forked from OSchip/llvm-project
1180 lines
47 KiB
C++
1180 lines
47 KiB
C++
//===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
|
|
#define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/UniqueVector.h"
|
|
#include "llvm/CodeGen/LexicalScopes.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/TargetFrameLowering.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
|
|
#include "LiveDebugValues.h"
|
|
|
|
class TransferTracker;
|
|
|
|
// Forward dec of unit test class, so that we can peer into the LDV object.
|
|
class InstrRefLDVTest;
|
|
|
|
namespace LiveDebugValues {
|
|
|
|
class MLocTracker;
|
|
|
|
using namespace llvm;
|
|
|
|
/// Handle-class for a particular "location". This value-type uniquely
|
|
/// symbolises a register or stack location, allowing manipulation of locations
|
|
/// without concern for where that location is. Practically, this allows us to
|
|
/// treat the state of the machine at a particular point as an array of values,
|
|
/// rather than a map of values.
|
|
class LocIdx {
|
|
unsigned Location;
|
|
|
|
// Default constructor is private, initializing to an illegal location number.
|
|
// Use only for "not an entry" elements in IndexedMaps.
|
|
LocIdx() : Location(UINT_MAX) {}
|
|
|
|
public:
|
|
#define NUM_LOC_BITS 24
|
|
LocIdx(unsigned L) : Location(L) {
|
|
assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
|
|
}
|
|
|
|
static LocIdx MakeIllegalLoc() { return LocIdx(); }
|
|
static LocIdx MakeTombstoneLoc() {
|
|
LocIdx L = LocIdx();
|
|
--L.Location;
|
|
return L;
|
|
}
|
|
|
|
bool isIllegal() const { return Location == UINT_MAX; }
|
|
|
|
uint64_t asU64() const { return Location; }
|
|
|
|
bool operator==(unsigned L) const { return Location == L; }
|
|
|
|
bool operator==(const LocIdx &L) const { return Location == L.Location; }
|
|
|
|
bool operator!=(unsigned L) const { return !(*this == L); }
|
|
|
|
bool operator!=(const LocIdx &L) const { return !(*this == L); }
|
|
|
|
bool operator<(const LocIdx &Other) const {
|
|
return Location < Other.Location;
|
|
}
|
|
};
|
|
|
|
// The location at which a spilled value resides. It consists of a register and
|
|
// an offset.
|
|
struct SpillLoc {
|
|
unsigned SpillBase;
|
|
StackOffset SpillOffset;
|
|
bool operator==(const SpillLoc &Other) const {
|
|
return std::make_pair(SpillBase, SpillOffset) ==
|
|
std::make_pair(Other.SpillBase, Other.SpillOffset);
|
|
}
|
|
bool operator<(const SpillLoc &Other) const {
|
|
return std::make_tuple(SpillBase, SpillOffset.getFixed(),
|
|
SpillOffset.getScalable()) <
|
|
std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
|
|
Other.SpillOffset.getScalable());
|
|
}
|
|
};
|
|
|
|
/// Unique identifier for a value defined by an instruction, as a value type.
|
|
/// Casts back and forth to a uint64_t. Probably replacable with something less
|
|
/// bit-constrained. Each value identifies the instruction and machine location
|
|
/// where the value is defined, although there may be no corresponding machine
|
|
/// operand for it (ex: regmasks clobbering values). The instructions are
|
|
/// one-based, and definitions that are PHIs have instruction number zero.
|
|
///
|
|
/// The obvious limits of a 1M block function or 1M instruction blocks are
|
|
/// problematic; but by that point we should probably have bailed out of
|
|
/// trying to analyse the function.
|
|
class ValueIDNum {
|
|
union {
|
|
struct {
|
|
uint64_t BlockNo : 20; /// The block where the def happens.
|
|
uint64_t InstNo : 20; /// The Instruction where the def happens.
|
|
/// One based, is distance from start of block.
|
|
uint64_t LocNo
|
|
: NUM_LOC_BITS; /// The machine location where the def happens.
|
|
} s;
|
|
uint64_t Value;
|
|
} u;
|
|
|
|
static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?");
|
|
|
|
public:
|
|
// Default-initialize to EmptyValue. This is necessary to make IndexedMaps
|
|
// of values to work.
|
|
ValueIDNum() { u.Value = EmptyValue.asU64(); }
|
|
|
|
ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) {
|
|
u.s = {Block, Inst, Loc};
|
|
}
|
|
|
|
ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) {
|
|
u.s = {Block, Inst, Loc.asU64()};
|
|
}
|
|
|
|
uint64_t getBlock() const { return u.s.BlockNo; }
|
|
uint64_t getInst() const { return u.s.InstNo; }
|
|
uint64_t getLoc() const { return u.s.LocNo; }
|
|
bool isPHI() const { return u.s.InstNo == 0; }
|
|
|
|
uint64_t asU64() const { return u.Value; }
|
|
|
|
static ValueIDNum fromU64(uint64_t v) {
|
|
ValueIDNum Val;
|
|
Val.u.Value = v;
|
|
return Val;
|
|
}
|
|
|
|
bool operator<(const ValueIDNum &Other) const {
|
|
return asU64() < Other.asU64();
|
|
}
|
|
|
|
bool operator==(const ValueIDNum &Other) const {
|
|
return u.Value == Other.u.Value;
|
|
}
|
|
|
|
bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
|
|
|
|
std::string asString(const std::string &mlocname) const {
|
|
return Twine("Value{bb: ")
|
|
.concat(Twine(u.s.BlockNo)
|
|
.concat(Twine(", inst: ")
|
|
.concat((u.s.InstNo ? Twine(u.s.InstNo)
|
|
: Twine("live-in"))
|
|
.concat(Twine(", loc: ").concat(
|
|
Twine(mlocname)))
|
|
.concat(Twine("}")))))
|
|
.str();
|
|
}
|
|
|
|
static ValueIDNum EmptyValue;
|
|
static ValueIDNum TombstoneValue;
|
|
};
|
|
|
|
/// Type for a table of values in a block.
|
|
using ValueTable = std::unique_ptr<ValueIDNum[]>;
|
|
|
|
/// Type for a table-of-table-of-values, i.e., the collection of either
|
|
/// live-in or live-out values for each block in the function.
