forked from OSchip/llvm-project
4390 lines
156 KiB
C++
4390 lines
156 KiB
C++
//===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Decl subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTLambda.h"
|
|
#include "clang/AST/ASTMutationListener.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclOpenMP.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/PrettyPrinter.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/IdentifierTable.h"
|
|
#include "clang/Basic/Module.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Frontend/FrontendDiagnostic.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <algorithm>
|
|
|
|
using namespace clang;
|
|
|
|
Decl *clang::getPrimaryMergedDecl(Decl *D) {
|
|
return D->getASTContext().getPrimaryMergedDecl(D);
|
|
}
|
|
|
|
// Defined here so that it can be inlined into its direct callers.
|
|
bool Decl::isOutOfLine() const {
|
|
return !getLexicalDeclContext()->Equals(getDeclContext());
|
|
}
|
|
|
|
TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
|
|
: Decl(TranslationUnit, nullptr, SourceLocation()),
|
|
DeclContext(TranslationUnit), Ctx(ctx), AnonymousNamespace(nullptr) {
|
|
Hidden = Ctx.getLangOpts().ModulesLocalVisibility;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NamedDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Visibility rules aren't rigorously externally specified, but here
|
|
// are the basic principles behind what we implement:
|
|
//
|
|
// 1. An explicit visibility attribute is generally a direct expression
|
|
// of the user's intent and should be honored. Only the innermost
|
|
// visibility attribute applies. If no visibility attribute applies,
|
|
// global visibility settings are considered.
|
|
//
|
|
// 2. There is one caveat to the above: on or in a template pattern,
|
|
// an explicit visibility attribute is just a default rule, and
|
|
// visibility can be decreased by the visibility of template
|
|
// arguments. But this, too, has an exception: an attribute on an
|
|
// explicit specialization or instantiation causes all the visibility
|
|
// restrictions of the template arguments to be ignored.
|
|
//
|
|
// 3. A variable that does not otherwise have explicit visibility can
|
|
// be restricted by the visibility of its type.
|
|
//
|
|
// 4. A visibility restriction is explicit if it comes from an
|
|
// attribute (or something like it), not a global visibility setting.
|
|
// When emitting a reference to an external symbol, visibility
|
|
// restrictions are ignored unless they are explicit.
|
|
//
|
|
// 5. When computing the visibility of a non-type, including a
|
|
// non-type member of a class, only non-type visibility restrictions
|
|
// are considered: the 'visibility' attribute, global value-visibility
|
|
// settings, and a few special cases like __private_extern.
|
|
//
|
|
// 6. When computing the visibility of a type, including a type member
|
|
// of a class, only type visibility restrictions are considered:
|
|
// the 'type_visibility' attribute and global type-visibility settings.
|
|
// However, a 'visibility' attribute counts as a 'type_visibility'
|
|
// attribute on any declaration that only has the former.
|
|
//
|
|
// The visibility of a "secondary" entity, like a template argument,
|
|
// is computed using the kind of that entity, not the kind of the
|
|
// primary entity for which we are computing visibility. For example,
|
|
// the visibility of a specialization of either of these templates:
|
|
// template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
|
|
// template <class T, bool (&compare)(T, X)> class matcher;
|
|
// is restricted according to the type visibility of the argument 'T',
|
|
// the type visibility of 'bool(&)(T,X)', and the value visibility of
|
|
// the argument function 'compare'. That 'has_match' is a value
|
|
// and 'matcher' is a type only matters when looking for attributes
|
|
// and settings from the immediate context.
|
|
|
|
const unsigned IgnoreExplicitVisibilityBit = 2;
|
|
const unsigned IgnoreAllVisibilityBit = 4;
|
|
|
|
/// Kinds of LV computation. The linkage side of the computation is
|
|
/// always the same, but different things can change how visibility is
|
|
/// computed.
|
|
enum LVComputationKind {
|
|
/// Do an LV computation for, ultimately, a type.
|
|
/// Visibility may be restricted by type visibility settings and
|
|
/// the visibility of template arguments.
|
|
LVForType = NamedDecl::VisibilityForType,
|
|
|
|
/// Do an LV computation for, ultimately, a non-type declaration.
|
|
/// Visibility may be restricted by value visibility settings and
|
|
/// the visibility of template arguments.
|
|
LVForValue = NamedDecl::VisibilityForValue,
|
|
|
|
/// Do an LV computation for, ultimately, a type that already has
|
|
/// some sort of explicit visibility. Visibility may only be
|
|
/// restricted by the visibility of template arguments.
|
|
LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
|
|
|
|
/// Do an LV computation for, ultimately, a non-type declaration
|
|
/// that already has some sort of explicit visibility. Visibility
|
|
/// may only be restricted by the visibility of template arguments.
|
|
LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
|
|
|
|
/// Do an LV computation when we only care about the linkage.
|
|
LVForLinkageOnly =
|
|
LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
|
|
};
|
|
|
|
/// Does this computation kind permit us to consider additional
|
|
/// visibility settings from attributes and the like?
|
|
static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
|
|
return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
|
|
}
|
|
|
|
/// Given an LVComputationKind, return one of the same type/value sort
|
|
/// that records that it already has explicit visibility.
|
|
static LVComputationKind
|
|
withExplicitVisibilityAlready(LVComputationKind oldKind) {
|
|
LVComputationKind newKind =
|
|
static_cast<LVComputationKind>(unsigned(oldKind) |
|
|
IgnoreExplicitVisibilityBit);
|
|
assert(oldKind != LVForType || newKind == LVForExplicitType);
|
|
assert(oldKind != LVForValue || newKind == LVForExplicitValue);
|
|
assert(oldKind != LVForExplicitType || newKind == LVForExplicitType);
|
|
assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
|
|
return newKind;
|
|
}
|
|
|
|
static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
|
|
LVComputationKind kind) {
|
|
assert(!hasExplicitVisibilityAlready(kind) &&
|
|
"asking for explicit visibility when we shouldn't be");
|
|
return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
|
|
}
|
|
|
|
/// Is the given declaration a "type" or a "value" for the purposes of
|
|
/// visibility computation?
