llvm-project/llvm/lib/CodeGen/MLRegallocEvictAdvisor.cpp

913 lines
37 KiB
C++

//===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of the ML eviction advisor and reward injection pass
//
//===----------------------------------------------------------------------===//
#include "RegAllocEvictionAdvisor.h"
#include "RegAllocGreedy.h"
#include "RegAllocScore.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MLModelRunner.h"
#include "llvm/Analysis/ModelUnderTrainingRunner.h"
#include "llvm/Analysis/NoInferenceModelRunner.h"
#include "llvm/Analysis/ReleaseModeModelRunner.h"
#include "llvm/Analysis/Utils/TFUtils.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Config/config.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetMachine.h"
#include <array>
#include <memory>
using namespace llvm;
#define DEBUG_TYPE "ml-regalloc"
// Generated header in release (AOT) mode
#if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL)
#include "RegallocEvictModel.h"
using CompiledModelType = RegallocEvictModel;
#else
using CompiledModelType = NoopSavedModelImpl;
#endif
// Options that only make sense in development mode
#ifdef LLVM_HAVE_TF_API
static cl::opt<std::string> TrainingLog(
"regalloc-training-log", cl::Hidden,
cl::desc("Training log for the register allocator eviction model"));
static cl::opt<std::string> ModelUnderTraining(
"regalloc-model", cl::Hidden,
cl::desc("The model being trained for register allocation eviction"));
#endif // #ifdef LLVM_HAVE_TF_API
extern cl::opt<unsigned> EvictInterferenceCutoff;
/// The score injection pass.
/// This pass calculates the score for a function and inserts it in the log, but
/// this happens only in development mode. It's a no-op otherwise.
namespace llvm {
class RegAllocScoring : public MachineFunctionPass {
public:
static char ID;
RegAllocScoring() : MachineFunctionPass(ID) {
initializeRegAllocScoringPass(*PassRegistry::getPassRegistry());
}
~RegAllocScoring() override = default;
StringRef getPassName() const override {
return "Register Allocation Pass Scoring";
}
/// RegAllocReward analysis usage.
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addRequired<AAResultsWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
/// Performs this pass
bool runOnMachineFunction(MachineFunction &) override;
};
char RegAllocScoring::ID = 0;
FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); }
} // namespace llvm
INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass",
"Register Allocation Scoring Pass", false, false)
// ===================================
// Common ML Advisor declarations
// ===================================
namespace {
// This is the maximum number of interfererring ranges. That's the number of
// distinct AllocationOrder values, which comes from MCRegisterClass::RegsSize.
// For X86, that's 32.
// TODO: find a way to get this, statically, in a programmatic way.
static const int64_t MaxInterferences = 32;
// Logically, we can think of the feature set given to the evaluator as a 2D
// matrix. The rows are the features (see next). The columns correspond to the
// interferences. We treat the candidate virt reg as an 'interference', too, as
// its feature set is the same as that of the interferring ranges. So we'll have
// MaxInterferences + 1 columns and by convention, we will use the last column
// for the virt reg seeking allocation.
static const int64_t CandidateVirtRegPos = MaxInterferences;
static const int64_t NumberOfInterferences = CandidateVirtRegPos + 1;
// Most features are as described above, so we'll reuse this vector in defining
// them.
static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences};
// --------------
// Features table
// --------------
// For each interfering live range (incl. the candidate) we collect a number of
// features. However, because the features are of different types (and because
// of ML best practices), we organize the tensors per feature, not per
// candidate. Each such tensor has a scalar value corresponding to the
// interferring live range at that position, in the order in AllocationOrder.
// The last position corresponds to the virt reg seeking allocation.
// Exception to all that is the progression feature, which is just a scalar (see
// its documentation for details).
// Note on naming: the "_by_max" are normalized using the largest value of that
// tensor, as observed in the current decision making stage (i.e. for the
// current call to the advisor's tryFindEvictionCandidate)
//
// The feature list format: type, name, shape, documentation.
// Note: we can really just use int64 and float, hence the modeling of some
// bools as int64 values.