|
|
using FuncValueTable = std::unique_ptr<ValueTable[]>;
|
|
|
|
/// Thin wrapper around an integer -- designed to give more type safety to
|
|
/// spill location numbers.
|
|
class SpillLocationNo {
|
|
public:
|
|
explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {}
|
|
unsigned SpillNo;
|
|
unsigned id() const { return SpillNo; }
|
|
|
|
bool operator<(const SpillLocationNo &Other) const {
|
|
return SpillNo < Other.SpillNo;
|
|
}
|
|
|
|
bool operator==(const SpillLocationNo &Other) const {
|
|
return SpillNo == Other.SpillNo;
|
|
}
|
|
bool operator!=(const SpillLocationNo &Other) const {
|
|
return !(*this == Other);
|
|
}
|
|
};
|
|
|
|
/// Meta qualifiers for a value. Pair of whatever expression is used to qualify
|
|
/// the the value, and Boolean of whether or not it's indirect.
|
|
class DbgValueProperties {
|
|
public:
|
|
DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
|
|
: DIExpr(DIExpr), Indirect(Indirect) {}
|
|
|
|
/// Extract properties from an existing DBG_VALUE instruction.
|
|
DbgValueProperties(const MachineInstr &MI) {
|
|
assert(MI.isDebugValue());
|
|
DIExpr = MI.getDebugExpression();
|
|
Indirect = MI.getOperand(1).isImm();
|
|
}
|
|
|
|
bool operator==(const DbgValueProperties &Other) const {
|
|
return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
|
|
}
|
|
|
|
bool operator!=(const DbgValueProperties &Other) const {
|
|
return !(*this == Other);
|
|
}
|
|
|
|
const DIExpression *DIExpr;
|
|
bool Indirect;
|
|
};
|
|
|
|
/// Class recording the (high level) _value_ of a variable. Identifies either
|
|
/// the value of the variable as a ValueIDNum, or a constant MachineOperand.
|
|
/// This class also stores meta-information about how the value is qualified.
|
|
/// Used to reason about variable values when performing the second
|
|
/// (DebugVariable specific) dataflow analysis.
|
|
class DbgValue {
|
|
public:
|
|
/// If Kind is Def, the value number that this value is based on. VPHIs set
|
|
/// this field to EmptyValue if there is no machine-value for this VPHI, or
|
|
/// the corresponding machine-value if there is one.
|
|
ValueIDNum ID;
|
|
/// If Kind is Const, the MachineOperand defining this value.
|
|
Optional<MachineOperand> MO;
|
|
/// For a NoVal or VPHI DbgValue, which block it was generated in.
|
|
int BlockNo;
|
|
|
|
/// Qualifiers for the ValueIDNum above.
|
|
DbgValueProperties Properties;
|
|
|
|
typedef enum {
|
|
Undef, // Represents a DBG_VALUE $noreg in the transfer function only.
|
|
Def, // This value is defined by an inst, or is a PHI value.
|
|
Const, // A constant value contained in the MachineOperand field.
|
|
VPHI, // Incoming values to BlockNo differ, those values must be joined by
|
|
// a PHI in this block.
|
|
NoVal, // Empty DbgValue indicating an unknown value. Used as initializer,
|
|
// before dominating blocks values are propagated in.
|
|
} KindT;
|
|
/// Discriminator for whether this is a constant or an in-program value.
|
|
KindT Kind;
|
|
|
|
DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
|
|
: ID(Val), MO(None), BlockNo(0), Properties(Prop), Kind(Kind) {
|
|
assert(Kind == Def);
|
|
}
|
|
|
|
DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
|
|
: ID(ValueIDNum::EmptyValue), MO(None), BlockNo(BlockNo),
|
|
Properties(Prop), Kind(Kind) {
|
|
assert(Kind == NoVal || Kind == VPHI);
|
|
}
|
|
|
|
DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
|
|
: ID(ValueIDNum::EmptyValue), MO(MO), BlockNo(0), Properties(Prop),
|
|
Kind(Kind) {
|
|
assert(Kind == Const);
|
|
}
|
|
|
|
DbgValue(const DbgValueProperties &Prop, KindT Kind)
|
|
: ID(ValueIDNum::EmptyValue), MO(None), BlockNo(0), Properties(Prop),
|
|
Kind(Kind) {
|
|
assert(Kind == Undef &&
|
|
"Empty DbgValue constructor must pass in Undef kind");
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void dump(const MLocTracker *MTrack) const;
|
|
#endif
|
|
|
|
bool operator==(const DbgValue &Other) const {
|
|
if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
|
|
return false;
|
|
else if (Kind == Def && ID != Other.ID)
|
|
return false;
|
|
else if (Kind == NoVal && BlockNo != Other.BlockNo)
|
|
return false;
|
|
else if (Kind == Const)
|
|
return MO->isIdenticalTo(*Other.MO);
|
|
else if (Kind == VPHI && BlockNo != Other.BlockNo)
|
|
return false;
|
|
else if (Kind == VPHI && ID != Other.ID)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
|
|
};
|
|
|
|
class LocIdxToIndexFunctor {
|
|
public:
|
|
using argument_type = LocIdx;
|
|
unsigned operator()(const LocIdx &L) const { return L.asU64(); }
|
|
};
|
|
|
|
/// Tracker for what values are in machine locations. Listens to the Things
|
|
/// being Done by various instructions, and maintains a table of what machine
|
|
/// locations have what values (as defined by a ValueIDNum).
|
|
///
|
|
/// There are potentially a much larger number of machine locations on the
|
|
/// target machine than the actual working-set size of the function. On x86 for
|
|
/// example, we're extremely unlikely to want to track values through control
|
|
/// or debug registers. To avoid doing so, MLocTracker has several layers of
|
|
/// indirection going on, described below, to avoid unnecessarily tracking
|
|
/// any location.
|
|
///
|
|
/// Here's a sort of diagram of the indexes, read from the bottom up:
|
|
///
|
|
/// Size on stack Offset on stack
|
|
/// \ /
|
|
/// Stack Idx (Where in slot is this?)