|
|
static bool usesTypeVisibility(const NamedDecl *D) {
|
|
return isa<TypeDecl>(D) ||
|
|
isa<ClassTemplateDecl>(D) ||
|
|
isa<ObjCInterfaceDecl>(D);
|
|
}
|
|
|
|
/// Does the given declaration have member specialization information,
|
|
/// and if so, is it an explicit specialization?
|
|
template <class T> static typename
|
|
std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
|
|
isExplicitMemberSpecialization(const T *D) {
|
|
if (const MemberSpecializationInfo *member =
|
|
D->getMemberSpecializationInfo()) {
|
|
return member->isExplicitSpecialization();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// For templates, this question is easier: a member template can't be
|
|
/// explicitly instantiated, so there's a single bit indicating whether
|
|
/// or not this is an explicit member specialization.
|
|
static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
|
|
return D->isMemberSpecialization();
|
|
}
|
|
|
|
/// Given a visibility attribute, return the explicit visibility
|
|
/// associated with it.
|
|
template <class T>
|
|
static Visibility getVisibilityFromAttr(const T *attr) {
|
|
switch (attr->getVisibility()) {
|
|
case T::Default:
|
|
return DefaultVisibility;
|
|
case T::Hidden:
|
|
return HiddenVisibility;
|
|
case T::Protected:
|
|
return ProtectedVisibility;
|
|
}
|
|
llvm_unreachable("bad visibility kind");
|
|
}
|
|
|
|
/// Return the explicit visibility of the given declaration.
|
|
static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
|
|
NamedDecl::ExplicitVisibilityKind kind) {
|
|
// If we're ultimately computing the visibility of a type, look for
|
|
// a 'type_visibility' attribute before looking for 'visibility'.
|
|
if (kind == NamedDecl::VisibilityForType) {
|
|
if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
|
|
return getVisibilityFromAttr(A);
|
|
}
|
|
}
|
|
|
|
// If this declaration has an explicit visibility attribute, use it.
|
|
if (const auto *A = D->getAttr<VisibilityAttr>()) {
|
|
return getVisibilityFromAttr(A);
|
|
}
|
|
|
|
// If we're on Mac OS X, an 'availability' for Mac OS X attribute
|
|
// implies visibility(default).
|
|
if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
|
|
for (const auto *A : D->specific_attrs<AvailabilityAttr>())
|
|
if (A->getPlatform()->getName().equals("macos"))
|
|
return DefaultVisibility;
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
static LinkageInfo
|
|
getLVForType(const Type &T, LVComputationKind computation) {
|
|
if (computation == LVForLinkageOnly)
|
|
return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
|
|
return T.getLinkageAndVisibility();
|
|
}
|
|
|
|
/// \brief Get the most restrictive linkage for the types in the given
|
|
/// template parameter list. For visibility purposes, template
|
|
/// parameters are part of the signature of a template.
|
|
static LinkageInfo
|
|
getLVForTemplateParameterList(const TemplateParameterList *Params,
|
|
LVComputationKind computation) {
|
|
LinkageInfo LV;
|
|
for (const NamedDecl *P : *Params) {
|
|
// Template type parameters are the most common and never
|
|
// contribute to visibility, pack or not.
|
|
if (isa<TemplateTypeParmDecl>(P))
|
|
continue;
|
|
|
|
// Non-type template parameters can be restricted by the value type, e.g.
|
|
// template <enum X> class A { ... };
|
|
// We have to be careful here, though, because we can be dealing with
|
|
// dependent types.
|
|
if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
|
|
// Handle the non-pack case first.
|
|
if (!NTTP->isExpandedParameterPack()) {
|
|
if (!NTTP->getType()->isDependentType()) {
|
|
LV.merge(getLVForType(*NTTP->getType(), computation));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Look at all the types in an expanded pack.
|
|
for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
|
|
QualType type = NTTP->getExpansionType(i);
|
|
if (!type->isDependentType())
|
|
LV.merge(type->getLinkageAndVisibility());
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Template template parameters can be restricted by their
|
|
// template parameters, recursively.
|
|
const auto *TTP = cast<TemplateTemplateParmDecl>(P);
|
|
|
|
// Handle the non-pack case first.
|
|
if (!TTP->isExpandedParameterPack()) {
|
|
LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
|
|
computation));
|
|
continue;
|
|
}
|
|
|
|
// Look at all expansions in an expanded pack.
|
|
for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
|
|
i != n; ++i) {
|
|
LV.merge(getLVForTemplateParameterList(
|
|
TTP->getExpansionTemplateParameters(i), computation));
|
|
}
|
|
}
|
|
|
|
return LV;
|
|
}
|
|
|
|
/// getLVForDecl - Get the linkage and visibility for the given declaration.
|
|
static LinkageInfo getLVForDecl(const NamedDecl *D,
|
|
LVComputationKind computation);
|
|
|
|
static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
|
|
const Decl *Ret = nullptr;
|
|
const DeclContext *DC = D->getDeclContext();
|
|
while (DC->getDeclKind() != Decl::TranslationUnit) {
|
|
if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
|
|
Ret = cast<Decl>(DC);
|
|
DC = DC->getParent();
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
/// \brief Get the most restrictive linkage for the types and
|
|
/// declarations in the given template argument list.
|
|
///
|
|
/// Note that we don't take an LVComputationKind because we always
|
|
/// want to honor the visibility of template arguments in the same way.