#define RA_EVICT_FEATURES_LIST(M) \
M(int64_t, mask, PerLiveRangeShape, \
"boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \
"it " \
"can't be evicted)") \
M(int64_t, is_free, PerLiveRangeShape, \
"boolean values, 1 if this phys reg is actually free (no interferences)") \
M(float, nr_urgent, PerLiveRangeShape, \
"number of 'urgent' intervals, normalized. Urgent are those that are OK " \
"to break cascades") \
M(float, nr_broken_hints, PerLiveRangeShape, \
"if this position were evicted, how many broken hints would there be") \
M(int64_t, is_hint, PerLiveRangeShape, \
"is this a preferred phys reg for the candidate") \
M(int64_t, is_local, PerLiveRangeShape, \
"is this live range local to a basic block") \
M(float, nr_rematerializable, PerLiveRangeShape, \
"nr rematerializable ranges") \
M(float, nr_defs_and_uses, PerLiveRangeShape, \
"bb freq - weighed nr defs and uses") \
M(float, weighed_reads_by_max, PerLiveRangeShape, \
"bb freq - weighed nr of reads, normalized") \
M(float, weighed_writes_by_max, PerLiveRangeShape, \
"bb feq - weighed nr of writes, normalized") \
M(float, weighed_read_writes_by_max, PerLiveRangeShape, \
"bb freq - weighed nr of uses that are both read and writes, normalized") \
M(float, weighed_indvars_by_max, PerLiveRangeShape, \
"bb freq - weighed nr of uses that are indvars, normalized") \
M(float, hint_weights_by_max, PerLiveRangeShape, \
"bb freq - weighed nr of uses that are hints, normalized") \
M(float, start_bb_freq_by_max, PerLiveRangeShape, \
"the freq in the start block, normalized") \
M(float, end_bb_freq_by_max, PerLiveRangeShape, \
"freq of end block, normalized") \
M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \
"hottest BB freq, normalized") \
M(float, liverange_size, PerLiveRangeShape, \
"size (instr index diff) of the LR") \
M(float, use_def_density, PerLiveRangeShape, \
"the max weight, as computed by the manual heuristic") \
M(int64_t, max_stage, PerLiveRangeShape, \
"largest stage of an interval in this LR") \
M(int64_t, min_stage, PerLiveRangeShape, \
"lowest stage of an interval in this LR") \
M(float, progress, {1}, "ratio of current queue size to initial size")
// The model learns to pick one of the mask == 1 interferences. This is the name
// of the output tensor.
// The contract with the model is that the output will be guaranteed to be to a
// mask == 1 position.
// Using a macro here to avoid 'not used' warnings (and keep cond compilation to
// a minimum)
#define DecisionName "index_to_evict"
// Named features index.
enum FeatureIDs {
#define _FEATURE_IDX(_, name, __, ___) name,
RA_EVICT_FEATURES_LIST(_FEATURE_IDX)
#undef _FEATURE_IDX
FeatureCount
};
// The ML advisor will typically have a sparse input to the evaluator, because
// various phys regs won't be available. It's easier (maintenance-wise) to
// bulk-reset the state of the evaluator each time we are about to use it again.
template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) {
size_t Ret = sizeof(T);
for (const auto V : Shape)
Ret *= V;
return Ret;
}
void resetInputs(MLModelRunner &Runner) {
#define _RESET(TYPE, NAME, SHAPE, __) \
std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \
getTotalSize<TYPE>(SHAPE));
RA_EVICT_FEATURES_LIST(_RESET)
#undef _RESET
}
// Per-live interval components that get aggregated into the feature values that
// will be passed to the evaluator.
struct LIFeatureComponents {
double R = 0;
double W = 0;
double RW = 0;
double IndVarUpdates = 0;
double HintWeights = 0.0;
int64_t NrDefsAndUses = 0;
float HottestBlockFreq = 0.0;
bool IsRemat = false;
};
using CandidateRegList =
std::array<std::pair<MCRegister, bool>, NumberOfInterferences>;
using FeaturesListNormalizer = std::array<float, FeatureIDs::FeatureCount>;
/// The ML evictor (commonalities between release and development mode)
class MLEvictAdvisor : public RegAllocEvictionAdvisor {
public:
MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
MLModelRunner *Runner, const MachineBlockFrequencyInfo &MBFI,
const MachineLoopInfo &Loops);
protected:
const RegAllocEvictionAdvisor &getDefaultAdvisor() const {
return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor);
}
// The assumption is that if the Runner could not be constructed, we emit-ed
// error, and we shouldn't be asking for it here.
const MLModelRunner &getRunner() const { return *Runner; }
/// This just calls Evaluate on the Runner, but in the development mode case,
/// if we're just capturing the log of the default advisor, it needs to call
/// the latter instead, so we need to pass all the necessary parameters for
/// it. In the development case, it will also log.
