llvm-project/llvm/lib/Target/X86/X86FixupBWInsts.cpp

345 lines
13 KiB
C++

//===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file defines the pass that looks through the machine instructions
/// late in the compilation, and finds byte or word instructions that
/// can be profitably replaced with 32 bit instructions that give equivalent
/// results for the bits of the results that are used. There are two possible
/// reasons to do this.
///
/// One reason is to avoid false-dependences on the upper portions
/// of the registers. Only instructions that have a destination register
/// which is not in any of the source registers can be affected by this.
/// Any instruction where one of the source registers is also the destination
/// register is unaffected, because it has a true dependence on the source
/// register already. So, this consideration primarily affects load
/// instructions and register-to-register moves. It would
/// seem like cmov(s) would also be affected, but because of the way cmov is
/// really implemented by most machines as reading both the destination and
/// and source regsters, and then "merging" the two based on a condition,
/// it really already should be considered as having a true dependence on the
/// destination register as well.
///
/// The other reason to do this is for potential code size savings. Word
/// operations need an extra override byte compared to their 32 bit
/// versions. So this can convert many word operations to their larger
/// size, saving a byte in encoding. This could introduce partial register
/// dependences where none existed however. As an example take:
/// orw ax, $0x1000
/// addw ax, $3
/// now if this were to get transformed into
/// orw ax, $1000
/// addl eax, $3
/// because the addl encodes shorter than the addw, this would introduce
/// a use of a register that was only partially written earlier. On older
/// Intel processors this can be quite a performance penalty, so this should
/// probably only be done when it can be proven that a new partial dependence
/// wouldn't be created, or when your know a newer processor is being
/// targeted, or when optimizing for minimum code size.
///
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
#define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
#define FIXUPBW_NAME "x86-fixup-bw-insts"
#define DEBUG_TYPE FIXUPBW_NAME
// Option to allow this optimization pass to have fine-grained control.
// This is turned off by default so as not to affect a large number of
// existing lit tests.
static cl::opt<bool>
FixupBWInsts("fixup-byte-word-insts",
cl::desc("Change byte and word instructions to larger sizes"),
cl::init(true), cl::Hidden);
namespace {
class FixupBWInstPass : public MachineFunctionPass {
/// Loop over all of the instructions in the basic block replacing applicable
/// byte or word instructions with better alternatives.
void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
/// This sets the \p SuperDestReg to the 32 bit super reg of the original
/// destination register of the MachineInstr passed in. It returns true if
/// that super register is dead just prior to \p OrigMI, and false if not.
bool getSuperRegDestIfDead(MachineInstr *OrigMI,
unsigned &SuperDestReg) const;
/// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
/// register if it is safe to do so. Return the replacement instruction if
/// OK, otherwise return nullptr.
MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
/// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
/// safe to do so. Return the replacement instruction if OK, otherwise return
/// nullptr.
MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
public:
static char ID;
const char *getPassName() const override {
return FIXUPBW_DESC;
}
FixupBWInstPass() : MachineFunctionPass(ID) {
initializeFixupBWInstPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
// guide some heuristics.
MachineFunctionPass::getAnalysisUsage(AU);
}
/// Loop over all of the basic blocks, replacing byte and word instructions by
/// equivalent 32 bit instructions where performance or code size can be
/// improved.
bool runOnMachineFunction(MachineFunction &MF) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::AllVRegsAllocated);
}
private:
MachineFunction *MF;
/// Machine instruction info used throughout the class.
const X86InstrInfo *TII;
/// Local member for function's OptForSize attribute.
bool OptForSize;
/// Machine loop info used for guiding some heruistics.
MachineLoopInfo *MLI;
/// Register Liveness information after the current instruction.
LivePhysRegs LiveRegs;
};
char FixupBWInstPass::ID = 0;
}
INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
if (!FixupBWInsts || skipFunction(*MF.getFunction()))
return false;
this->MF = &MF;
TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
OptForSize = MF.getFunction()->optForSize();
MLI = &getAnalysis<MachineLoopInfo>();
LiveRegs.init(&TII->getRegisterInfo());
DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
// Process all basic blocks.
for (auto &MBB : MF)
processBasicBlock(MF, MBB);
DEBUG(dbgs() << "End X86FixupBWInsts\n";);
return true;
}
// TODO: This method of analysis can miss some legal cases, because the
// super-register could be live into the address expression for a memory
// reference for the instruction, and still be killed/last used by the
// instruction. However, the existing query interfaces don't seem to
// easily allow that to be checked.
//
// What we'd really like to know is whether after OrigMI, the
// only portion of SuperDestReg that is alive is the portion that
// was the destination register of OrigMI.
bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
unsigned &SuperDestReg) const {
auto *TRI = &TII->getRegisterInfo();
unsigned OrigDestReg = OrigMI->getOperand(0).getReg();
SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
// Make sure that the sub-register that this instruction has as its
// destination is the lowest order sub-register of the super-register.