|
|
static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
|
|
LVComputationKind computation) {
|
|
LinkageInfo LV;
|
|
|
|
for (const TemplateArgument &Arg : Args) {
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::Expression:
|
|
continue;
|
|
|
|
case TemplateArgument::Type:
|
|
LV.merge(getLVForType(*Arg.getAsType(), computation));
|
|
continue;
|
|
|
|
case TemplateArgument::Declaration:
|
|
if (const auto *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) {
|
|
assert(!usesTypeVisibility(ND));
|
|
LV.merge(getLVForDecl(ND, computation));
|
|
}
|
|
continue;
|
|
|
|
case TemplateArgument::NullPtr:
|
|
LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility());
|
|
continue;
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
if (TemplateDecl *Template =
|
|
Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
|
|
LV.merge(getLVForDecl(Template, computation));
|
|
continue;
|
|
|
|
case TemplateArgument::Pack:
|
|
LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
|
|
continue;
|
|
}
|
|
llvm_unreachable("bad template argument kind");
|
|
}
|
|
|
|
return LV;
|
|
}
|
|
|
|
static LinkageInfo
|
|
getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
|
|
LVComputationKind computation) {
|
|
return getLVForTemplateArgumentList(TArgs.asArray(), computation);
|
|
}
|
|
|
|
static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
|
|
const FunctionTemplateSpecializationInfo *specInfo) {
|
|
// Include visibility from the template parameters and arguments
|
|
// only if this is not an explicit instantiation or specialization
|
|
// with direct explicit visibility. (Implicit instantiations won't
|
|
// have a direct attribute.)
|
|
if (!specInfo->isExplicitInstantiationOrSpecialization())
|
|
return true;
|
|
|
|
return !fn->hasAttr<VisibilityAttr>();
|
|
}
|
|
|
|
/// Merge in template-related linkage and visibility for the given
|
|
/// function template specialization.
|
|
///
|
|
/// We don't need a computation kind here because we can assume
|
|
/// LVForValue.
|
|
///
|
|
/// \param[out] LV the computation to use for the parent
|
|
static void
|
|
mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
|
|
const FunctionTemplateSpecializationInfo *specInfo,
|
|
LVComputationKind computation) {
|
|
bool considerVisibility =
|
|
shouldConsiderTemplateVisibility(fn, specInfo);
|
|
|
|
// Merge information from the template parameters.
|
|
FunctionTemplateDecl *temp = specInfo->getTemplate();
|
|
LinkageInfo tempLV =
|
|
getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
|
|
LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
|
|
|
|
// Merge information from the template arguments.
|
|
const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
|
|
LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
|
|
LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
|
|
}
|
|
|
|
/// Does the given declaration have a direct visibility attribute
|
|
/// that would match the given rules?
|
|
static bool hasDirectVisibilityAttribute(const NamedDecl *D,
|
|
LVComputationKind computation) {
|
|
switch (computation) {
|
|
case LVForType:
|
|
case LVForExplicitType:
|
|
if (D->hasAttr<TypeVisibilityAttr>())
|
|
return true;
|
|
// fallthrough
|
|
case LVForValue:
|
|
case LVForExplicitValue:
|
|
if (D->hasAttr<VisibilityAttr>())
|
|
return true;
|
|
return false;
|
|
case LVForLinkageOnly:
|
|
return false;
|
|
}
|
|
llvm_unreachable("bad visibility computation kind");
|
|
}
|
|
|
|
/// Should we consider visibility associated with the template
|
|
/// arguments and parameters of the given class template specialization?
|
|
static bool shouldConsiderTemplateVisibility(
|
|
const ClassTemplateSpecializationDecl *spec,
|
|
LVComputationKind computation) {
|
|
// Include visibility from the template parameters and arguments
|
|
// only if this is not an explicit instantiation or specialization
|
|
// with direct explicit visibility (and note that implicit
|
|
// instantiations won't have a direct attribute).
|
|
//
|
|
// Furthermore, we want to ignore template parameters and arguments
|
|
// for an explicit specialization when computing the visibility of a
|
|
// member thereof with explicit visibility.
|
|
//
|
|
// This is a bit complex; let's unpack it.
|
|
//
|
|
// An explicit class specialization is an independent, top-level
|
|
// declaration. As such, if it or any of its members has an
|
|
// explicit visibility attribute, that must directly express the
|
|
// user's intent, and we should honor it. The same logic applies to
|
|
// an explicit instantiation of a member of such a thing.
|
|
|
|
// Fast path: if this is not an explicit instantiation or
|
|
// specialization, we always want to consider template-related
|
|
// visibility restrictions.
|
|
if (!spec->isExplicitInstantiationOrSpecialization())
|
|
return true;
|
|
|
|
// This is the 'member thereof' check.
|
|
if (spec->isExplicitSpecialization() &&
|
|
hasExplicitVisibilityAlready(computation))
|
|
return false;
|
|
|
|
return !hasDirectVisibilityAttribute(spec, computation);
|
|
}
|
|
|
|
/// Merge in template-related linkage and visibility for the given
|
|
/// class template specialization.
|
|
static void mergeTemplateLV(LinkageInfo &LV,
|
|
const ClassTemplateSpecializationDecl *spec,
|
|
LVComputationKind computation) {
|
|
bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
|
|
|
|
// Merge information from the template parameters, but ignore
|
|
// visibility if we're only considering template arguments.
|
|
|
|
ClassTemplateDecl *temp = spec->getSpecializedTemplate();
|
|
LinkageInfo tempLV =
|
|
getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
|
|
LV.mergeMaybeWithVisibility(tempLV,
|
|
considerVisibility && !hasExplicitVisibilityAlready(computation));
|
|
|
|
// Merge information from the template arguments. We ignore
|
|
// template-argument visibility if we've got an explicit
|
|
// instantiation with a visibility attribute.
|
|
const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
|
|
LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
|
|
if (considerVisibility)
|
|
LV.mergeVisibility(argsLV);
|
|
LV.mergeExternalVisibility(argsLV);
|
|
}
|
|
|
|
/// Should we consider visibility associated with the template
|
|
/// arguments and parameters of the given variable template
|
|
/// specialization? As usual, follow class template specialization
|
|
/// logic up to initialization.