virtual int64_t
tryFindEvictionCandidatePosition(const LiveInterval &VirtReg,
const AllocationOrder &Order,
unsigned OrderLimit, uint8_t CostPerUseLimit,
const SmallVirtRegSet &FixedRegisters) const;
/// Load the features of the given VirtReg (allocated or not) at column Pos,
/// but if that can't be evicted, return false instead.
bool
loadInterferenceFeatures(const LiveInterval &VirtReg, MCRegister PhysReg,
bool IsHint, const SmallVirtRegSet &FixedRegisters,
std::array<float, FeatureIDs::FeatureCount> &Largest,
size_t Pos) const;
private:
static float getInitialQueueSize(const MachineFunction &MF);
MCRegister tryFindEvictionCandidate(
const LiveInterval &VirtReg, const AllocationOrder &Order,
uint8_t CostPerUseLimit,
const SmallVirtRegSet &FixedRegisters) const override;
void extractFeatures(const SmallVectorImpl<const LiveInterval *> &Intervals,
std::array<float, FeatureIDs::FeatureCount> &Largest,
size_t Pos, int64_t IsHint, int64_t LocalIntfsCount,
float NrUrgent) const;
// Point-in-time: we didn't learn this, so we always delegate to the default.
bool canEvictHintInterference(
const LiveInterval &VirtReg, MCRegister PhysReg,
const SmallVirtRegSet &FixedRegisters) const override {
return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg,
FixedRegisters);
}
const LIFeatureComponents &
getLIFeatureComponents(const LiveInterval &LI) const;
// Hold on to a default advisor for:
// 1) the implementation of canEvictHintInterference, because we didn't learn
// that nuance yet;
// 2) for bootstrapping (logging) in the development mode case.
const DefaultEvictionAdvisor DefaultAdvisor;
MLModelRunner *const Runner;
const MachineBlockFrequencyInfo &MBFI;
const MachineLoopInfo &Loops;
// Indices of those features we don't want to normalize.
// This could be static and shared, but its initialization is non-trivial.
std::bitset<FeatureIDs::FeatureCount> DoNotNormalize;
const float InitialQSize;
using RegID = unsigned;
mutable DenseMap<RegID, LIFeatureComponents> CachedFeatures;
};
// ===================================
// Release (AOT) - specifics
// ===================================
const std::array<std::string, FeatureIDs::FeatureCount> FeatureNames{
#define _GETNAME(_, NAME, __, ___) #NAME,
RA_EVICT_FEATURES_LIST(_GETNAME)
#undef _GETNAME
};
class ReleaseModeEvictionAdvisorAnalysis final
: public RegAllocEvictionAdvisorAnalysis {
public:
ReleaseModeEvictionAdvisorAnalysis()
: RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release) {}
// support for isa<> and dyn_cast.
static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
return R->getAdvisorMode() == AdvisorMode::Release;
}
private:
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addRequired<MachineLoopInfo>();
RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU);
}
std::unique_ptr<RegAllocEvictionAdvisor>
getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
if (!Runner)
Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>(
MF.getFunction().getContext(), FeatureNames, DecisionName);
return std::make_unique<MLEvictAdvisor>(
MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
getAnalysis<MachineLoopInfo>());
}
std::unique_ptr<ReleaseModeModelRunner<CompiledModelType>> Runner;
};
// ===================================
// Development mode-specifics
// ===================================
//
// Features we log
#ifdef LLVM_HAVE_TF_API
#define _DECL_FEATURES(type, name, shape, _) \
TensorSpec::createSpec<type>(#name, shape),
static const std::vector<TensorSpec> InputFeatures{
{RA_EVICT_FEATURES_LIST(_DECL_FEATURES)},
};
#undef _DECL_FEATURES
static const TensorSpec Output =
TensorSpec::createSpec<int64_t>(DecisionName, {1});
static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1});
// Features we bind on the model. The tensor names have a prefix, and we also
// need to include some tensors that are expected to be present by the training
// algo.
// TODO: can we just get rid of these?
