|
|
|
|
void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var,
|
|
bool Extern, bool Constant) {
|
|
DeviceVars.push_back({&Var,
|
|
VD,
|
|
{DeviceVarFlags::Variable, Extern, Constant,
|
|
VD->hasAttr<HIPManagedAttr>(),
|
|
/*Normalized*/ false, 0}});
|
|
}
|
|
void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var,
|
|
bool Extern, int Type) {
|
|
DeviceVars.push_back({&Var,
|
|
VD,
|
|
{DeviceVarFlags::Surface, Extern, /*Constant*/ false,
|
|
/*Managed*/ false,
|
|
/*Normalized*/ false, Type}});
|
|
}
|
|
void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var,
|
|
bool Extern, int Type, bool Normalized) {
|
|
DeviceVars.push_back({&Var,
|
|
VD,
|
|
{DeviceVarFlags::Texture, Extern, /*Constant*/ false,
|
|
/*Managed*/ false, Normalized, Type}});
|
|
}
|
|
|
|
/// Creates module constructor function
|
|
llvm::Function *makeModuleCtorFunction();
|
|
/// Creates module destructor function
|
|
llvm::Function *makeModuleDtorFunction();
|
|
/// Transform managed variables for device compilation.
|
|
void transformManagedVars();
|
|
/// Create offloading entries to register globals in RDC mode.
|
|
void createOffloadingEntries();
|
|
|
|
public:
|
|
CGNVCUDARuntime(CodeGenModule &CGM);
|
|
|
|
llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override;
|
|
llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override {
|
|
auto Loc = KernelStubs.find(Handle);
|
|
assert(Loc != KernelStubs.end());
|
|
return Loc->second;
|
|
}
|
|
void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
|
|
void handleVarRegistration(const VarDecl *VD,
|
|
llvm::GlobalVariable &Var) override;
|
|
void
|
|
internalizeDeviceSideVar(const VarDecl *D,
|
|
llvm::GlobalValue::LinkageTypes &Linkage) override;
|
|
|
|
llvm::Function *finalizeModule() override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const {
|
|
if (CGM.getLangOpts().HIP)
|
|
return ((Twine("hip") + Twine(FuncName)).str());
|
|
return ((Twine("cuda") + Twine(FuncName)).str());
|
|
}
|
|
std::string
|
|
CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const {
|
|
if (CGM.getLangOpts().HIP)
|
|
return ((Twine("__hip") + Twine(FuncName)).str());
|
|
return ((Twine("__cuda") + Twine(FuncName)).str());
|
|
}
|
|
|
|
static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) {
|
|
// If the host and device have different C++ ABIs, mark it as the device
|
|
// mangle context so that the mangling needs to retrieve the additional
|
|
// device lambda mangling number instead of the regular host one.
|
|
if (CGM.getContext().getAuxTargetInfo() &&
|
|
CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
|
|
CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) {
|
|
return std::unique_ptr<MangleContext>(
|
|
CGM.getContext().createDeviceMangleContext(
|
|
*CGM.getContext().getAuxTargetInfo()));
|
|
}
|
|
|
|
return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext(
|
|
CGM.getContext().getAuxTargetInfo()));
|
|
}
|
|
|
|
CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
|
|
: CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
|
|
TheModule(CGM.getModule()),
|
|
RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode ||
|
|
CGM.getLangOpts().OffloadingNewDriver),
|
|
DeviceMC(InitDeviceMC(CGM)) {
|
|
CodeGen::CodeGenTypes &Types = CGM.getTypes();
|
|
ASTContext &Ctx = CGM.getContext();
|
|
|
|
IntTy = CGM.IntTy;
|
|
SizeTy = CGM.SizeTy;
|
|
VoidTy = CGM.VoidTy;
|
|
|
|
CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy));
|
|
VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy));
|
|
VoidPtrPtrTy = VoidPtrTy->getPointerTo();
|
|
}
|
|
|
|
llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const {
|
|
// cudaError_t cudaSetupArgument(void *, size_t, size_t)
|
|
llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy};
|
|
return CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(IntTy, Params, false),
|
|
addPrefixToName("SetupArgument"));
|
|
}
|
|
|
|
llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const {
|
|
if (CGM.getLangOpts().HIP) {
|
|
// hipError_t hipLaunchByPtr(char *);
|
|
return CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr");
|
|
}
|
|
// cudaError_t cudaLaunch(char *);
|
|
return CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
|
|
}
|
|
|
|
llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
|
|
return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false);
|
|
}
|
|
|
|
llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const {
|
|
return llvm::FunctionType::get(VoidTy, VoidPtrTy, false);
|
|
}
|
|
|
|
llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
|
|
auto *CallbackFnTy = getCallbackFnTy();
|
|
auto *RegisterGlobalsFnTy = getRegisterGlobalsFnTy();
|
|
llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy,
|
|
VoidPtrTy, CallbackFnTy->getPointerTo()};
|
|
return llvm::FunctionType::get(VoidTy, Params, false);
|
|
}
|
|
|
|
std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) {
|
|
GlobalDecl GD;
|
|
// D could be either a kernel or a variable.
|
|
if (auto *FD = dyn_cast<FunctionDecl>(ND))
|
|
GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
|
|
else
|
|
GD = GlobalDecl(ND);
|
|
std::string DeviceSideName;
|
|
MangleContext *MC;
|
|
if (CGM.getLangOpts().CUDAIsDevice)
|
|
MC = &CGM.getCXXABI().getMangleContext();
|
|
else
|
|
MC = DeviceMC.get();
|
|
if (MC->shouldMangleDeclName(ND)) {
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
MC->mangleName(GD, Out);
|
|
DeviceSideName = std::string(Out.str());
|
|
} else
|
|
DeviceSideName = std::string(ND->getIdentifier()->getName());
|
|
|
|
// Make unique name for device side static file-scope variable for HIP.