|
|
static bool shouldConsiderTemplateVisibility(
|
|
const VarTemplateSpecializationDecl *spec,
|
|
LVComputationKind computation) {
|
|
// Include visibility from the template parameters and arguments
|
|
// only if this is not an explicit instantiation or specialization
|
|
// with direct explicit visibility (and note that implicit
|
|
// instantiations won't have a direct attribute).
|
|
if (!spec->isExplicitInstantiationOrSpecialization())
|
|
return true;
|
|
|
|
// An explicit variable specialization is an independent, top-level
|
|
// declaration. As such, if it has an explicit visibility attribute,
|
|
// that must directly express the user's intent, and we should honor
|
|
// it.
|
|
if (spec->isExplicitSpecialization() &&
|
|
hasExplicitVisibilityAlready(computation))
|
|
return false;
|
|
|
|
return !hasDirectVisibilityAttribute(spec, computation);
|
|
}
|
|
|
|
/// Merge in template-related linkage and visibility for the given
|
|
/// variable template specialization. As usual, follow class template
|
|
/// specialization logic up to initialization.
|
|
static void mergeTemplateLV(LinkageInfo &LV,
|
|
const VarTemplateSpecializationDecl *spec,
|
|
LVComputationKind computation) {
|
|
bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
|
|
|
|
// Merge information from the template parameters, but ignore
|
|
// visibility if we're only considering template arguments.
|
|
|
|
VarTemplateDecl *temp = spec->getSpecializedTemplate();
|
|
LinkageInfo tempLV =
|
|
getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
|
|
LV.mergeMaybeWithVisibility(tempLV,
|
|
considerVisibility && !hasExplicitVisibilityAlready(computation));
|
|
|
|
// Merge information from the template arguments. We ignore
|
|
// template-argument visibility if we've got an explicit
|
|
// instantiation with a visibility attribute.
|
|
const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
|
|
LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
|
|
if (considerVisibility)
|
|
LV.mergeVisibility(argsLV);
|
|
LV.mergeExternalVisibility(argsLV);
|
|
}
|
|
|
|
static bool useInlineVisibilityHidden(const NamedDecl *D) {
|
|
// FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
|
|
const LangOptions &Opts = D->getASTContext().getLangOpts();
|
|
if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
|
|
return false;
|
|
|
|
const auto *FD = dyn_cast<FunctionDecl>(D);
|
|
if (!FD)
|
|
return false;
|
|
|
|
TemplateSpecializationKind TSK = TSK_Undeclared;
|
|
if (FunctionTemplateSpecializationInfo *spec
|
|
= FD->getTemplateSpecializationInfo()) {
|
|
TSK = spec->getTemplateSpecializationKind();
|
|
} else if (MemberSpecializationInfo *MSI =
|
|
FD->getMemberSpecializationInfo()) {
|
|
TSK = MSI->getTemplateSpecializationKind();
|
|
}
|
|
|
|
const FunctionDecl *Def = nullptr;
|
|
// InlineVisibilityHidden only applies to definitions, and
|
|
// isInlined() only gives meaningful answers on definitions
|
|
// anyway.
|
|
return TSK != TSK_ExplicitInstantiationDeclaration &&
|
|
TSK != TSK_ExplicitInstantiationDefinition &&
|
|
FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
|
|
}
|
|
|
|
template <typename T> static bool isFirstInExternCContext(T *D) {
|
|
const T *First = D->getFirstDecl();
|
|
return First->isInExternCContext();
|
|
}
|
|
|
|
static bool isSingleLineLanguageLinkage(const Decl &D) {
|
|
if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
|
|
if (!SD->hasBraces())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
|
|
LVComputationKind computation) {
|
|
assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
|
|
"Not a name having namespace scope");
|
|
ASTContext &Context = D->getASTContext();
|
|
|
|
// C++ [basic.link]p3:
|
|
// A name having namespace scope (3.3.6) has internal linkage if it
|
|
// is the name of
|
|
// - an object, reference, function or function template that is
|
|
// explicitly declared static; or,
|
|
// (This bullet corresponds to C99 6.2.2p3.)
|
|
if (const auto *Var = dyn_cast<VarDecl>(D)) {
|
|
// Explicitly declared static.
|
|
if (Var->getStorageClass() == SC_Static)
|
|
return LinkageInfo::internal();
|
|
|
|
// - a non-inline, non-volatile object or reference that is explicitly
|
|
// declared const or constexpr and neither explicitly declared extern
|
|
// nor previously declared to have external linkage; or (there is no
|
|
// equivalent in C99)
|
|
if (Context.getLangOpts().CPlusPlus &&
|
|
Var->getType().isConstQualified() &&
|
|
!Var->getType().isVolatileQualified() &&
|
|
!Var->isInline()) {
|
|
const VarDecl *PrevVar = Var->getPreviousDecl();
|
|
if (PrevVar)
|
|
return getLVForDecl(PrevVar, computation);
|
|
|
|
if (Var->getStorageClass() != SC_Extern &&
|
|
Var->getStorageClass() != SC_PrivateExtern &&
|
|
!isSingleLineLanguageLinkage(*Var))
|
|
return LinkageInfo::internal();
|
|
}
|
|
|
|
for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
|
|
PrevVar = PrevVar->getPreviousDecl()) {
|
|
if (PrevVar->getStorageClass() == SC_PrivateExtern &&
|
|
Var->getStorageClass() == SC_None)
|
|
return PrevVar->getLinkageAndVisibility();
|
|
// Explicitly declared static.
|
|
if (PrevVar->getStorageClass() == SC_Static)
|
|
return LinkageInfo::internal();
|
|
}
|
|
} else if (const FunctionDecl *Function = D->getAsFunction()) {
|
|
// C++ [temp]p4:
|
|
// A non-member function template can have internal linkage; any
|
|
// other template name shall have external linkage.