#define _DECL_TRAIN_FEATURES(type, name, shape, _) \
TensorSpec::createSpec<type>(std::string("action_") + #name, shape),
static const std::vector<TensorSpec> TrainingInputFeatures{
{RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES)
TensorSpec::createSpec<float>("action_discount", {1}),
TensorSpec::createSpec<int32_t>("action_step_type", {1}),
TensorSpec::createSpec<float>("action_reward", {1})}};
#undef _DECL_TRAIN_FEATURES
class DevelopmentModeEvictAdvisor : public MLEvictAdvisor {
public:
DevelopmentModeEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
MLModelRunner *Runner,
const MachineBlockFrequencyInfo &MBFI,
const MachineLoopInfo &Loops, Logger *Log)
: MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {}
private:
int64_t tryFindEvictionCandidatePosition(
const LiveInterval &VirtReg, const AllocationOrder &Order,
unsigned OrderLimit, uint8_t CostPerUseLimit,
const SmallVirtRegSet &FixedRegisters) const override;
Logger *const Log;
};
class DevelopmentModeEvictionAdvisorAnalysis final
: public RegAllocEvictionAdvisorAnalysis {
public:
DevelopmentModeEvictionAdvisorAnalysis()
: RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development) {}
// support for isa<> and dyn_cast.
static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
return R->getAdvisorMode() == AdvisorMode::Development;
}
/// get the logger for the given function, or nullptr if we didn't collect
/// one. This is used to inject the score by the RegAllocScoring pass.
Logger *getLogger(const MachineFunction &MF) const {
auto I = LogMap.find(MF.getName());
if (I == LogMap.end())
return nullptr;
return I->second.get();
}
private:
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addRequired<MachineLoopInfo>();
RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU);
}
// Save all the logs (when requested).
bool doFinalization(Module &M) override {
if (TrainingLog.empty())
return false;
std::error_code EC;
auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC);
if (EC) {
M.getContext().emitError(EC.message() + ":" + TrainingLog);
return false;
}
Logger::flushLogs(*OS, LogMap);
return false;
}
std::unique_ptr<RegAllocEvictionAdvisor>
getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
LLVMContext &Ctx = MF.getFunction().getContext();
if (ModelUnderTraining.empty() && TrainingLog.empty()) {
Ctx.emitError("Regalloc development mode should be requested with at "
"least logging enabled and/or a training model");
return nullptr;
}
if (!Runner) {
if (ModelUnderTraining.empty())
Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures);
else
Runner = ModelUnderTrainingRunner::createAndEnsureValid(
Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures);
if (!Runner) {
Ctx.emitError("Regalloc: could not set up the model runner");
return nullptr;
}
}
Logger *Log = nullptr;
if (!TrainingLog.empty()) {
std::vector<LoggedFeatureSpec> LFS;
for (const auto &FS : InputFeatures)
LFS.push_back({FS, None});
if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get()))
if (MUTR->outputLoggedFeatureSpecs().size() > 1)
append_range(LFS, drop_begin(MUTR->outputLoggedFeatureSpecs()));
// We always log the output; in particular, if we're not evaluating, we
// don't have an output spec json file. That's why we handle the
// 'normal' output separately.
LFS.push_back({Output, None});
auto I = LogMap.insert(std::make_pair(
MF.getFunction().getName(),
std::make_unique<Logger>(LFS, Reward, /*IncludeReward*/ true)));
assert(I.second);
Log = I.first->second.get();
}
return std::make_unique<DevelopmentModeEvictAdvisor>(
MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
getAnalysis<MachineLoopInfo>(), Log);
}
std::unique_ptr<MLModelRunner> Runner;
StringMap<std::unique_ptr<Logger>> LogMap;
};
#endif //#ifdef LLVM_HAVE_TF_API
} // namespace
float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) {
auto &MRI = MF.getRegInfo();
float Ret = 0.0;
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
Register Reg = Register::index2VirtReg(I);
if (MRI.reg_nodbg_empty(Reg))
continue;
++Ret;
}
return Ret;
}
MLEvictAdvisor::MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
MLModelRunner *Runner,
const MachineBlockFrequencyInfo &MBFI,
const MachineLoopInfo &Loops)
: RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA),
Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops),
InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) {
assert(this->Runner);
DoNotNormalize.set(FeatureIDs::mask);
DoNotNormalize.set(FeatureIDs::is_free);
DoNotNormalize.set(FeatureIDs::is_hint);
DoNotNormalize.set(FeatureIDs::is_local);
DoNotNormalize.set(FeatureIDs::min_stage);
DoNotNormalize.set(FeatureIDs::max_stage);
DoNotNormalize.set(FeatureIDs::progress);
}
int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition(
const LiveInterval &, const AllocationOrder &, unsigned, uint8_t,
const SmallVirtRegSet &) const {
int64_t Ret = Runner->evaluate<int64_t>();
assert(Ret >= 0);
assert(Ret <= CandidateVirtRegPos);
return Ret;
}
bool MLEvictAdvisor::loadInterferenceFeatures(
const LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint,
const SmallVirtRegSet &FixedRegisters, FeaturesListNormalizer &Largest,
size_t Pos) const {
// It is only possible to evict virtual register interference.