|
|
/// /
|
|
/// /
|
|
/// Slot Num (%stack.0) /
|
|
/// FrameIdx => SpillNum /
|
|
/// \ /
|
|
/// SpillID (int) Register number (int)
|
|
/// \ /
|
|
/// LocationID => LocIdx
|
|
/// |
|
|
/// LocIdx => ValueIDNum
|
|
///
|
|
/// The aim here is that the LocIdx => ValueIDNum vector is just an array of
|
|
/// values in numbered locations, so that later analyses can ignore whether the
|
|
/// location is a register or otherwise. To map a register / spill location to
|
|
/// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to
|
|
/// build a LocationID for a stack slot, you need to combine identifiers for
|
|
/// which stack slot it is and where within that slot is being described.
|
|
///
|
|
/// Register mask operands cause trouble by technically defining every register;
|
|
/// various hacks are used to avoid tracking registers that are never read and
|
|
/// only written by regmasks.
|
|
class MLocTracker {
|
|
public:
|
|
MachineFunction &MF;
|
|
const TargetInstrInfo &TII;
|
|
const TargetRegisterInfo &TRI;
|
|
const TargetLowering &TLI;
|
|
|
|
/// IndexedMap type, mapping from LocIdx to ValueIDNum.
|
|
using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
|
|
|
|
/// Map of LocIdxes to the ValueIDNums that they store. This is tightly
|
|
/// packed, entries only exist for locations that are being tracked.
|
|
LocToValueType LocIdxToIDNum;
|
|
|
|
/// "Map" of machine location IDs (i.e., raw register or spill number) to the
|
|
/// LocIdx key / number for that location. There are always at least as many
|
|
/// as the number of registers on the target -- if the value in the register
|
|
/// is not being tracked, then the LocIdx value will be zero. New entries are
|
|
/// appended if a new spill slot begins being tracked.
|
|
/// This, and the corresponding reverse map persist for the analysis of the
|
|
/// whole function, and is necessarying for decoding various vectors of
|
|
/// values.
|
|
std::vector<LocIdx> LocIDToLocIdx;
|
|
|
|
/// Inverse map of LocIDToLocIdx.
|
|
IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
|
|
|
|
/// When clobbering register masks, we chose to not believe the machine model
|
|
/// and don't clobber SP. Do the same for SP aliases, and for efficiency,
|
|
/// keep a set of them here.
|
|
SmallSet<Register, 8> SPAliases;
|
|
|
|
/// Unique-ification of spill. Used to number them -- their LocID number is
|
|
/// the index in SpillLocs minus one plus NumRegs.
|
|
UniqueVector<SpillLoc> SpillLocs;
|
|
|
|
// If we discover a new machine location, assign it an mphi with this
|
|
// block number.
|
|
unsigned CurBB;
|
|
|
|
/// Cached local copy of the number of registers the target has.
|
|
unsigned NumRegs;
|
|
|
|
/// Number of slot indexes the target has -- distinct segments of a stack
|
|
/// slot that can take on the value of a subregister, when a super-register
|
|
/// is written to the stack.
|
|
unsigned NumSlotIdxes;
|
|
|
|
/// Collection of register mask operands that have been observed. Second part
|
|
/// of pair indicates the instruction that they happened in. Used to
|
|
/// reconstruct where defs happened if we start tracking a location later
|
|
/// on.
|
|
SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
|
|
|
|
/// Pair for describing a position within a stack slot -- first the size in
|
|
/// bits, then the offset.
|
|
typedef std::pair<unsigned short, unsigned short> StackSlotPos;
|
|
|
|
/// Map from a size/offset pair describing a position in a stack slot, to a
|
|
/// numeric identifier for that position. Allows easier identification of
|
|
/// individual positions.
|
|
DenseMap<StackSlotPos, unsigned> StackSlotIdxes;
|
|
|
|
/// Inverse of StackSlotIdxes.
|
|
DenseMap<unsigned, StackSlotPos> StackIdxesToPos;
|
|
|
|
/// Iterator for locations and the values they contain. Dereferencing
|
|
/// produces a struct/pair containing the LocIdx key for this location,
|
|
/// and a reference to the value currently stored. Simplifies the process
|
|
/// of seeking a particular location.
|
|
class MLocIterator {
|
|
LocToValueType &ValueMap;
|
|
LocIdx Idx;
|
|
|
|
public:
|
|
class value_type {
|
|
public:
|
|
value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {}
|
|
const LocIdx Idx; /// Read-only index of this location.
|
|
ValueIDNum &Value; /// Reference to the stored value at this location.
|
|
};
|
|
|
|
MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
|
|
: ValueMap(ValueMap), Idx(Idx) {}
|
|
|
|
bool operator==(const MLocIterator &Other) const {
|
|
assert(&ValueMap == &Other.ValueMap);
|
|
return Idx == Other.Idx;
|
|
}
|
|
|
|
bool operator!=(const MLocIterator &Other) const {
|
|
return !(*this == Other);
|
|
}
|
|
|
|
void operator++() { Idx = LocIdx(Idx.asU64() + 1); }
|
|
|
|
value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); }
|
|
};
|
|
|
|
MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
|
|
const TargetRegisterInfo &TRI, const TargetLowering &TLI);
|
|
|
|
/// Produce location ID number for a Register. Provides some small amount of
|
|
/// type safety.
|
|
/// \param Reg The register we're looking up.
|
|
unsigned getLocID(Register Reg) { return Reg.id(); }
|
|
|
|
/// Produce location ID number for a spill position.
|
|
/// \param Spill The number of the spill we're fetching the location for.
|
|
/// \param SpillSubReg Subregister within the spill we're addressing.
|
|
unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) {
|
|
unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg);
|
|
unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg);
|
|
return getLocID(Spill, {Size, Offs});
|
|
}
|
|
|
|
/// Produce location ID number for a spill position.
|
|
/// \param Spill The number of the spill we're fetching the location for.
|
|
/// \apram SpillIdx size/offset within the spill slot to be addressed.
|
|
unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) {
|
|
unsigned SlotNo = Spill.id() - 1;
|
|
SlotNo *= NumSlotIdxes;
|
|
assert(StackSlotIdxes.find(Idx) != StackSlotIdxes.end());
|
|
SlotNo += StackSlotIdxes[Idx];
|
|
SlotNo += NumRegs;
|
|
return SlotNo;
|
|
}
|
|
|
|
/// Given a spill number, and a slot within the spill, calculate the ID number
|
|
/// for that location.