|
|
|
|
// Explicitly declared static.
|
|
if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
|
|
return LinkageInfo(InternalLinkage, DefaultVisibility, false);
|
|
} else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
|
|
// - a data member of an anonymous union.
|
|
const VarDecl *VD = IFD->getVarDecl();
|
|
assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
|
|
return getLVForNamespaceScopeDecl(VD, computation);
|
|
}
|
|
assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
|
|
|
|
if (D->isInAnonymousNamespace()) {
|
|
const auto *Var = dyn_cast<VarDecl>(D);
|
|
const auto *Func = dyn_cast<FunctionDecl>(D);
|
|
// FIXME: In C++11 onwards, anonymous namespaces should give decls
|
|
// within them internal linkage, not unique external linkage.
|
|
if ((!Var || !isFirstInExternCContext(Var)) &&
|
|
(!Func || !isFirstInExternCContext(Func)))
|
|
return LinkageInfo::uniqueExternal();
|
|
}
|
|
|
|
// Set up the defaults.
|
|
|
|
// C99 6.2.2p5:
|
|
// If the declaration of an identifier for an object has file
|
|
// scope and no storage-class specifier, its linkage is
|
|
// external.
|
|
LinkageInfo LV;
|
|
|
|
if (!hasExplicitVisibilityAlready(computation)) {
|
|
if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
|
|
LV.mergeVisibility(*Vis, true);
|
|
} else {
|
|
// If we're declared in a namespace with a visibility attribute,
|
|
// use that namespace's visibility, and it still counts as explicit.
|
|
for (const DeclContext *DC = D->getDeclContext();
|
|
!isa<TranslationUnitDecl>(DC);
|
|
DC = DC->getParent()) {
|
|
const auto *ND = dyn_cast<NamespaceDecl>(DC);
|
|
if (!ND) continue;
|
|
if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
|
|
LV.mergeVisibility(*Vis, true);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add in global settings if the above didn't give us direct visibility.
|
|
if (!LV.isVisibilityExplicit()) {
|
|
// Use global type/value visibility as appropriate.
|
|
Visibility globalVisibility;
|
|
if (computation == LVForValue) {
|
|
globalVisibility = Context.getLangOpts().getValueVisibilityMode();
|
|
} else {
|
|
assert(computation == LVForType);
|
|
globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
|
|
}
|
|
LV.mergeVisibility(globalVisibility, /*explicit*/ false);
|
|
|
|
// If we're paying attention to global visibility, apply
|
|
// -finline-visibility-hidden if this is an inline method.
|
|
if (useInlineVisibilityHidden(D))
|
|
LV.mergeVisibility(HiddenVisibility, true);
|
|
}
|
|
}
|
|
|
|
// C++ [basic.link]p4:
|
|
|
|
// A name having namespace scope has external linkage if it is the
|
|
// name of
|
|
//
|
|
// - an object or reference, unless it has internal linkage; or
|
|
if (const auto *Var = dyn_cast<VarDecl>(D)) {
|
|
// GCC applies the following optimization to variables and static
|
|
// data members, but not to functions:
|
|
//
|
|
// Modify the variable's LV by the LV of its type unless this is
|
|
// C or extern "C". This follows from [basic.link]p9:
|
|
// A type without linkage shall not be used as the type of a
|
|
// variable or function with external linkage unless
|
|
// - the entity has C language linkage, or
|
|
// - the entity is declared within an unnamed namespace, or
|
|
// - the entity is not used or is defined in the same
|
|
// translation unit.
|
|
// and [basic.link]p10:
|
|
// ...the types specified by all declarations referring to a
|
|
// given variable or function shall be identical...
|
|
// C does not have an equivalent rule.
|
|
//
|
|
// Ignore this if we've got an explicit attribute; the user
|
|
// probably knows what they're doing.
|
|
//
|
|
// Note that we don't want to make the variable non-external
|
|
// because of this, but unique-external linkage suits us.
|
|
if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
|
|
LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
|
|
if (TypeLV.getLinkage() != ExternalLinkage)
|
|
return LinkageInfo::uniqueExternal();
|
|
if (!LV.isVisibilityExplicit())
|
|
LV.mergeVisibility(TypeLV);
|
|
}
|
|
|
|
if (Var->getStorageClass() == SC_PrivateExtern)
|
|
LV.mergeVisibility(HiddenVisibility, true);
|
|
|
|
// Note that Sema::MergeVarDecl already takes care of implementing
|
|
// C99 6.2.2p4 and propagating the visibility attribute, so we don't have
|
|
// to do it here.
|
|
|
|
// As per function and class template specializations (below),
|
|
// consider LV for the template and template arguments. We're at file
|
|
// scope, so we do not need to worry about nested specializations.
|
|
if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
|
|
mergeTemplateLV(LV, spec, computation);
|
|
}
|
|
|
|
// - a function, unless it has internal linkage; or
|
|
} else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
|
|
// In theory, we can modify the function's LV by the LV of its
|
|
// type unless it has C linkage (see comment above about variables
|
|
// for justification). In practice, GCC doesn't do this, so it's
|
|
// just too painful to make work.
|
|
|
|
if (Function->getStorageClass() == SC_PrivateExtern)
|
|
LV.mergeVisibility(HiddenVisibility, true);
|
|
|
|
// Note that Sema::MergeCompatibleFunctionDecls already takes care of
|
|
// merging storage classes and visibility attributes, so we don't have to
|
|
// look at previous decls in here.
|
|
|
|
// In C++, then if the type of the function uses a type with
|
|
// unique-external linkage, it's not legally usable from outside
|
|
// this translation unit. However, we should use the C linkage
|
|
// rules instead for extern "C" declarations.