|
|
if (CGM.getContext().shouldExternalize(ND) &&
|
|
CGM.getLangOpts().GPURelocatableDeviceCode) {
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
Out << DeviceSideName;
|
|
CGM.printPostfixForExternalizedDecl(Out, ND);
|
|
DeviceSideName = std::string(Out.str());
|
|
}
|
|
return DeviceSideName;
|
|
}
|
|
|
|
void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
|
|
FunctionArgList &Args) {
|
|
EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl});
|
|
if (auto *GV = dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn])) {
|
|
GV->setLinkage(CGF.CurFn->getLinkage());
|
|
GV->setInitializer(CGF.CurFn);
|
|
}
|
|
if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
|
|
CudaFeature::CUDA_USES_NEW_LAUNCH) ||
|
|
(CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI))
|
|
emitDeviceStubBodyNew(CGF, Args);
|
|
else
|
|
emitDeviceStubBodyLegacy(CGF, Args);
|
|
}
|
|
|
|
// CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
|
|
// array and kernels are launched using cudaLaunchKernel().
|
|
void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF,
|
|
FunctionArgList &Args) {
|
|
// Build the shadow stack entry at the very start of the function.
|
|
|
|
// Calculate amount of space we will need for all arguments. If we have no
|
|
// args, allocate a single pointer so we still have a valid pointer to the
|
|
// argument array that we can pass to runtime, even if it will be unused.
|
|
Address KernelArgs = CGF.CreateTempAlloca(
|
|
VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args",
|
|
llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size())));
|
|
// Store pointers to the arguments in a locally allocated launch_args.
|
|
for (unsigned i = 0; i < Args.size(); ++i) {
|
|
llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer();
|
|
llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy);
|
|
CGF.Builder.CreateDefaultAlignedStore(
|
|
VoidVarPtr,
|
|
CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i));
|
|
}
|
|
|
|
llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
|
|
|
|
// Lookup cudaLaunchKernel/hipLaunchKernel function.
|
|
// HIP kernel launching API name depends on -fgpu-default-stream option. For
|
|
// the default value 'legacy', it is hipLaunchKernel. For 'per-thread',
|
|
// it is hipLaunchKernel_spt.
|
|
// cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
|
|
// void **args, size_t sharedMem,
|
|
// cudaStream_t stream);
|
|
// hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim,
|
|
// dim3 blockDim, void **args,
|
|
// size_t sharedMem, hipStream_t stream);
|
|
TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
|
|
DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
|
|
std::string KernelLaunchAPI = "LaunchKernel";
|
|
if (CGF.getLangOpts().HIP && CGF.getLangOpts().GPUDefaultStream ==
|
|
LangOptions::GPUDefaultStreamKind::PerThread)
|
|
KernelLaunchAPI = KernelLaunchAPI + "_spt";
|
|
auto LaunchKernelName = addPrefixToName(KernelLaunchAPI);
|
|
IdentifierInfo &cudaLaunchKernelII =
|
|
CGM.getContext().Idents.get(LaunchKernelName);
|
|
FunctionDecl *cudaLaunchKernelFD = nullptr;
|
|
for (auto *Result : DC->lookup(&cudaLaunchKernelII)) {
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result))
|
|
cudaLaunchKernelFD = FD;
|
|
}
|
|
|
|
if (cudaLaunchKernelFD == nullptr) {
|
|
CGM.Error(CGF.CurFuncDecl->getLocation(),
|
|
"Can't find declaration for " + LaunchKernelName);
|
|
return;
|
|
}
|
|
// Create temporary dim3 grid_dim, block_dim.
|
|
ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1);
|
|
QualType Dim3Ty = GridDimParam->getType();
|
|
Address GridDim =
|
|
CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim");
|
|
Address BlockDim =
|
|
CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim");
|
|
Address ShmemSize =
|
|
CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size");
|
|
Address Stream =
|
|
CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream");
|
|
llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(IntTy,
|
|
{/*gridDim=*/GridDim.getType(),
|
|
/*blockDim=*/BlockDim.getType(),
|
|
/*ShmemSize=*/ShmemSize.getType(),
|
|
/*Stream=*/Stream.getType()},
|
|
/*isVarArg=*/false),
|
|
addUnderscoredPrefixToName("PopCallConfiguration"));
|
|
|
|
CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn,
|
|
{GridDim.getPointer(), BlockDim.getPointer(),
|
|
ShmemSize.getPointer(), Stream.getPointer()});
|
|
|
|
// Emit the call to cudaLaunch
|
|
llvm::Value *Kernel =
|
|
CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], VoidPtrTy);
|
|
CallArgList LaunchKernelArgs;
|
|
LaunchKernelArgs.add(RValue::get(Kernel),
|
|
cudaLaunchKernelFD->getParamDecl(0)->getType());
|
|
LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty);
|
|
LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty);
|
|
LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()),
|
|
cudaLaunchKernelFD->getParamDecl(3)->getType());
|
|
LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)),
|
|
cudaLaunchKernelFD->getParamDecl(4)->getType());
|
|
LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)),
|
|
cudaLaunchKernelFD->getParamDecl(5)->getType());
|
|
|
|
QualType QT = cudaLaunchKernelFD->getType();
|
|
QualType CQT = QT.getCanonicalType();
|
|
llvm::Type *Ty = CGM.getTypes().ConvertType(CQT);
|
|
llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
|
|
|
|
const CGFunctionInfo &FI =
|
|
CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD);
|
|
llvm::FunctionCallee cudaLaunchKernelFn =
|
|
CGM.CreateRuntimeFunction(FTy, LaunchKernelName);
|
|
CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(),
|
|
LaunchKernelArgs);
|
|
CGF.EmitBranch(EndBlock);
|
|
|
|
CGF.EmitBlock(EndBlock);
|
|
}
|
|
|
|
void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
|
|
FunctionArgList &Args) {
|
|
// Emit a call to cudaSetupArgument for each arg in Args.