|
|
unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) {
|
|
unsigned SlotNo = Spill.id() - 1;
|
|
SlotNo *= NumSlotIdxes;
|
|
SlotNo += Idx;
|
|
SlotNo += NumRegs;
|
|
return SlotNo;
|
|
}
|
|
|
|
/// Return the spill number that a location ID corresponds to.
|
|
SpillLocationNo locIDToSpill(unsigned ID) const {
|
|
assert(ID >= NumRegs);
|
|
ID -= NumRegs;
|
|
// Truncate away the index part, leaving only the spill number.
|
|
ID /= NumSlotIdxes;
|
|
return SpillLocationNo(ID + 1); // The UniqueVector is one-based.
|
|
}
|
|
|
|
/// Returns the spill-slot size/offs that a location ID corresponds to.
|
|
StackSlotPos locIDToSpillIdx(unsigned ID) const {
|
|
assert(ID >= NumRegs);
|
|
ID -= NumRegs;
|
|
unsigned Idx = ID % NumSlotIdxes;
|
|
return StackIdxesToPos.find(Idx)->second;
|
|
}
|
|
|
|
unsigned getNumLocs() const { return LocIdxToIDNum.size(); }
|
|
|
|
/// Reset all locations to contain a PHI value at the designated block. Used
|
|
/// sometimes for actual PHI values, othertimes to indicate the block entry
|
|
/// value (before any more information is known).
|
|
void setMPhis(unsigned NewCurBB) {
|
|
CurBB = NewCurBB;
|
|
for (auto Location : locations())
|
|
Location.Value = {CurBB, 0, Location.Idx};
|
|
}
|
|
|
|
/// Load values for each location from array of ValueIDNums. Take current
|
|
/// bbnum just in case we read a value from a hitherto untouched register.
|
|
void loadFromArray(ValueTable &Locs, unsigned NewCurBB) {
|
|
CurBB = NewCurBB;
|
|
// Iterate over all tracked locations, and load each locations live-in
|
|
// value into our local index.
|
|
for (auto Location : locations())
|
|
Location.Value = Locs[Location.Idx.asU64()];
|
|
}
|
|
|
|
/// Wipe any un-necessary location records after traversing a block.
|
|
void reset() {
|
|
// We could reset all the location values too; however either loadFromArray
|
|
// or setMPhis should be called before this object is re-used. Just
|
|
// clear Masks, they're definitely not needed.
|
|
Masks.clear();
|
|
}
|
|
|
|
/// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
|
|
/// the information in this pass uninterpretable.
|
|
void clear() {
|
|
reset();
|
|
LocIDToLocIdx.clear();
|
|
LocIdxToLocID.clear();
|
|
LocIdxToIDNum.clear();
|
|
// SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from
|
|
// 0
|
|
SpillLocs = decltype(SpillLocs)();
|
|
StackSlotIdxes.clear();
|
|
StackIdxesToPos.clear();
|
|
|
|
LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
|
|
}
|
|
|
|
/// Set a locaiton to a certain value.
|
|
void setMLoc(LocIdx L, ValueIDNum Num) {
|
|
assert(L.asU64() < LocIdxToIDNum.size());
|
|
LocIdxToIDNum[L] = Num;
|
|
}
|
|
|
|
/// Read the value of a particular location
|
|
ValueIDNum readMLoc(LocIdx L) {
|
|
assert(L.asU64() < LocIdxToIDNum.size());
|
|
return LocIdxToIDNum[L];
|
|
}
|
|
|
|
/// Create a LocIdx for an untracked register ID. Initialize it to either an
|
|
/// mphi value representing a live-in, or a recent register mask clobber.
|
|
LocIdx trackRegister(unsigned ID);
|
|
|
|
LocIdx lookupOrTrackRegister(unsigned ID) {
|
|
LocIdx &Index = LocIDToLocIdx[ID];
|
|
if (Index.isIllegal())
|
|
Index = trackRegister(ID);
|
|
return Index;
|
|
}
|
|
|
|
/// Is register R currently tracked by MLocTracker?
|
|
bool isRegisterTracked(Register R) {
|
|
LocIdx &Index = LocIDToLocIdx[R];
|
|
return !Index.isIllegal();
|
|
}
|
|
|
|
/// Record a definition of the specified register at the given block / inst.
|
|
/// This doesn't take a ValueIDNum, because the definition and its location
|
|
/// are synonymous.
|
|
void defReg(Register R, unsigned BB, unsigned Inst) {
|
|
unsigned ID = getLocID(R);
|
|
LocIdx Idx = lookupOrTrackRegister(ID);
|
|
ValueIDNum ValueID = {BB, Inst, Idx};
|
|
LocIdxToIDNum[Idx] = ValueID;
|
|
}
|
|
|
|
/// Set a register to a value number. To be used if the value number is
|
|
/// known in advance.
|
|
void setReg(Register R, ValueIDNum ValueID) {
|
|
unsigned ID = getLocID(R);
|
|
LocIdx Idx = lookupOrTrackRegister(ID);
|
|
LocIdxToIDNum[Idx] = ValueID;
|
|
}
|
|
|
|
ValueIDNum readReg(Register R) {
|
|
unsigned ID = getLocID(R);
|
|
LocIdx Idx = lookupOrTrackRegister(ID);
|
|
return LocIdxToIDNum[Idx];
|
|
}
|
|
|
|
/// Reset a register value to zero / empty. Needed to replicate the
|
|
/// VarLoc implementation where a copy to/from a register effectively
|
|
/// clears the contents of the source register. (Values can only have one
|
|
/// machine location in VarLocBasedImpl).
|
|
void wipeRegister(Register R) {
|
|
unsigned ID = getLocID(R);
|
|
LocIdx Idx = LocIDToLocIdx[ID];
|
|
LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
|
|
}
|
|
|
|
/// Determine the LocIdx of an existing register.
|
|
LocIdx getRegMLoc(Register R) {
|
|
unsigned ID = getLocID(R);
|
|
assert(ID < LocIDToLocIdx.size());
|
|
assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinal for IndexedMap.