if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) {
// leave unavailable
return false;
}
const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
int64_t LocalIntfs = 0;
float NrUrgent = 0.0f;
// The cascade tracking is the same as in the default advisor
unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg());
SmallVector<const LiveInterval *, MaxInterferences> InterferingIntervals;
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
// Different from the default heuristic, we don't make any assumptions about
// what having more than 10 results in the query may mean.
const auto &IFIntervals = Q.interferingVRegs(EvictInterferenceCutoff);
if (IFIntervals.empty() && InterferingIntervals.empty())
continue;
if (IFIntervals.size() >= EvictInterferenceCutoff)
return false;
InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end());
for (const LiveInterval *Intf : reverse(IFIntervals)) {
assert(Register::isVirtualRegister(Intf->reg()) &&
"Only expecting virtual register interference from query");
// This is the same set of legality checks as in the default case: don't
// try to evict fixed regs or 'done' ones. Also don't break cascades,
// except in the urgent case, with the same nuances used in the default
// heuristic.
// We could try sharing this between the advisors, but it may end up
// more complex than it is right now.
if (FixedRegisters.count(Intf->reg()))
return false;
if (RA.getExtraInfo().getStage(*Intf) == RS_Done)
return false;
bool Urgent =
!VirtReg.isSpillable() &&
(Intf->isSpillable() ||
RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
RegClassInfo.getNumAllocatableRegs(
MRI->getRegClass(Intf->reg())));
// Only evict older cascades or live ranges without a cascade.
unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg());
if (Cascade <= IntfCascade) {
if (!Urgent)
return false;
++NrUrgent;
}
LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
(!EnableLocalReassign || !canReassign(*Intf, PhysReg)));
}
}
// OK, so if we made it this far, this LR is an eviction candidate, load its
// features.
extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs,
NrUrgent);
return true;
}
MCRegister MLEvictAdvisor::tryFindEvictionCandidate(
const LiveInterval &VirtReg, const AllocationOrder &Order,
uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const {
auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit);
if (!MaybeOrderLimit)
return MCRegister::NoRegister;
unsigned OrderLimit = *MaybeOrderLimit;
// The heuristic sets initial costs such as, if CostPerUseLimit is
// max<uint8_t>, then any of the costs of the legally-evictable intervals
// would be lower. When that happens, one of those will be selected.
// Therefore, we allow the candidate be selected, unless the candidate is
// unspillable, in which case it would be incorrect to not find a register for
// it.
const bool MustFindEviction =
(!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u));
// Number of available candidates - if 0, no need to continue.
size_t Available = 0;
// Make sure we don't have leftover partial state from an attempt where we had
// no available candidates and bailed out early.
resetInputs(*Runner);
// Track the index->register mapping because AllocationOrder doesn't do that
// and we'd have to scan it.
// Also track their mask, to write asserts/debug.
CandidateRegList Regs;
Regs.fill({0, false});
// Track the largest value of features seen during this eviction session. We
// only normalize (some of) the float features, but it's just simpler to
// dimension 'Largest' to all the features, especially since we have the
// 'DoNotNormalize' list.
FeaturesListNormalizer Largest;
Largest.fill(0.0);
// Same overal idea as in the default eviction policy - we visit the values of
// AllocationOrder one at a time. If it's not legally available, we mask off
// the corresponding feature column (==do nothing because we already reset all
// the features to 0)
// Use Pos to capture the column we load features at - in AllocationOrder
// order.
size_t Pos = 0;
for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
++I, ++Pos) {
MCRegister PhysReg = *I;
assert(!Regs[Pos].second);
assert(PhysReg);
if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) {
continue;
}
if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters,
Largest, Pos)) {
++Available;
Regs[Pos] = std::make_pair(PhysReg, true);
}
}
if (Available == 0) {
// Nothing to decide, nothing to learn.
assert(!MustFindEviction);
return MCRegister::NoRegister;
}
const size_t ValidPosLimit = Pos;
// If we must find eviction, the candidate should be masked out of the
// decision making process.