|
|
if (Context.getLangOpts().CPlusPlus &&
|
|
!Function->isInExternCContext()) {
|
|
// Only look at the type-as-written. If this function has an auto-deduced
|
|
// return type, we can't compute the linkage of that type because it could
|
|
// require looking at the linkage of this function, and we don't need this
|
|
// for correctness because the type is not part of the function's
|
|
// signature.
|
|
// FIXME: This is a hack. We should be able to solve this circularity and
|
|
// the one in getLVForClassMember for Functions some other way.
|
|
QualType TypeAsWritten = Function->getType();
|
|
if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
|
|
TypeAsWritten = TSI->getType();
|
|
if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
|
|
return LinkageInfo::uniqueExternal();
|
|
}
|
|
|
|
// Consider LV from the template and the template arguments.
|
|
// We're at file scope, so we do not need to worry about nested
|
|
// specializations.
|
|
if (FunctionTemplateSpecializationInfo *specInfo
|
|
= Function->getTemplateSpecializationInfo()) {
|
|
mergeTemplateLV(LV, Function, specInfo, computation);
|
|
}
|
|
|
|
// - a named class (Clause 9), or an unnamed class defined in a
|
|
// typedef declaration in which the class has the typedef name
|
|
// for linkage purposes (7.1.3); or
|
|
// - a named enumeration (7.2), or an unnamed enumeration
|
|
// defined in a typedef declaration in which the enumeration
|
|
// has the typedef name for linkage purposes (7.1.3); or
|
|
} else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
|
|
// Unnamed tags have no linkage.
|
|
if (!Tag->hasNameForLinkage())
|
|
return LinkageInfo::none();
|
|
|
|
// If this is a class template specialization, consider the
|
|
// linkage of the template and template arguments. We're at file
|
|
// scope, so we do not need to worry about nested specializations.
|
|
if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
|
|
mergeTemplateLV(LV, spec, computation);
|
|
}
|
|
|
|
// - an enumerator belonging to an enumeration with external linkage;
|
|
} else if (isa<EnumConstantDecl>(D)) {
|
|
LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
|
|
computation);
|
|
if (!isExternalFormalLinkage(EnumLV.getLinkage()))
|
|
return LinkageInfo::none();
|
|
LV.merge(EnumLV);
|
|
|
|
// - a template, unless it is a function template that has
|
|
// internal linkage (Clause 14);
|
|
} else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
|
|
bool considerVisibility = !hasExplicitVisibilityAlready(computation);
|
|
LinkageInfo tempLV =
|
|
getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
|
|
LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
|
|
|
|
// - a namespace (7.3), unless it is declared within an unnamed
|
|
// namespace.
|
|
} else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
|
|
return LV;
|
|
|
|
// By extension, we assign external linkage to Objective-C
|
|
// interfaces.
|
|
} else if (isa<ObjCInterfaceDecl>(D)) {
|
|
// fallout
|
|
|
|
} else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
|
|
// A typedef declaration has linkage if it gives a type a name for
|
|
// linkage purposes.
|
|
if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
|
|
return LinkageInfo::none();
|
|
|
|
// Everything not covered here has no linkage.
|
|
} else {
|
|
return LinkageInfo::none();
|
|
}
|
|
|
|
// If we ended up with non-external linkage, visibility should
|
|
// always be default.
|
|
if (LV.getLinkage() != ExternalLinkage)
|
|
return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
|
|
|
|
return LV;
|
|
}
|
|
|
|
static LinkageInfo getLVForClassMember(const NamedDecl *D,
|
|
LVComputationKind computation) {
|
|
// Only certain class members have linkage. Note that fields don't
|
|
// really have linkage, but it's convenient to say they do for the
|
|
// purposes of calculating linkage of pointer-to-data-member
|
|
// template arguments.
|
|
//
|
|
// Templates also don't officially have linkage, but since we ignore
|
|
// the C++ standard and look at template arguments when determining
|
|
// linkage and visibility of a template specialization, we might hit
|
|
// a template template argument that way. If we do, we need to
|
|
// consider its linkage.
|
|
if (!(isa<CXXMethodDecl>(D) ||
|
|
isa<VarDecl>(D) ||
|
|
isa<FieldDecl>(D) ||
|
|
isa<IndirectFieldDecl>(D) ||
|
|
isa<TagDecl>(D) ||
|
|
isa<TemplateDecl>(D)))
|
|
return LinkageInfo::none();
|
|
|
|
LinkageInfo LV;
|
|
|
|
// If we have an explicit visibility attribute, merge that in.
|
|
if (!hasExplicitVisibilityAlready(computation)) {
|
|
if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
|
|
LV.mergeVisibility(*Vis, true);
|
|
// If we're paying attention to global visibility, apply
|
|
// -finline-visibility-hidden if this is an inline method.
|
|
//
|
|
// Note that we do this before merging information about
|
|
// the class visibility.
|
|
if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
|
|
LV.mergeVisibility(HiddenVisibility, true);
|
|
}
|
|
|
|
// If this class member has an explicit visibility attribute, the only
|
|
// thing that can change its visibility is the template arguments, so
|
|
// only look for them when processing the class.
|
|
LVComputationKind classComputation = computation;
|
|
if (LV.isVisibilityExplicit())
|
|
classComputation = withExplicitVisibilityAlready(computation);
|
|
|
|
LinkageInfo classLV =
|
|
getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
|
|
// If the class already has unique-external linkage, we can't improve.
|
|
if (classLV.getLinkage() == UniqueExternalLinkage)
|
|
return LinkageInfo::uniqueExternal();
|
|
|
|
if (!isExternallyVisible(classLV.getLinkage()))
|
|
return LinkageInfo::none();
|
|
|
|
|
|
// Otherwise, don't merge in classLV yet, because in certain cases
|
|
// we need to completely ignore the visibility from it.
|
|
|
|
// Specifically, if this decl exists and has an explicit attribute.