|
|
return LocIDToLocIdx[ID];
|
|
}
|
|
|
|
/// Record a RegMask operand being executed. Defs any register we currently
|
|
/// track, stores a pointer to the mask in case we have to account for it
|
|
/// later.
|
|
void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID);
|
|
|
|
/// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
|
|
/// Returns None when in scenarios where a spill slot could be tracked, but
|
|
/// we would likely run into resource limitations.
|
|
Optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L);
|
|
|
|
// Get LocIdx of a spill ID.
|
|
LocIdx getSpillMLoc(unsigned SpillID) {
|
|
assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinal for IndexedMap.
|
|
return LocIDToLocIdx[SpillID];
|
|
}
|
|
|
|
/// Return true if Idx is a spill machine location.
|
|
bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; }
|
|
|
|
MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); }
|
|
|
|
MLocIterator end() {
|
|
return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
|
|
}
|
|
|
|
/// Return a range over all locations currently tracked.
|
|
iterator_range<MLocIterator> locations() {
|
|
return llvm::make_range(begin(), end());
|
|
}
|
|
|
|
std::string LocIdxToName(LocIdx Idx) const;
|
|
|
|
std::string IDAsString(const ValueIDNum &Num) const;
|
|
|
|
#ifndef NDEBUG
|
|
LLVM_DUMP_METHOD void dump();
|
|
|
|
LLVM_DUMP_METHOD void dump_mloc_map();
|
|
#endif
|
|
|
|
/// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the
|
|
/// information in \pProperties, for variable Var. Don't insert it anywhere,
|
|
/// just return the builder for it.
|
|
MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
|
|
const DbgValueProperties &Properties);
|
|
};
|
|
|
|
/// Types for recording sets of variable fragments that overlap. For a given
|
|
/// local variable, we record all other fragments of that variable that could
|
|
/// overlap it, to reduce search time.
|
|
using FragmentOfVar =
|
|
std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
|
|
using OverlapMap =
|
|
DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
|
|
|
|
/// Collection of DBG_VALUEs observed when traversing a block. Records each
|
|
/// variable and the value the DBG_VALUE refers to. Requires the machine value
|
|
/// location dataflow algorithm to have run already, so that values can be
|
|
/// identified.
|
|
class VLocTracker {
|
|
public:
|
|
/// Map DebugVariable to the latest Value it's defined to have.
|
|
/// Needs to be a MapVector because we determine order-in-the-input-MIR from
|
|
/// the order in this container.
|
|
/// We only retain the last DbgValue in each block for each variable, to
|
|
/// determine the blocks live-out variable value. The Vars container forms the
|
|
/// transfer function for this block, as part of the dataflow analysis. The
|
|
/// movement of values between locations inside of a block is handled at a
|
|
/// much later stage, in the TransferTracker class.
|
|
MapVector<DebugVariable, DbgValue> Vars;
|
|
SmallDenseMap<DebugVariable, const DILocation *, 8> Scopes;
|
|
MachineBasicBlock *MBB = nullptr;
|
|
const OverlapMap &OverlappingFragments;
|
|
DbgValueProperties EmptyProperties;
|
|
|
|
public:
|
|
VLocTracker(const OverlapMap &O, const DIExpression *EmptyExpr)
|
|
: OverlappingFragments(O), EmptyProperties(EmptyExpr, false) {}
|
|
|
|
void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
|
|
Optional<ValueIDNum> ID) {
|
|
assert(MI.isDebugValue() || MI.isDebugRef());
|
|
DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
|
|
MI.getDebugLoc()->getInlinedAt());
|
|
DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
|
|
: DbgValue(Properties, DbgValue::Undef);
|
|
|
|
// Attempt insertion; overwrite if it's already mapped.
|
|
auto Result = Vars.insert(std::make_pair(Var, Rec));
|
|
if (!Result.second)
|
|
Result.first->second = Rec;
|
|
Scopes[Var] = MI.getDebugLoc().get();
|
|
|
|
considerOverlaps(Var, MI.getDebugLoc().get());
|
|
}
|
|
|
|
void defVar(const MachineInstr &MI, const MachineOperand &MO) {
|
|
// Only DBG_VALUEs can define constant-valued variables.
|
|
assert(MI.isDebugValue());
|
|
DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
|
|
MI.getDebugLoc()->getInlinedAt());
|
|
DbgValueProperties Properties(MI);
|
|
DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);
|
|
|
|
// Attempt insertion; overwrite if it's already mapped.
|
|
auto Result = Vars.insert(std::make_pair(Var, Rec));
|
|
if (!Result.second)
|
|
Result.first->second = Rec;
|
|
Scopes[Var] = MI.getDebugLoc().get();
|
|
|
|
considerOverlaps(Var, MI.getDebugLoc().get());
|
|
}
|
|
|
|
void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) {
|
|
auto Overlaps = OverlappingFragments.find(
|
|
{Var.getVariable(), Var.getFragmentOrDefault()});
|
|
if (Overlaps == OverlappingFragments.end())
|
|
return;
|
|
|
|
// Otherwise: terminate any overlapped variable locations.
|
|
for (auto FragmentInfo : Overlaps->second) {
|
|
// The "empty" fragment is stored as DebugVariable::DefaultFragment, so
|
|
// that it overlaps with everything, however its cannonical representation
|
|
// in a DebugVariable is as "None".
|
|
Optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo;
|
|
if (DebugVariable::isDefaultFragment(FragmentInfo))
|
|
OptFragmentInfo = None;
|
|
|
|
DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo,
|
|
Var.getInlinedAt());
|
|
DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef);
|
|
|
|
// Attempt insertion; overwrite if it's already mapped.
|
|
auto Result = Vars.insert(std::make_pair(Overlapped, Rec));
|
|
if (!Result.second)
|
|
Result.first->second = Rec;
|
|
Scopes[Overlapped] = Loc;
|
|
}
|
|
}
|
|
|
|
void clear() {
|
|
Vars.clear();
|
|
Scopes.clear();
|
|
}
|
|
};
|
|
|
|
// XXX XXX docs
|
|
class InstrRefBasedLDV : public LDVImpl {
|
|
public:
|
|
friend class ::InstrRefLDVTest;
|
|
|
|
using FragmentInfo = DIExpression::FragmentInfo;
|
|
using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
|
|
|
|
// Helper while building OverlapMap, a map of all fragments seen for a given
|
|
// DILocalVariable.