|
|
llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn();
|
|
llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
|
|
CharUnits Offset = CharUnits::Zero();
|
|
for (const VarDecl *A : Args) {
|
|
auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType());
|
|
Offset = Offset.alignTo(TInfo.Align);
|
|
llvm::Value *Args[] = {
|
|
CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
|
|
VoidPtrTy),
|
|
llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()),
|
|
llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
|
|
};
|
|
llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
|
|
llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
|
|
llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero);
|
|
llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
|
|
CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock);
|
|
CGF.EmitBlock(NextBlock);
|
|
Offset += TInfo.Width;
|
|
}
|
|
|
|
// Emit the call to cudaLaunch
|
|
llvm::FunctionCallee cudaLaunchFn = getLaunchFn();
|
|
llvm::Value *Arg =
|
|
CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], CharPtrTy);
|
|
CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
|
|
CGF.EmitBranch(EndBlock);
|
|
|
|
CGF.EmitBlock(EndBlock);
|
|
}
|
|
|
|
// Replace the original variable Var with the address loaded from variable
|
|
// ManagedVar populated by HIP runtime.
|
|
static void replaceManagedVar(llvm::GlobalVariable *Var,
|
|
llvm::GlobalVariable *ManagedVar) {
|
|
SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList;
|
|
for (auto &&VarUse : Var->uses()) {
|
|
WorkList.push_back({VarUse.getUser()});
|
|
}
|
|
while (!WorkList.empty()) {
|
|
auto &&WorkItem = WorkList.pop_back_val();
|
|
auto *U = WorkItem.back();
|
|
if (isa<llvm::ConstantExpr>(U)) {
|
|
for (auto &&UU : U->uses()) {
|
|
WorkItem.push_back(UU.getUser());
|
|
WorkList.push_back(WorkItem);
|
|
WorkItem.pop_back();
|
|
}
|
|
continue;
|
|
}
|
|
if (auto *I = dyn_cast<llvm::Instruction>(U)) {
|
|
llvm::Value *OldV = Var;
|
|
llvm::Instruction *NewV =
|
|
new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false,
|
|
llvm::Align(Var->getAlignment()), I);
|
|
WorkItem.pop_back();
|
|
// Replace constant expressions directly or indirectly using the managed
|
|
// variable with instructions.
|
|
for (auto &&Op : WorkItem) {
|
|
auto *CE = cast<llvm::ConstantExpr>(Op);
|
|
auto *NewInst = CE->getAsInstruction(I);
|
|
NewInst->replaceUsesOfWith(OldV, NewV);
|
|
OldV = CE;
|
|
NewV = NewInst;
|
|
}
|
|
I->replaceUsesOfWith(OldV, NewV);
|
|
} else {
|
|
llvm_unreachable("Invalid use of managed variable");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Creates a function that sets up state on the host side for CUDA objects that
|
|
/// have a presence on both the host and device sides. Specifically, registers
|
|
/// the host side of kernel functions and device global variables with the CUDA
|
|
/// runtime.
|
|
/// \code
|
|
/// void __cuda_register_globals(void** GpuBinaryHandle) {
|
|
/// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
|
|
/// ...
|
|
/// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
|
|
/// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
|
|
/// ...
|
|
/// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
|
|
/// }
|
|
/// \endcode
|
|
llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() {
|
|
// No need to register anything
|
|
if (EmittedKernels.empty() && DeviceVars.empty())
|
|
return nullptr;
|
|
|
|
llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
|
|
getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage,
|
|
addUnderscoredPrefixToName("_register_globals"), &TheModule);
|
|
llvm::BasicBlock *EntryBB =
|
|
llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
|
|
CGBuilderTy Builder(CGM, Context);
|
|
Builder.SetInsertPoint(EntryBB);
|
|
|
|
// void __cudaRegisterFunction(void **, const char *, char *, const char *,
|
|
// int, uint3*, uint3*, dim3*, dim3*, int*)
|
|
llvm::Type *RegisterFuncParams[] = {
|
|
VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy,
|
|
VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()};
|
|
llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
|
|
addUnderscoredPrefixToName("RegisterFunction"));
|
|
|
|
// Extract GpuBinaryHandle passed as the first argument passed to
|
|
// __cuda_register_globals() and generate __cudaRegisterFunction() call for
|
|
// each emitted kernel.
|
|
llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
|
|
for (auto &&I : EmittedKernels) {
|
|
llvm::Constant *KernelName =
|
|
makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D)));
|
|
llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
|
|
llvm::Value *Args[] = {
|
|
&GpuBinaryHandlePtr,
|
|
Builder.CreateBitCast(KernelHandles[I.Kernel], VoidPtrTy),
|
|
KernelName,
|
|
KernelName,
|
|
llvm::ConstantInt::get(IntTy, -1),
|
|
NullPtr,
|
|
NullPtr,
|
|
NullPtr,
|
|
NullPtr,
|
|
llvm::ConstantPointerNull::get(IntTy->getPointerTo())};
|
|
Builder.CreateCall(RegisterFunc, Args);
|
|
}
|
|
|
|
llvm::Type *VarSizeTy = IntTy;
|
|
// For HIP or CUDA 9.0+, device variable size is type of `size_t`.