|
|
const NamedDecl *explicitSpecSuppressor = nullptr;
|
|
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
|
|
// If the type of the function uses a type with unique-external
|
|
// linkage, it's not legally usable from outside this translation unit.
|
|
// But only look at the type-as-written. If this function has an
|
|
// auto-deduced return type, we can't compute the linkage of that type
|
|
// because it could require looking at the linkage of this function, and we
|
|
// don't need this for correctness because the type is not part of the
|
|
// function's signature.
|
|
// FIXME: This is a hack. We should be able to solve this circularity and
|
|
// the one in getLVForNamespaceScopeDecl for Functions some other way.
|
|
{
|
|
QualType TypeAsWritten = MD->getType();
|
|
if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
|
|
TypeAsWritten = TSI->getType();
|
|
if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
|
|
return LinkageInfo::uniqueExternal();
|
|
}
|
|
// If this is a method template specialization, use the linkage for
|
|
// the template parameters and arguments.
|
|
if (FunctionTemplateSpecializationInfo *spec
|
|
= MD->getTemplateSpecializationInfo()) {
|
|
mergeTemplateLV(LV, MD, spec, computation);
|
|
if (spec->isExplicitSpecialization()) {
|
|
explicitSpecSuppressor = MD;
|
|
} else if (isExplicitMemberSpecialization(spec->getTemplate())) {
|
|
explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
|
|
}
|
|
} else if (isExplicitMemberSpecialization(MD)) {
|
|
explicitSpecSuppressor = MD;
|
|
}
|
|
|
|
} else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
|
|
if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
|
|
mergeTemplateLV(LV, spec, computation);
|
|
if (spec->isExplicitSpecialization()) {
|
|
explicitSpecSuppressor = spec;
|
|
} else {
|
|
const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
|
|
if (isExplicitMemberSpecialization(temp)) {
|
|
explicitSpecSuppressor = temp->getTemplatedDecl();
|
|
}
|
|
}
|
|
} else if (isExplicitMemberSpecialization(RD)) {
|
|
explicitSpecSuppressor = RD;
|
|
}
|
|
|
|
// Static data members.
|
|
} else if (const auto *VD = dyn_cast<VarDecl>(D)) {
|
|
if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
|
|
mergeTemplateLV(LV, spec, computation);
|
|
|
|
// Modify the variable's linkage by its type, but ignore the
|
|
// type's visibility unless it's a definition.
|
|
LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
|
|
if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
|
|
LV.mergeVisibility(typeLV);
|
|
LV.mergeExternalVisibility(typeLV);
|
|
|
|
if (isExplicitMemberSpecialization(VD)) {
|
|
explicitSpecSuppressor = VD;
|
|
}
|
|
|
|
// Template members.
|
|
} else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
|
|
bool considerVisibility =
|
|
(!LV.isVisibilityExplicit() &&
|
|
!classLV.isVisibilityExplicit() &&
|
|
!hasExplicitVisibilityAlready(computation));
|
|
LinkageInfo tempLV =
|
|
getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
|
|
LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
|
|
|
|
if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
|
|
if (isExplicitMemberSpecialization(redeclTemp)) {
|
|
explicitSpecSuppressor = temp->getTemplatedDecl();
|
|
}
|
|
}
|
|
}
|
|
|
|
// We should never be looking for an attribute directly on a template.
|
|
assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
|
|
|
|
// If this member is an explicit member specialization, and it has
|
|
// an explicit attribute, ignore visibility from the parent.
|
|
bool considerClassVisibility = true;
|
|
if (explicitSpecSuppressor &&
|
|
// optimization: hasDVA() is true only with explicit visibility.
|
|
LV.isVisibilityExplicit() &&
|
|
classLV.getVisibility() != DefaultVisibility &&
|
|
hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
|
|
considerClassVisibility = false;
|
|
}
|
|
|
|
// Finally, merge in information from the class.
|
|
LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
|
|
return LV;
|
|
}
|
|
|
|
void NamedDecl::anchor() { }
|
|
|
|
static LinkageInfo computeLVForDecl(const NamedDecl *D,
|
|
LVComputationKind computation);
|
|
|
|
bool NamedDecl::isLinkageValid() const {
|
|
if (!hasCachedLinkage())
|
|
return true;
|
|
|
|
return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
|
|
getCachedLinkage();
|
|
}
|
|
|
|
ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
|
|
StringRef name = getName();
|
|
if (name.empty()) return SFF_None;
|
|
|
|
if (name.front() == 'C')
|
|
if (name == "CFStringCreateWithFormat" ||
|
|
name == "CFStringCreateWithFormatAndArguments" ||
|
|
name == "CFStringAppendFormat" ||
|
|
name == "CFStringAppendFormatAndArguments")
|
|
return SFF_CFString;
|
|
return SFF_None;
|
|
}
|
|
|
|
Linkage NamedDecl::getLinkageInternal() const {
|
|
// We don't care about visibility here, so ask for the cheapest
|
|
// possible visibility analysis.
|
|
return getLVForDecl(this, LVForLinkageOnly).getLinkage();
|
|
}
|
|
|
|
LinkageInfo NamedDecl::getLinkageAndVisibility() const {
|
|
LVComputationKind computation =
|
|
(usesTypeVisibility(this) ? LVForType : LVForValue);
|
|
return getLVForDecl(this, computation);
|
|
}
|
|
|
|
static Optional<Visibility>
|
|
getExplicitVisibilityAux(const NamedDecl *ND,
|
|
NamedDecl::ExplicitVisibilityKind kind,
|
|
bool IsMostRecent) {
|
|
assert(!IsMostRecent || ND == ND->getMostRecentDecl());
|
|
|
|
// Check the declaration itself first.
|
|
if (Optional<Visibility> V = getVisibilityOf(ND, kind))
|
|
return V;
|
|
|
|
// If this is a member class of a specialization of a class template
|
|
// and the corresponding decl has explicit visibility, use that.