|
|
using VarToFragments =
|
|
DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
|
|
|
|
/// Machine location/value transfer function, a mapping of which locations
|
|
/// are assigned which new values.
|
|
using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>;
|
|
|
|
/// Live in/out structure for the variable values: a per-block map of
|
|
/// variables to their values.
|
|
using LiveIdxT = DenseMap<const MachineBasicBlock *, DbgValue *>;
|
|
|
|
using VarAndLoc = std::pair<DebugVariable, DbgValue>;
|
|
|
|
/// Type for a live-in value: the predecessor block, and its value.
|
|
using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
|
|
|
|
/// Vector (per block) of a collection (inner smallvector) of live-ins.
|
|
/// Used as the result type for the variable value dataflow problem.
|
|
using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
|
|
|
|
/// Mapping from lexical scopes to a DILocation in that scope.
|
|
using ScopeToDILocT = DenseMap<const LexicalScope *, const DILocation *>;
|
|
|
|
/// Mapping from lexical scopes to variables in that scope.
|
|
using ScopeToVarsT = DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>>;
|
|
|
|
/// Mapping from lexical scopes to blocks where variables in that scope are
|
|
/// assigned. Such blocks aren't necessarily "in" the lexical scope, it's
|
|
/// just a block where an assignment happens.
|
|
using ScopeToAssignBlocksT = DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>;
|
|
|
|
private:
|
|
MachineDominatorTree *DomTree;
|
|
const TargetRegisterInfo *TRI;
|
|
const MachineRegisterInfo *MRI;
|
|
const TargetInstrInfo *TII;
|
|
const TargetFrameLowering *TFI;
|
|
const MachineFrameInfo *MFI;
|
|
BitVector CalleeSavedRegs;
|
|
LexicalScopes LS;
|
|
TargetPassConfig *TPC;
|
|
|
|
// An empty DIExpression. Used default / placeholder DbgValueProperties
|
|
// objects, as we can't have null expressions.
|
|
const DIExpression *EmptyExpr;
|
|
|
|
/// Object to track machine locations as we step through a block. Could
|
|
/// probably be a field rather than a pointer, as it's always used.
|
|
MLocTracker *MTracker = nullptr;
|
|
|
|
/// Number of the current block LiveDebugValues is stepping through.
|
|
unsigned CurBB;
|
|
|
|
/// Number of the current instruction LiveDebugValues is evaluating.
|
|
unsigned CurInst;
|
|
|
|
/// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
|
|
/// steps through a block. Reads the values at each location from the
|
|
/// MLocTracker object.
|
|
VLocTracker *VTracker = nullptr;
|
|
|
|
/// Tracker for transfers, listens to DBG_VALUEs and transfers of values
|
|
/// between locations during stepping, creates new DBG_VALUEs when values move
|
|
/// location.
|
|
TransferTracker *TTracker = nullptr;
|
|
|
|
/// Blocks which are artificial, i.e. blocks which exclusively contain
|
|
/// instructions without DebugLocs, or with line 0 locations.
|
|
SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks;
|
|
|
|
// Mapping of blocks to and from their RPOT order.
|
|
DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
|
|
DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder;
|
|
DenseMap<unsigned, unsigned> BBNumToRPO;
|
|
|
|
/// Pair of MachineInstr, and its 1-based offset into the containing block.
|
|
using InstAndNum = std::pair<const MachineInstr *, unsigned>;
|
|
/// Map from debug instruction number to the MachineInstr labelled with that
|
|
/// number, and its location within the function. Used to transform
|
|
/// instruction numbers in DBG_INSTR_REFs into machine value numbers.
|
|
std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
|
|
|
|
/// Record of where we observed a DBG_PHI instruction.
|
|
class DebugPHIRecord {
|
|
public:
|
|
/// Instruction number of this DBG_PHI.
|
|
uint64_t InstrNum;
|
|
/// Block where DBG_PHI occurred.
|
|
MachineBasicBlock *MBB;
|
|
/// The value number read by the DBG_PHI -- or None if it didn't refer to
|
|
/// a value.
|
|
Optional<ValueIDNum> ValueRead;
|
|
/// Register/Stack location the DBG_PHI reads -- or None if it referred to
|
|
/// something unexpected.
|
|
Optional<LocIdx> ReadLoc;
|
|
|
|
operator unsigned() const { return InstrNum; }
|
|
};
|
|
|
|
/// Map from instruction numbers defined by DBG_PHIs to a record of what that
|
|
/// DBG_PHI read and where. Populated and edited during the machine value
|
|
/// location problem -- we use LLVMs SSA Updater to fix changes by
|
|
/// optimizations that destroy PHI instructions.
|
|
SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
|
|
|
|
// Map of overlapping variable fragments.
|
|
OverlapMap OverlapFragments;
|
|
VarToFragments SeenFragments;
|
|
|
|
/// Mapping of DBG_INSTR_REF instructions to their values, for those
|
|
/// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve
|
|
/// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches
|
|
/// the result.
|
|
DenseMap<MachineInstr *, Optional<ValueIDNum>> SeenDbgPHIs;
|
|
|
|
/// True if we need to examine call instructions for stack clobbers. We
|
|
/// normally assume that they don't clobber SP, but stack probes on Windows
|
|
/// do.
|
|
bool AdjustsStackInCalls = false;
|
|
|
|
/// If AdjustsStackInCalls is true, this holds the name of the target's stack
|
|
/// probe function, which is the function we expect will alter the stack
|
|
/// pointer.
|
|
StringRef StackProbeSymbolName;
|
|
|
|
/// Tests whether this instruction is a spill to a stack slot.
|
|
Optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI,
|
|
MachineFunction *MF);
|
|
|
|
/// Decide if @MI is a spill instruction and return true if it is. We use 2
|
|
/// criteria to make this decision:
|
|
/// - Is this instruction a store to a spill slot?
|
|
/// - Is there a register operand that is both used and killed?