|
|
if (CGM.getLangOpts().HIP ||
|
|
ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90)
|
|
VarSizeTy = SizeTy;
|
|
|
|
// void __cudaRegisterVar(void **, char *, char *, const char *,
|
|
// int, int, int, int)
|
|
llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
|
|
CharPtrTy, IntTy, VarSizeTy,
|
|
IntTy, IntTy};
|
|
llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(VoidTy, RegisterVarParams, false),
|
|
addUnderscoredPrefixToName("RegisterVar"));
|
|
// void __hipRegisterManagedVar(void **, char *, char *, const char *,
|
|
// size_t, unsigned)
|
|
llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
|
|
CharPtrTy, VarSizeTy, IntTy};
|
|
llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false),
|
|
addUnderscoredPrefixToName("RegisterManagedVar"));
|
|
// void __cudaRegisterSurface(void **, const struct surfaceReference *,
|
|
// const void **, const char *, int, int);
|
|
llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(
|
|
VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy},
|
|
false),
|
|
addUnderscoredPrefixToName("RegisterSurface"));
|
|
// void __cudaRegisterTexture(void **, const struct textureReference *,
|
|
// const void **, const char *, int, int, int)
|
|
llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(
|
|
VoidTy,
|
|
{VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy},
|
|
false),
|
|
addUnderscoredPrefixToName("RegisterTexture"));
|
|
for (auto &&Info : DeviceVars) {
|
|
llvm::GlobalVariable *Var = Info.Var;
|
|
assert((!Var->isDeclaration() || Info.Flags.isManaged()) &&
|
|
"External variables should not show up here, except HIP managed "
|
|
"variables");
|
|
llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D));
|
|
switch (Info.Flags.getKind()) {
|
|
case DeviceVarFlags::Variable: {
|
|
uint64_t VarSize =
|
|
CGM.getDataLayout().getTypeAllocSize(Var->getValueType());
|
|
if (Info.Flags.isManaged()) {
|
|
auto *ManagedVar = new llvm::GlobalVariable(
|
|
CGM.getModule(), Var->getType(),
|
|
/*isConstant=*/false, Var->getLinkage(),
|
|
/*Init=*/Var->isDeclaration()
|
|
? nullptr
|
|
: llvm::ConstantPointerNull::get(Var->getType()),
|
|
/*Name=*/"", /*InsertBefore=*/nullptr,
|
|
llvm::GlobalVariable::NotThreadLocal);
|
|
ManagedVar->setDSOLocal(Var->isDSOLocal());
|
|
ManagedVar->setVisibility(Var->getVisibility());
|
|
ManagedVar->setExternallyInitialized(true);
|
|
ManagedVar->takeName(Var);
|
|
Var->setName(Twine(ManagedVar->getName() + ".managed"));
|
|
replaceManagedVar(Var, ManagedVar);
|
|
llvm::Value *Args[] = {
|
|
&GpuBinaryHandlePtr,
|
|
Builder.CreateBitCast(ManagedVar, VoidPtrTy),
|
|
Builder.CreateBitCast(Var, VoidPtrTy),
|
|
VarName,
|
|
llvm::ConstantInt::get(VarSizeTy, VarSize),
|
|
llvm::ConstantInt::get(IntTy, Var->getAlignment())};
|
|
if (!Var->isDeclaration())
|
|
Builder.CreateCall(RegisterManagedVar, Args);
|
|
} else {
|
|
llvm::Value *Args[] = {
|
|
&GpuBinaryHandlePtr,
|
|
Builder.CreateBitCast(Var, VoidPtrTy),
|
|
VarName,
|
|
VarName,
|
|
llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()),
|
|
llvm::ConstantInt::get(VarSizeTy, VarSize),
|
|
llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()),
|
|
llvm::ConstantInt::get(IntTy, 0)};
|
|
Builder.CreateCall(RegisterVar, Args);
|
|
}
|
|
break;
|
|
}
|
|
case DeviceVarFlags::Surface:
|
|
Builder.CreateCall(
|
|
RegisterSurf,
|
|
{&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
|
|
VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
|
|
llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
|
|
break;
|
|
case DeviceVarFlags::Texture:
|
|
Builder.CreateCall(
|
|
RegisterTex,
|
|
{&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
|
|
VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
|
|
llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()),
|
|
llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
|
|
break;
|
|
}
|
|
}
|
|
|
|
Builder.CreateRetVoid();
|
|
return RegisterKernelsFunc;
|
|
}
|
|
|
|
/// Creates a global constructor function for the module:
|
|
///
|
|
/// For CUDA:
|
|
/// \code
|
|
/// void __cuda_module_ctor() {
|
|
/// Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
|
|
/// __cuda_register_globals(Handle);
|
|
/// }
|
|
/// \endcode
|
|
///
|
|
/// For HIP:
|
|
/// \code
|
|
/// void __hip_module_ctor() {
|
|
/// if (__hip_gpubin_handle == 0) {
|
|
/// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob);
|
|
/// __hip_register_globals(__hip_gpubin_handle);
|
|
/// }
|
|
/// }
|
|
/// \endcode
|
|
llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
|
|
bool IsHIP = CGM.getLangOpts().HIP;
|
|
bool IsCUDA = CGM.getLangOpts().CUDA;
|
|
// No need to generate ctors/dtors if there is no GPU binary.
|
|
StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName;
|
|
if (CudaGpuBinaryFileName.empty() && !IsHIP)
|
|
return nullptr;
|
|
if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() &&
|
|
DeviceVars.empty())
|
|
return nullptr;
|
|
|
|
// void __{cuda|hip}_register_globals(void* handle);
|
|
llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn();
|
|
// We always need a function to pass in as callback. Create a dummy
|
|
// implementation if we don't need to register anything.