Regs[CandidateVirtRegPos].second = !MustFindEviction;
if (!MustFindEviction)
extractFeatures(SmallVector<const LiveInterval *, 1>(1, &VirtReg), Largest,
CandidateVirtRegPos, /*IsHint*/ 0, /*LocalIntfsCount*/ 0,
/*NrUrgent*/ 0.0);
assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had "
"nothing to allocate initially.");
// Normalize the features.
for (auto &V : Largest)
V = V ? V : 1.0;
for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount;
++FeatureIndex) {
if (DoNotNormalize.test(FeatureIndex))
continue;
for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) {
Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex];
}
}
*Runner->getTensor<float>(FeatureIDs::progress) =
static_cast<float>(RA.getQueueSize()) / InitialQSize;
// Get a decision.
size_t CandidatePos = tryFindEvictionCandidatePosition(
VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
// The contract with the ML side is that CandidatePos is mask == 1 (i.e.
// Regs[CandidatePos].second)
assert(Regs[CandidatePos].second);
if (CandidatePos == CandidateVirtRegPos) {
assert(!MustFindEviction);
return MCRegister::NoRegister;
}
assert(CandidatePos < ValidPosLimit);
(void)ValidPosLimit;
return Regs[CandidatePos].first;
}
const LIFeatureComponents &
MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const {
RegID ID = LI.reg().id();
LIFeatureComponents Empty;
auto I = CachedFeatures.insert(std::make_pair(ID, Empty));
LIFeatureComponents &Ret = I.first->getSecond();
if (!I.second)
return Ret;
SmallPtrSet<MachineInstr *, 8> Visited;
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
for (MachineRegisterInfo::reg_instr_nodbg_iterator
I = MRI->reg_instr_nodbg_begin(LI.reg()),
E = MRI->reg_instr_nodbg_end();
I != E;) {
MachineInstr *MI = &*(I++);
++Ret.NrDefsAndUses;
if (!Visited.insert(MI).second)
continue;
if (MI->isIdentityCopy() || MI->isImplicitDef())
continue;
bool Reads, Writes;
std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg());
float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent());
Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq);
Ret.R += (Reads && !Writes) * Freq;
Ret.W += (!Reads && Writes) * Freq;
Ret.RW += (Reads && Writes) * Freq;
auto *MBB = MI->getParent();
auto *Loop = Loops.getLoopFor(MBB);
bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false;
if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB))
Ret.IndVarUpdates += Freq;
if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI))
Ret.HintWeights += Freq;
}
Ret.IsRemat = VirtRegAuxInfo::isRematerializable(
LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo());
return Ret;
}
// Overall, this currently mimics what we do for weight calculation, but instead
// of accummulating the various features, we keep them separate.
void MLEvictAdvisor::extractFeatures(
const SmallVectorImpl<const LiveInterval *> &Intervals,
std::array<float, FeatureIDs::FeatureCount> &Largest, size_t Pos,
int64_t IsHint, int64_t LocalIntfsCount, float NrUrgent) const {
int64_t NrDefsAndUses = 0;
int64_t NrBrokenHints = 0;
double R = 0.0;
double W = 0.0;
double RW = 0.0;
double IndVarUpdates = 0.0;
double HintWeights = 0.0;
float StartBBFreq = 0.0;
float EndBBFreq = 0.0;
float HottestBlockFreq = 0.0;
int32_t NrRematerializable = 0;
float TotalWeight = 0.0;
SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex();
SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex();
int64_t MaxStage = 0;
int64_t MinStage =
Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max();
for (const auto *L : Intervals) {
const LiveInterval &LI = *L;
MaxStage = std::max<int64_t>(
MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
MinStage = std::min<int64_t>(
MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
TotalWeight = std::max(TotalWeight, LI.weight());
if (LI.beginIndex() < StartSI)
StartSI = LI.beginIndex();
if (LI.endIndex() > EndSI)
EndSI = LI.endIndex();
const LIFeatureComponents &LIFC = getLIFeatureComponents(LI);
NrBrokenHints += VRM->hasPreferredPhys(LI.reg());
NrDefsAndUses += LIFC.NrDefsAndUses;
HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq);
R += LIFC.R;
W += LIFC.W;
RW += LIFC.RW;
IndVarUpdates += LIFC.IndVarUpdates;
HintWeights += LIFC.HintWeights;
NrRematerializable += LIFC.IsRemat;
}
size_t Size = 0;
if (!Intervals.empty()) {
StartBBFreq =
MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI));
if (EndSI >= LIS->getSlotIndexes()->getLastIndex())
EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex();
EndBBFreq =
MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI));
Size = StartSI.distance(EndSI);
}
// Set the features at the column 'Pos'.