|
|
/// TODO: Store optimization can fold spills into other stores (including
|
|
/// other spills). We do not handle this yet (more than one memory operand).
|
|
bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
|
|
unsigned &Reg);
|
|
|
|
/// If a given instruction is identified as a spill, return the spill slot
|
|
/// and set \p Reg to the spilled register.
|
|
Optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI,
|
|
MachineFunction *MF, unsigned &Reg);
|
|
|
|
/// Given a spill instruction, extract the spill slot information, ensure it's
|
|
/// tracked, and return the spill number.
|
|
Optional<SpillLocationNo>
|
|
extractSpillBaseRegAndOffset(const MachineInstr &MI);
|
|
|
|
/// Observe a single instruction while stepping through a block.
|
|
void process(MachineInstr &MI, const ValueTable *MLiveOuts,
|
|
const ValueTable *MLiveIns);
|
|
|
|
/// Examines whether \p MI is a DBG_VALUE and notifies trackers.
|
|
/// \returns true if MI was recognized and processed.
|
|
bool transferDebugValue(const MachineInstr &MI);
|
|
|
|
/// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
|
|
/// \returns true if MI was recognized and processed.
|
|
bool transferDebugInstrRef(MachineInstr &MI, const ValueTable *MLiveOuts,
|
|
const ValueTable *MLiveIns);
|
|
|
|
/// Stores value-information about where this PHI occurred, and what
|
|
/// instruction number is associated with it.
|
|
/// \returns true if MI was recognized and processed.
|
|
bool transferDebugPHI(MachineInstr &MI);
|
|
|
|
/// Examines whether \p MI is copy instruction, and notifies trackers.
|
|
/// \returns true if MI was recognized and processed.
|
|
bool transferRegisterCopy(MachineInstr &MI);
|
|
|
|
/// Examines whether \p MI is stack spill or restore instruction, and
|
|
/// notifies trackers. \returns true if MI was recognized and processed.
|
|
bool transferSpillOrRestoreInst(MachineInstr &MI);
|
|
|
|
/// Examines \p MI for any registers that it defines, and notifies trackers.
|
|
void transferRegisterDef(MachineInstr &MI);
|
|
|
|
/// Copy one location to the other, accounting for movement of subregisters
|
|
/// too.
|
|
void performCopy(Register Src, Register Dst);
|
|
|
|
void accumulateFragmentMap(MachineInstr &MI);
|
|
|
|
/// Determine the machine value number referred to by (potentially several)
|
|
/// DBG_PHI instructions. Block duplication and tail folding can duplicate
|
|
/// DBG_PHIs, shifting the position where values in registers merge, and
|
|
/// forming another mini-ssa problem to solve.
|
|
/// \p Here the position of a DBG_INSTR_REF seeking a machine value number
|
|
/// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
|
|
/// \returns The machine value number at position Here, or None.
|
|
Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
|
|
const ValueTable *MLiveOuts,
|
|
const ValueTable *MLiveIns,
|
|
MachineInstr &Here, uint64_t InstrNum);
|
|
|
|
Optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF,
|
|
const ValueTable *MLiveOuts,
|
|
const ValueTable *MLiveIns,
|
|
MachineInstr &Here,
|
|
uint64_t InstrNum);
|
|
|
|
/// Step through the function, recording register definitions and movements
|
|
/// in an MLocTracker. Convert the observations into a per-block transfer
|
|
/// function in \p MLocTransfer, suitable for using with the machine value
|
|
/// location dataflow problem.
|
|
void
|
|
produceMLocTransferFunction(MachineFunction &MF,
|
|
SmallVectorImpl<MLocTransferMap> &MLocTransfer,
|
|
unsigned MaxNumBlocks);
|
|
|
|
/// Solve the machine value location dataflow problem. Takes as input the
|
|
/// transfer functions in \p MLocTransfer. Writes the output live-in and
|
|
/// live-out arrays to the (initialized to zero) multidimensional arrays in
|
|
/// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
|
|
/// number, the inner by LocIdx.
|
|
void buildMLocValueMap(MachineFunction &MF, FuncValueTable &MInLocs,
|
|
FuncValueTable &MOutLocs,
|
|
SmallVectorImpl<MLocTransferMap> &MLocTransfer);
|
|
|
|
/// Examine the stack indexes (i.e. offsets within the stack) to find the
|
|
/// basic units of interference -- like reg units, but for the stack.
|
|
void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots);
|
|
|
|
/// Install PHI values into the live-in array for each block, according to
|
|
/// the IDF of each register.
|
|
void placeMLocPHIs(MachineFunction &MF,
|
|
SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
|
|
FuncValueTable &MInLocs,
|
|
SmallVectorImpl<MLocTransferMap> &MLocTransfer);
|
|
|
|
/// Propagate variable values to blocks in the common case where there's
|
|
/// only one value assigned to the variable. This function has better
|
|
/// performance as it doesn't have to find the dominance frontier between
|
|
/// different assignments.
|
|
void placePHIsForSingleVarDefinition(
|
|
const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
|
|
MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
|
|
const DebugVariable &Var, LiveInsT &Output);
|
|
|
|
/// Calculate the iterated-dominance-frontier for a set of defs, using the
|
|
/// existing LLVM facilities for this. Works for a single "value" or
|
|
/// machine/variable location.
|
|
/// \p AllBlocks Set of blocks where we might consume the value.
|
|
/// \p DefBlocks Set of blocks where the value/location is defined.
|
|
/// \p PHIBlocks Output set of blocks where PHIs must be placed.
|
|
void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
|
|
const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
|
|
SmallVectorImpl<MachineBasicBlock *> &PHIBlocks);
|
|
|
|
/// Perform a control flow join (lattice value meet) of the values in machine
|
|
/// locations at \p MBB. Follows the algorithm described in the file-comment,
|
|
/// reading live-outs of predecessors from \p OutLocs, the current live ins
|
|
/// from \p InLocs, and assigning the newly computed live ins back into
|
|
/// \p InLocs. \returns two bools -- the first indicates whether a change
|
|
/// was made, the second whether a lattice downgrade occurred. If the latter
|
|
/// is true, revisiting this block is necessary.