|
|
if (RelocatableDeviceCode && !RegisterGlobalsFunc)
|
|
RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy());
|
|
|
|
// void ** __{cuda|hip}RegisterFatBinary(void *);
|
|
llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
|
|
addUnderscoredPrefixToName("RegisterFatBinary"));
|
|
// struct { int magic, int version, void * gpu_binary, void * dont_care };
|
|
llvm::StructType *FatbinWrapperTy =
|
|
llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy);
|
|
|
|
// Register GPU binary with the CUDA runtime, store returned handle in a
|
|
// global variable and save a reference in GpuBinaryHandle to be cleaned up
|
|
// in destructor on exit. Then associate all known kernels with the GPU binary
|
|
// handle so CUDA runtime can figure out what to call on the GPU side.
|
|
std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr;
|
|
if (!CudaGpuBinaryFileName.empty()) {
|
|
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr =
|
|
llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName);
|
|
if (std::error_code EC = CudaGpuBinaryOrErr.getError()) {
|
|
CGM.getDiags().Report(diag::err_cannot_open_file)
|
|
<< CudaGpuBinaryFileName << EC.message();
|
|
return nullptr;
|
|
}
|
|
CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get());
|
|
}
|
|
|
|
llvm::Function *ModuleCtorFunc = llvm::Function::Create(
|
|
llvm::FunctionType::get(VoidTy, false),
|
|
llvm::GlobalValue::InternalLinkage,
|
|
addUnderscoredPrefixToName("_module_ctor"), &TheModule);
|
|
llvm::BasicBlock *CtorEntryBB =
|
|
llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
|
|
CGBuilderTy CtorBuilder(CGM, Context);
|
|
|
|
CtorBuilder.SetInsertPoint(CtorEntryBB);
|
|
|
|
const char *FatbinConstantName;
|
|
const char *FatbinSectionName;
|
|
const char *ModuleIDSectionName;
|
|
StringRef ModuleIDPrefix;
|
|
llvm::Constant *FatBinStr;
|
|
unsigned FatMagic;
|
|
if (IsHIP) {
|
|
FatbinConstantName = ".hip_fatbin";
|
|
FatbinSectionName = ".hipFatBinSegment";
|
|
|
|
ModuleIDSectionName = "__hip_module_id";
|
|
ModuleIDPrefix = "__hip_";
|
|
|
|
if (CudaGpuBinary) {
|
|
// If fatbin is available from early finalization, create a string
|
|
// literal containing the fat binary loaded from the given file.
|
|
const unsigned HIPCodeObjectAlign = 4096;
|
|
FatBinStr =
|
|
makeConstantString(std::string(CudaGpuBinary->getBuffer()), "",
|
|
FatbinConstantName, HIPCodeObjectAlign);
|
|
} else {
|
|
// If fatbin is not available, create an external symbol
|
|
// __hip_fatbin in section .hip_fatbin. The external symbol is supposed
|
|
// to contain the fat binary but will be populated somewhere else,
|
|
// e.g. by lld through link script.
|
|
FatBinStr = new llvm::GlobalVariable(
|
|
CGM.getModule(), CGM.Int8Ty,
|
|
/*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr,
|
|
"__hip_fatbin", nullptr,
|
|
llvm::GlobalVariable::NotThreadLocal);
|
|
cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName);
|
|
}
|
|
|
|
FatMagic = HIPFatMagic;
|
|
} else {
|
|
if (RelocatableDeviceCode)
|
|
FatbinConstantName = CGM.getTriple().isMacOSX()
|
|
? "__NV_CUDA,__nv_relfatbin"
|
|
: "__nv_relfatbin";
|
|
else
|
|
FatbinConstantName =
|
|
CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
|
|
// NVIDIA's cuobjdump looks for fatbins in this section.
|
|
FatbinSectionName =
|
|
CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
|
|
|
|
ModuleIDSectionName = CGM.getTriple().isMacOSX()
|
|
? "__NV_CUDA,__nv_module_id"
|
|
: "__nv_module_id";
|
|
ModuleIDPrefix = "__nv_";
|
|
|
|
// For CUDA, create a string literal containing the fat binary loaded from
|
|
// the given file.
|
|
FatBinStr = makeConstantString(std::string(CudaGpuBinary->getBuffer()), "",
|
|
FatbinConstantName, 8);
|
|
FatMagic = CudaFatMagic;
|
|
}
|
|
|
|
// Create initialized wrapper structure that points to the loaded GPU binary
|
|
ConstantInitBuilder Builder(CGM);
|
|
auto Values = Builder.beginStruct(FatbinWrapperTy);
|
|
// Fatbin wrapper magic.
|
|
Values.addInt(IntTy, FatMagic);
|
|
// Fatbin version.
|
|
Values.addInt(IntTy, 1);
|
|
// Data.
|
|
Values.add(FatBinStr);
|
|
// Unused in fatbin v1.
|
|
Values.add(llvm::ConstantPointerNull::get(VoidPtrTy));
|
|
llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal(
|
|
addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(),
|
|
/*constant*/ true);
|
|
FatbinWrapper->setSection(FatbinSectionName);
|
|
|
|
// There is only one HIP fat binary per linked module, however there are
|
|
// multiple constructor functions. Make sure the fat binary is registered
|
|
// only once. The constructor functions are executed by the dynamic loader
|
|
// before the program gains control. The dynamic loader cannot execute the
|
|
// constructor functions concurrently since doing that would not guarantee
|
|
// thread safety of the loaded program. Therefore we can assume sequential
|
|
// execution of constructor functions here.