#define SET(ID, TYPE, VAL) \
do { \
Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \
if (!DoNotNormalize.test(FeatureIDs::ID)) \
Largest[FeatureIDs::ID] = \
std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \
} while (false)
SET(mask, int64_t, 1);
SET(is_free, int64_t, Intervals.empty());
SET(nr_urgent, float, NrUrgent);
SET(nr_broken_hints, float, NrBrokenHints);
SET(is_hint, int64_t, IsHint);
SET(is_local, int64_t, LocalIntfsCount);
SET(nr_rematerializable, float, NrRematerializable);
SET(nr_defs_and_uses, float, NrDefsAndUses);
SET(weighed_reads_by_max, float, R);
SET(weighed_writes_by_max, float, W);
SET(weighed_read_writes_by_max, float, RW);
SET(weighed_indvars_by_max, float, IndVarUpdates);
SET(hint_weights_by_max, float, HintWeights);
SET(start_bb_freq_by_max, float, StartBBFreq);
SET(end_bb_freq_by_max, float, EndBBFreq);
SET(hottest_bb_freq_by_max, float, HottestBlockFreq);
SET(liverange_size, float, Size);
SET(use_def_density, float, TotalWeight);
SET(max_stage, int64_t, MaxStage);
SET(min_stage, int64_t, MinStage);
#undef SET
}
// Development mode-specific implementations
#ifdef LLVM_HAVE_TF_API
RegAllocEvictionAdvisorAnalysis *llvm::createDevelopmentModeAdvisor() {
return new DevelopmentModeEvictionAdvisorAnalysis();
}
int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition(
const LiveInterval &VirtReg, const AllocationOrder &Order,
unsigned OrderLimit, uint8_t CostPerUseLimit,
const SmallVirtRegSet &FixedRegisters) const {
int64_t Ret = 0;
if (isa<ModelUnderTrainingRunner>(getRunner())) {
Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition(
VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
} else {
MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate(
VirtReg, Order, CostPerUseLimit, FixedRegisters);
// Find the index of the selected PhysReg. We need it for logging, otherwise
// this is wasted cycles (but so would starting development mode without a
// model nor logging)
if (!PhysReg)
Ret = CandidateVirtRegPos;
else
for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit);
I != E; ++I, ++Ret)
if (*I == PhysReg)
break;
}
if (TrainingLog.empty())
return Ret;
size_t CurrentFeature = 0;
for (; CurrentFeature < FeatureIDs::FeatureCount; ++CurrentFeature) {
Log->logSpecifiedTensorValue(
CurrentFeature, reinterpret_cast<const char *>(
getRunner().getTensorUntyped(CurrentFeature)));
}
if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner()))
for (size_t I = 1; I < MUTR->outputLoggedFeatureSpecs().size();
++I, ++CurrentFeature)
Log->logSpecifiedTensorValue(
CurrentFeature,
reinterpret_cast<const char *>(
MUTR->lastEvaluationResult()->getUntypedTensorValue(I)));
// The output is right after the features and the extra outputs
Log->logInt64Value(CurrentFeature, &Ret);
return Ret;
}
bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) {
if (auto *DevModeAnalysis = dyn_cast<DevelopmentModeEvictionAdvisorAnalysis>(
&getAnalysis<RegAllocEvictionAdvisorAnalysis>()))
if (auto *Log = DevModeAnalysis->getLogger(MF))
Log->logFloatFinalReward(static_cast<float>(
calculateRegAllocScore(
MF, getAnalysis<MachineBlockFrequencyInfo>(),
getAnalysis<AAResultsWrapperPass>().getAAResults())
.getScore()));
return false;
}
#endif // #ifdef LLVM_HAVE_TF_API
RegAllocEvictionAdvisorAnalysis *llvm::createReleaseModeAdvisor() {
return new ReleaseModeEvictionAdvisorAnalysis();
}
// In all cases except development mode, we don't need scoring.
#if !defined(LLVM_HAVE_TF_API)
bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; }
#endif