|
|
bool mlocJoin(MachineBasicBlock &MBB,
|
|
SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
|
|
FuncValueTable &OutLocs, ValueTable &InLocs);
|
|
|
|
/// Produce a set of blocks that are in the current lexical scope. This means
|
|
/// those blocks that contain instructions "in" the scope, blocks where
|
|
/// assignments to variables in scope occur, and artificial blocks that are
|
|
/// successors to any of the earlier blocks. See https://llvm.org/PR48091 for
|
|
/// more commentry on what "in scope" means.
|
|
/// \p DILoc A location in the scope that we're fetching blocks for.
|
|
/// \p Output Set to put in-scope-blocks into.
|
|
/// \p AssignBlocks Blocks known to contain assignments of variables in scope.
|
|
void
|
|
getBlocksForScope(const DILocation *DILoc,
|
|
SmallPtrSetImpl<const MachineBasicBlock *> &Output,
|
|
const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks);
|
|
|
|
/// Solve the variable value dataflow problem, for a single lexical scope.
|
|
/// Uses the algorithm from the file comment to resolve control flow joins
|
|
/// using PHI placement and value propagation. Reads the locations of machine
|
|
/// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap)
|
|
/// and reads the variable values transfer function from \p AllTheVlocs.
|
|
/// Live-in and Live-out variable values are stored locally, with the live-ins
|
|
/// permanently stored to \p Output once a fixedpoint is reached.
|
|
/// \p VarsWeCareAbout contains a collection of the variables in \p Scope
|
|
/// that we should be tracking.
|
|
/// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's
|
|
/// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks
|
|
/// locations through.
|
|
void buildVLocValueMap(const DILocation *DILoc,
|
|
const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
|
|
SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
|
|
LiveInsT &Output, FuncValueTable &MOutLocs,
|
|
FuncValueTable &MInLocs,
|
|
SmallVectorImpl<VLocTracker> &AllTheVLocs);
|
|
|
|
/// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the
|
|
/// live-in values coming from predecessors live-outs, and replaces any PHIs
|
|
/// already present in this blocks live-ins with a live-through value if the
|
|
/// PHI isn't needed.
|
|
/// \p LiveIn Old live-in value, overwritten with new one if live-in changes.
|
|
/// \returns true if any live-ins change value, either from value propagation
|
|
/// or PHI elimination.
|
|
bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
|
|
SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
|
|
DbgValue &LiveIn);
|
|
|
|
/// For the given block and live-outs feeding into it, try to find a
|
|
/// machine location where all the variable values join together.
|
|
/// \returns Value ID of a machine PHI if an appropriate one is available.
|
|
Optional<ValueIDNum>
|
|
pickVPHILoc(const MachineBasicBlock &MBB, const DebugVariable &Var,
|
|
const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
|
|
const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);
|
|
|
|
/// Take collections of DBG_VALUE instructions stored in TTracker, and
|
|
/// install them into their output blocks. Preserves a stable order of
|
|
/// DBG_VALUEs produced (which would otherwise cause nondeterminism) through
|
|
/// the AllVarsNumbering order.
|
|
bool emitTransfers(DenseMap<DebugVariable, unsigned> &AllVarsNumbering);
|
|
|
|
/// Boilerplate computation of some initial sets, artifical blocks and
|
|
/// RPOT block ordering.
|
|
void initialSetup(MachineFunction &MF);
|
|
|
|
/// Produce a map of the last lexical scope that uses a block, using the
|
|
/// scopes DFSOut number. Mapping is block-number to DFSOut.
|
|
/// \p EjectionMap Pre-allocated vector in which to install the built ma.
|
|
/// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations.
|
|
/// \p AssignBlocks Map of blocks where assignments happen for a scope.
|
|
void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap,
|
|
const ScopeToDILocT &ScopeToDILocation,
|
|
ScopeToAssignBlocksT &AssignBlocks);
|
|
|
|
/// When determining per-block variable values and emitting to DBG_VALUEs,
|
|
/// this function explores by lexical scope depth. Doing so means that per
|
|
/// block information can be fully computed before exploration finishes,
|
|
/// allowing us to emit it and free data structures earlier than otherwise.
|
|
/// It's also good for locality.
|
|
bool depthFirstVLocAndEmit(
|
|
unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
|
|
const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToBlocks,
|
|
LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
|
|
SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
|
|
DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
|
|
const TargetPassConfig &TPC);
|
|
|
|
bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
|
|
TargetPassConfig *TPC, unsigned InputBBLimit,
|
|
unsigned InputDbgValLimit) override;
|
|
|
|
public:
|
|
/// Default construct and initialize the pass.
|
|
InstrRefBasedLDV();
|
|
|
|
LLVM_DUMP_METHOD
|
|
void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
|
|
|
|
bool isCalleeSaved(LocIdx L) const;
|
|
|
|
bool hasFoldedStackStore(const MachineInstr &MI) {
|
|
// Instruction must have a memory operand that's a stack slot, and isn't
|
|
// aliased, meaning it's a spill from regalloc instead of a variable.
|
|
// If it's aliased, we can't guarantee its value.
|
|
if (!MI.hasOneMemOperand())
|
|
return false;
|
|
auto *MemOperand = *MI.memoperands_begin();
|
|
return MemOperand->isStore() &&
|
|
MemOperand->getPseudoValue() &&
|
|
MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack
|
|
&& !MemOperand->getPseudoValue()->isAliased(MFI);
|
|
}
|
|
|
|
Optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI);
|
|
};
|
|
|
|
} // namespace LiveDebugValues
|
|
|
|
namespace llvm {
|
|
using namespace LiveDebugValues;
|
|
|
|
template <> struct DenseMapInfo<LocIdx> {
|
|
static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); }
|
|
static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); }
|
|
|
|
static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); }
|
|
|
|
static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; }
|
|
};
|
|
|
|
template <> struct DenseMapInfo<ValueIDNum> {
|
|
static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; }
|
|
static inline ValueIDNum getTombstoneKey() {
|
|
return ValueIDNum::TombstoneValue;
|
|
}
|
|
|
|
static unsigned getHashValue(const ValueIDNum &Val) {
|
|
return hash_value(Val.asU64());
|
|
}
|
|
|
|
static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) {
|
|
return A == B;
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */
|