|
|
if (IsHIP) {
|
|
auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage :
|
|
llvm::GlobalValue::LinkOnceAnyLinkage;
|
|
llvm::BasicBlock *IfBlock =
|
|
llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc);
|
|
llvm::BasicBlock *ExitBlock =
|
|
llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc);
|
|
// The name, size, and initialization pattern of this variable is part
|
|
// of HIP ABI.
|
|
GpuBinaryHandle = new llvm::GlobalVariable(
|
|
TheModule, VoidPtrPtrTy, /*isConstant=*/false,
|
|
Linkage,
|
|
/*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy),
|
|
"__hip_gpubin_handle");
|
|
if (Linkage == llvm::GlobalValue::LinkOnceAnyLinkage)
|
|
GpuBinaryHandle->setComdat(
|
|
CGM.getModule().getOrInsertComdat(GpuBinaryHandle->getName()));
|
|
GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
|
|
// Prevent the weak symbol in different shared libraries being merged.
|
|
if (Linkage != llvm::GlobalValue::InternalLinkage)
|
|
GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility);
|
|
Address GpuBinaryAddr(
|
|
GpuBinaryHandle, VoidPtrPtrTy,
|
|
CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
|
|
{
|
|
auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
|
|
llvm::Constant *Zero =
|
|
llvm::Constant::getNullValue(HandleValue->getType());
|
|
llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero);
|
|
CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock);
|
|
}
|
|
{
|
|
CtorBuilder.SetInsertPoint(IfBlock);
|
|
// GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
|
|
llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
|
|
RegisterFatbinFunc,
|
|
CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
|
|
CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr);
|
|
CtorBuilder.CreateBr(ExitBlock);
|
|
}
|
|
{
|
|
CtorBuilder.SetInsertPoint(ExitBlock);
|
|
// Call __hip_register_globals(GpuBinaryHandle);
|
|
if (RegisterGlobalsFunc) {
|
|
auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
|
|
CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue);
|
|
}
|
|
}
|
|
} else if (!RelocatableDeviceCode) {
|
|
// Register binary with CUDA runtime. This is substantially different in
|
|
// default mode vs. separate compilation!
|
|
// GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
|
|
llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
|
|
RegisterFatbinFunc,
|
|
CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
|
|
GpuBinaryHandle = new llvm::GlobalVariable(
|
|
TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
|
|
llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
|
|
GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
|
|
CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
|
|
CGM.getPointerAlign());
|
|
|
|
// Call __cuda_register_globals(GpuBinaryHandle);
|
|
if (RegisterGlobalsFunc)
|
|
CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall);
|
|
|
|
// Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
|
|
if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
|
|
CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) {
|
|
// void __cudaRegisterFatBinaryEnd(void **);
|
|
llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
|
|
"__cudaRegisterFatBinaryEnd");
|
|
CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall);
|
|
}
|
|
} else {
|
|
// Generate a unique module ID.
|
|
SmallString<64> ModuleID;
|
|
llvm::raw_svector_ostream OS(ModuleID);
|
|
OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID());
|
|
llvm::Constant *ModuleIDConstant = makeConstantString(
|
|
std::string(ModuleID.str()), "", ModuleIDSectionName, 32);
|
|
|
|
// Create an alias for the FatbinWrapper that nvcc will look for.
|
|
llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage,
|
|
Twine("__fatbinwrap") + ModuleID, FatbinWrapper);
|
|
|
|
// void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
|
|
// void *, void (*)(void **))
|
|
SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
|
|
RegisterLinkedBinaryName += ModuleID;
|
|
llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction(
|
|
getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName);
|
|
|
|
assert(RegisterGlobalsFunc && "Expecting at least dummy function!");
|
|
llvm::Value *Args[] = {RegisterGlobalsFunc,
|
|
CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy),
|
|
ModuleIDConstant,
|
|
makeDummyFunction(getCallbackFnTy())};
|
|
CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args);
|
|
}
|
|
|
|
// Create destructor and register it with atexit() the way NVCC does it. Doing
|
|
// it during regular destructor phase worked in CUDA before 9.2 but results in
|
|
// double-free in 9.2.
|
|
if (llvm::Function *CleanupFn = makeModuleDtorFunction()) {
|
|
// extern "C" int atexit(void (*f)(void));
|
|
llvm::FunctionType *AtExitTy =
|
|
llvm::FunctionType::get(IntTy, CleanupFn->getType(), false);
|
|
llvm::FunctionCallee AtExitFunc =
|
|
CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(),
|
|
/*Local=*/true);
|
|
CtorBuilder.CreateCall(AtExitFunc, CleanupFn);
|
|
}
|
|
|
|
CtorBuilder.CreateRetVoid();
|
|
return ModuleCtorFunc;
|
|
}
|
|
|
|
/// Creates a global destructor function that unregisters the GPU code blob
|
|
/// registered by constructor.
|
|
///
|
|
/// For CUDA:
|
|
/// \code
|
|
/// void __cuda_module_dtor() {
|
|
/// __cudaUnregisterFatBinary(Handle);
|
|
/// }
|
|
/// \endcode
|
|
///
|
|
/// For HIP:
|
|
/// \code
|
|
/// void __hip_module_dtor() {
|
|
/// if (__hip_gpubin_handle) {
|
|
/// __hipUnregisterFatBinary(__hip_gpubin_handle);
|
|
/// __hip_gpubin_handle = 0;
|
|
/// }
|
|
/// }
|
|
/// \endcode
|
|
llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
|
|
// No need for destructor if we don't have a handle to unregister.