// If it isn't, then the register isn't really dead even if the
// super-register is considered dead.
if (SubRegIdx == X86::sub_8bit_hi)
return false;
if (LiveRegs.contains(SuperDestReg))
return false;
if (SubRegIdx == X86::sub_8bit) {
// In the case of byte registers, we also have to check that the upper
// byte register is also dead. That is considered to be independent of
// whether the super-register is dead.
unsigned UpperByteReg =
getX86SubSuperRegister(SuperDestReg, 8, /*High=*/true);
if (LiveRegs.contains(UpperByteReg))
return false;
}
return true;
}
MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
MachineInstr *MI) const {
unsigned NewDestReg;
// We are going to try to rewrite this load to a larger zero-extending
// load. This is safe if all portions of the 32 bit super-register
// of the original destination register, except for the original destination
// register are dead. getSuperRegDestIfDead checks that.
if (!getSuperRegDestIfDead(MI, NewDestReg))
return nullptr;
// Safe to change the instruction.
MachineInstrBuilder MIB =
BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
unsigned NumArgs = MI->getNumOperands();
for (unsigned i = 1; i < NumArgs; ++i)
MIB.addOperand(MI->getOperand(i));
MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
return MIB;
}
MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
assert(MI->getNumExplicitOperands() == 2);
auto &OldDest = MI->getOperand(0);
auto &OldSrc = MI->getOperand(1);
unsigned NewDestReg;
if (!getSuperRegDestIfDead(MI, NewDestReg))
return nullptr;
unsigned NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
// This is only correct if we access the same subregister index: otherwise,
// we could try to replace "movb %ah, %al" with "movl %eax, %eax".
auto *TRI = &TII->getRegisterInfo();
if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
return nullptr;
// Safe to change the instruction.
// Don't set src flags, as we don't know if we're also killing the superreg.
// However, the superregister might not be defined; make it explicit that
// we don't care about the higher bits by reading it as Undef, and adding
// an imp-use on the original subregister.
MachineInstrBuilder MIB =
BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg)
.addReg(NewSrcReg, RegState::Undef)
.addReg(OldSrc.getReg(), RegState::Implicit);
// Drop imp-defs/uses that would be redundant with the new def/use.
for (auto &Op : MI->implicit_operands())
if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
MIB.addOperand(Op);
return MIB;
}
void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
MachineBasicBlock &MBB) {
// This algorithm doesn't delete the instructions it is replacing
// right away. By leaving the existing instructions in place, the
// register liveness information doesn't change, and this makes the
// analysis that goes on be better than if the replaced instructions
// were immediately removed.
//
// This algorithm always creates a replacement instruction
// and notes that and the original in a data structure, until the
// whole BB has been analyzed. This keeps the replacement instructions
// from making it seem as if the larger register might be live.
SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
// Start computing liveness for this block. We iterate from the end to be able
// to update this for each instruction.
LiveRegs.clear();
// We run after PEI, so we need to AddPristinesAndCSRs.
LiveRegs.addLiveOuts(MBB);
for (auto I = MBB.rbegin(); I != MBB.rend(); ++I) {
MachineInstr *NewMI = nullptr;
MachineInstr *MI = &*I;
// See if this is an instruction of the type we are currently looking for.
switch (MI->getOpcode()) {
case X86::MOV8rm:
// Only replace 8 bit loads with the zero extending versions if
// in an inner most loop and not optimizing for size. This takes
// an extra byte to encode, and provides limited performance upside.
if (MachineLoop *ML = MLI->getLoopFor(&MBB)) {
if (ML->begin() == ML->end() && !OptForSize)
NewMI = tryReplaceLoad(X86::MOVZX32rm8, MI);
}
break;
case X86::MOV16rm:
// Always try to replace 16 bit load with 32 bit zero extending.
// Code size is the same, and there is sometimes a perf advantage
// from eliminating a false dependence on the upper portion of
// the register.
NewMI = tryReplaceLoad(X86::MOVZX32rm16, MI);
break;
case X86::MOV8rr:
case X86::MOV16rr:
// Always try to replace 8/16 bit copies with a 32 bit copy.
// Code size is either less (16) or equal (8), and there is sometimes a
// perf advantage from eliminating a false dependence on the upper portion
// of the register.
NewMI = tryReplaceCopy(MI);
break;
default:
// nothing to do here.
break;
}
if (NewMI)
MIReplacements.push_back(std::make_pair(MI, NewMI));
// We're done with this instruction, update liveness for the next one.
LiveRegs.stepBackward(*MI);
}
while (!MIReplacements.empty()) {
MachineInstr *MI = MIReplacements.back().first;
MachineInstr *NewMI = MIReplacements.back().second;
MIReplacements.pop_back();
MBB.insert(MI, NewMI);
MBB.erase(MI);
}
}