|
|
if (!GpuBinaryHandle)
|
|
return nullptr;
|
|
|
|
// void __cudaUnregisterFatBinary(void ** handle);
|
|
llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
|
|
addUnderscoredPrefixToName("UnregisterFatBinary"));
|
|
|
|
llvm::Function *ModuleDtorFunc = llvm::Function::Create(
|
|
llvm::FunctionType::get(VoidTy, false),
|
|
llvm::GlobalValue::InternalLinkage,
|
|
addUnderscoredPrefixToName("_module_dtor"), &TheModule);
|
|
|
|
llvm::BasicBlock *DtorEntryBB =
|
|
llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
|
|
CGBuilderTy DtorBuilder(CGM, Context);
|
|
DtorBuilder.SetInsertPoint(DtorEntryBB);
|
|
|
|
Address GpuBinaryAddr(
|
|
GpuBinaryHandle, GpuBinaryHandle->getValueType(),
|
|
CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
|
|
auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr);
|
|
// There is only one HIP fat binary per linked module, however there are
|
|
// multiple destructor functions. Make sure the fat binary is unregistered
|
|
// only once.
|
|
if (CGM.getLangOpts().HIP) {
|
|
llvm::BasicBlock *IfBlock =
|
|
llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc);
|
|
llvm::BasicBlock *ExitBlock =
|
|
llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc);
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType());
|
|
llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero);
|
|
DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock);
|
|
|
|
DtorBuilder.SetInsertPoint(IfBlock);
|
|
DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
|
|
DtorBuilder.CreateStore(Zero, GpuBinaryAddr);
|
|
DtorBuilder.CreateBr(ExitBlock);
|
|
|
|
DtorBuilder.SetInsertPoint(ExitBlock);
|
|
} else {
|
|
DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
|
|
}
|
|
DtorBuilder.CreateRetVoid();
|
|
return ModuleDtorFunc;
|
|
}
|
|
|
|
CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) {
|
|
return new CGNVCUDARuntime(CGM);
|
|
}
|
|
|
|
void CGNVCUDARuntime::internalizeDeviceSideVar(
|
|
const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) {
|
|
// For -fno-gpu-rdc, host-side shadows of external declarations of device-side
|
|
// global variables become internal definitions. These have to be internal in
|
|
// order to prevent name conflicts with global host variables with the same
|
|
// name in a different TUs.
|
|
//
|
|
// For -fgpu-rdc, the shadow variables should not be internalized because
|
|
// they may be accessed by different TU.
|
|
if (CGM.getLangOpts().GPURelocatableDeviceCode)
|
|
return;
|
|
|
|
// __shared__ variables are odd. Shadows do get created, but
|
|
// they are not registered with the CUDA runtime, so they
|
|
// can't really be used to access their device-side
|
|
// counterparts. It's not clear yet whether it's nvcc's bug or
|
|
// a feature, but we've got to do the same for compatibility.
|
|
if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
|
|
D->hasAttr<CUDASharedAttr>() ||
|
|
D->getType()->isCUDADeviceBuiltinSurfaceType() ||
|
|
D->getType()->isCUDADeviceBuiltinTextureType()) {
|
|
Linkage = llvm::GlobalValue::InternalLinkage;
|
|
}
|
|
}
|
|
|
|
void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D,
|
|
llvm::GlobalVariable &GV) {
|
|
if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
|
|
// Shadow variables and their properties must be registered with CUDA
|
|
// runtime. Skip Extern global variables, which will be registered in
|
|
// the TU where they are defined.
|
|
//
|
|
// Don't register a C++17 inline variable. The local symbol can be
|
|
// discarded and referencing a discarded local symbol from outside the
|
|
// comdat (__cuda_register_globals) is disallowed by the ELF spec.
|
|
//
|
|
// HIP managed variables need to be always recorded in device and host
|
|
// compilations for transformation.
|
|
//
|
|
// HIP managed variables and variables in CUDADeviceVarODRUsedByHost are
|
|
// added to llvm.compiler-used, therefore they are safe to be registered.
|
|
if ((!D->hasExternalStorage() && !D->isInline()) ||
|
|
CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) ||
|
|
D->hasAttr<HIPManagedAttr>()) {
|
|
registerDeviceVar(D, GV, !D->hasDefinition(),
|
|
D->hasAttr<CUDAConstantAttr>());
|
|
}
|
|
} else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
|
|
D->getType()->isCUDADeviceBuiltinTextureType()) {
|
|
// Builtin surfaces and textures and their template arguments are
|
|
// also registered with CUDA runtime.
|
|
const auto *TD = cast<ClassTemplateSpecializationDecl>(
|
|
D->getType()->castAs<RecordType>()->getDecl());
|
|
const TemplateArgumentList &Args = TD->getTemplateArgs();
|
|
if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
|
|
assert(Args.size() == 2 &&
|
|
"Unexpected number of template arguments of CUDA device "
|
|
"builtin surface type.");
|
|
auto SurfType = Args[1].getAsIntegral();
|
|
if (!D->hasExternalStorage())
|
|
registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue());
|
|
} else {
|
|
assert(Args.size() == 3 &&
|
|
"Unexpected number of template arguments of CUDA device "
|
|
"builtin texture type.");
|
|
auto TexType = Args[1].getAsIntegral();
|
|
auto Normalized = Args[2].getAsIntegral();
|
|
if (!D->hasExternalStorage())
|
|
registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(),
|
|
Normalized.getZExtValue());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Transform managed variables to pointers to managed variables in device code.
|
|
// Each use of the original managed variable is replaced by a load from the
|
|
// transformed managed variable. The transformed managed variable contains
|
|
// the address of managed memory which will be allocated by the runtime.
|
|
void CGNVCUDARuntime::transformManagedVars() {
|
|
for (auto &&Info : DeviceVars) {
|
|
llvm::GlobalVariable *Var = Info.Var;
|
|
if (Info.Flags.getKind() == DeviceVarFlags::Variable &&
|
|
Info.Flags.isManaged()) {
|
|
auto *ManagedVar = new llvm::GlobalVariable(
|
|
CGM.getModule(), Var->getType(),
|
|
/*isConstant=*/false, Var->getLinkage(),
|
|
/*Init=*/Var->isDeclaration()
|
|
? nullptr
|
|
: llvm::ConstantPointerNull::get(Var->getType()),
|
|
/*Name=*/"", /*InsertBefore=*/nullptr,
|
|
llvm::GlobalVariable::NotThreadLocal,
|
|
CGM.getContext().getTargetAddressSpace(LangAS::cuda_device));
|
|
ManagedVar->setDSOLocal(Var->isDSOLocal());
|
|
ManagedVar->setVisibility(Var->getVisibility());
|
|
ManagedVar->setExternallyInitialized(true);
|
|
replaceManagedVar(Var, ManagedVar);
|
|
ManagedVar->takeName(Var);
|
|
Var->setName(Twine(ManagedVar->getName()) + ".managed");
|
|
// Keep managed variables even if they are not used in device code since
|
|
// they need to be allocated by the runtime.
|
|
if (!Var->isDeclaration()) {
|
|
assert(!ManagedVar->isDeclaration());
|
|
CGM.addCompilerUsedGlobal(Var);
|
|
CGM.addCompilerUsedGlobal(ManagedVar);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Creates offloading entries for all the kernels and globals that must be
|
|
// registered. The linker will provide a pointer to this section so we can
|
|
// register the symbols with the linked device image.
|
|
void CGNVCUDARuntime::createOffloadingEntries() {
|
|
llvm::OpenMPIRBuilder OMPBuilder(CGM.getModule());
|
|
OMPBuilder.initialize();
|
|
|
|
StringRef Section = "cuda_offloading_entries";
|
|
for (KernelInfo &I : EmittedKernels)
|
|
OMPBuilder.emitOffloadingEntry(KernelHandles[I.Kernel],
|
|
getDeviceSideName(cast<NamedDecl>(I.D)), 0,
|
|
DeviceVarFlags::OffloadGlobalEntry, Section);
|
|
|
|
for (VarInfo &I : DeviceVars) {
|
|
uint64_t VarSize =
|
|
CGM.getDataLayout().getTypeAllocSize(I.Var->getValueType());
|
|
if (I.Flags.getKind() == DeviceVarFlags::Variable) {
|
|
OMPBuilder.emitOffloadingEntry(
|
|
I.Var, getDeviceSideName(I.D), VarSize,
|
|
I.Flags.isManaged() ? DeviceVarFlags::OffloadGlobalManagedEntry
|
|
: DeviceVarFlags::OffloadGlobalEntry,
|
|
Section);
|
|
} else if (I.Flags.getKind() == DeviceVarFlags::Surface) {
|
|
OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize,
|
|
DeviceVarFlags::OffloadGlobalSurfaceEntry,
|
|
Section);
|
|
} else if (I.Flags.getKind() == DeviceVarFlags::Texture) {
|
|
OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize,
|
|
DeviceVarFlags::OffloadGlobalTextureEntry,
|
|
Section);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns module constructor to be added.
|
|
llvm::Function *CGNVCUDARuntime::finalizeModule() {
|
|
if (CGM.getLangOpts().CUDAIsDevice) {
|
|
transformManagedVars();
|
|
|
|
// Mark ODR-used device variables as compiler used to prevent it from being
|
|
// eliminated by optimization. This is necessary for device variables
|
|
// ODR-used by host functions. Sema correctly marks them as ODR-used no
|
|
// matter whether they are ODR-used by device or host functions.
|
|
//
|
|
// We do not need to do this if the variable has used attribute since it
|
|
// has already been added.
|
|
//
|
|
// Static device variables have been externalized at this point, therefore
|
|
// variables with LLVM private or internal linkage need not be added.
|
|
for (auto &&Info : DeviceVars) {
|
|
auto Kind = Info.Flags.getKind();
|
|
if (!Info.Var->isDeclaration() &&
|
|
!llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) &&
|
|
(Kind == DeviceVarFlags::Variable ||
|
|
Kind == DeviceVarFlags::Surface ||
|
|
Kind == DeviceVarFlags::Texture) &&
|
|
Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) {
|
|
CGM.addCompilerUsedGlobal(Info.Var);
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
if (!(CGM.getLangOpts().OffloadingNewDriver && RelocatableDeviceCode))
|
|
return makeModuleCtorFunction();
|
|
|
|
createOffloadingEntries();
|
|
return nullptr;
|
|
}
|
|
|
|
llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F,
|
|
GlobalDecl GD) {
|
|
auto Loc = KernelHandles.find(F);
|
|
if (Loc != KernelHandles.end())
|
|
return Loc->second;
|
|
|
|
if (!CGM.getLangOpts().HIP) {
|
|
KernelHandles[F] = F;
|
|
KernelStubs[F] = F;
|
|
return F;
|
|
}
|
|
|
|
auto *Var = new llvm::GlobalVariable(
|
|
TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(),
|
|
/*Initializer=*/nullptr,
|
|
CGM.getMangledName(
|
|
GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel)));
|
|
Var->setAlignment(CGM.getPointerAlign().getAsAlign());
|
|
Var->setDSOLocal(F->isDSOLocal());
|
|
Var->setVisibility(F->getVisibility());
|
|
CGM.maybeSetTrivialComdat(*GD.getDecl(), *Var);
|
|
KernelHandles[F] = Var;
|
|
KernelStubs[Var] = F;
|
|
return Var;
|
|
}
|