|
|
if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
|
|
CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
|
|
if (InstantiatedFrom)
|
|
return getVisibilityOf(InstantiatedFrom, kind);
|
|
}
|
|
|
|
// If there wasn't explicit visibility there, and this is a
|
|
// specialization of a class template, check for visibility
|
|
// on the pattern.
|
|
if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND))
|
|
return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
|
|
kind);
|
|
|
|
// Use the most recent declaration.
|
|
if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
|
|
const NamedDecl *MostRecent = ND->getMostRecentDecl();
|
|
if (MostRecent != ND)
|
|
return getExplicitVisibilityAux(MostRecent, kind, true);
|
|
}
|
|
|
|
if (const auto *Var = dyn_cast<VarDecl>(ND)) {
|
|
if (Var->isStaticDataMember()) {
|
|
VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
|
|
if (InstantiatedFrom)
|
|
return getVisibilityOf(InstantiatedFrom, kind);
|
|
}
|
|
|
|
if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
|
|
return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
|
|
kind);
|
|
|
|
return None;
|
|
}
|
|
// Also handle function template specializations.
|
|
if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
|
|
// If the function is a specialization of a template with an
|
|
// explicit visibility attribute, use that.
|
|
if (FunctionTemplateSpecializationInfo *templateInfo
|
|
= fn->getTemplateSpecializationInfo())
|
|
return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
|
|
kind);
|
|
|
|
// If the function is a member of a specialization of a class template
|
|
// and the corresponding decl has explicit visibility, use that.
|
|
FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
|
|
if (InstantiatedFrom)
|
|
return getVisibilityOf(InstantiatedFrom, kind);
|
|
|
|
return None;
|
|
}
|
|
|
|
// The visibility of a template is stored in the templated decl.
|
|
if (const auto *TD = dyn_cast<TemplateDecl>(ND))
|
|
return getVisibilityOf(TD->getTemplatedDecl(), kind);
|
|
|
|
return None;
|
|
}
|
|
|
|
Optional<Visibility>
|
|
NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
|
|
return getExplicitVisibilityAux(this, kind, false);
|
|
}
|
|
|
|
static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
|
|
LVComputationKind computation) {
|
|
// This lambda has its linkage/visibility determined by its owner.
|
|
if (ContextDecl) {
|
|
if (isa<ParmVarDecl>(ContextDecl))
|
|
DC = ContextDecl->getDeclContext()->getRedeclContext();
|
|
else
|
|
return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
|
|
}
|
|
|
|
if (const auto *ND = dyn_cast<NamedDecl>(DC))
|
|
return getLVForDecl(ND, computation);
|
|
|
|
return LinkageInfo::external();
|
|
}
|
|
|
|
static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
|
|
LVComputationKind computation) {
|
|
if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
|
|
if (Function->isInAnonymousNamespace() &&
|
|
!Function->isInExternCContext())
|
|
return LinkageInfo::uniqueExternal();
|
|
|
|
// This is a "void f();" which got merged with a file static.
|
|
if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
|
|
return LinkageInfo::internal();
|
|
|
|
LinkageInfo LV;
|
|
if (!hasExplicitVisibilityAlready(computation)) {
|
|
if (Optional<Visibility> Vis =
|
|
getExplicitVisibility(Function, computation))
|
|
LV.mergeVisibility(*Vis, true);
|
|
}
|
|
|
|
// Note that Sema::MergeCompatibleFunctionDecls already takes care of
|
|
// merging storage classes and visibility attributes, so we don't have to
|
|
// look at previous decls in here.
|
|
|
|
return LV;
|
|
}
|
|
|
|
if (const auto *Var = dyn_cast<VarDecl>(D)) {
|
|
if (Var->hasExternalStorage()) {
|
|
if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
|
|
return LinkageInfo::uniqueExternal();
|
|
|
|
LinkageInfo LV;
|
|
if (Var->getStorageClass() == SC_PrivateExtern)
|
|
LV.mergeVisibility(HiddenVisibility, true);
|
|
else if (!hasExplicitVisibilityAlready(computation)) {
|
|
if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
|
|
LV.mergeVisibility(*Vis, true);
|
|
}
|
|
|
|
if (const VarDecl *Prev = Var->getPreviousDecl()) {
|
|
LinkageInfo PrevLV = getLVForDecl(Prev, computation);
|
|
if (PrevLV.getLinkage())
|
|
LV.setLinkage(PrevLV.getLinkage());
|
|
LV.mergeVisibility(PrevLV);
|
|
}
|
|
|
|
return LV;
|
|
}
|
|
|
|
if (!Var->isStaticLocal())
|
|
return LinkageInfo::none();
|
|
}
|
|
|
|
ASTContext &Context = D->getASTContext();
|
|
if (!Context.getLangOpts().CPlusPlus)
|
|
return LinkageInfo::none();
|
|
|
|
const Decl *OuterD = getOutermostFuncOrBlockContext(D);
|
|
if (!OuterD || OuterD->isInvalidDecl())
|
|
return LinkageInfo::none();
|
|
|
|
LinkageInfo LV;
|
|
if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
|
|
if (!BD->getBlockManglingNumber())
|
|
return LinkageInfo::none();
|
|
|
|
LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
|
|
BD->getBlockManglingContextDecl(), computation);
|
|
} else {
|
|
const auto *FD = cast<FunctionDecl>(OuterD);
|
|
if (!FD->isInlined() &&
|
|
!isTemplateInstantiation(FD->getTemplateSpecializationKind()))
|
|
return LinkageInfo::none();
|
|
|
|
LV = getLVForDecl(FD, computation);
|
|
}
|
|
if (!isExternallyVisible(LV.getLinkage()))
|
|
return LinkageInfo::none();
|
|
return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
|
|
LV.isVisibilityExplicit());
|
|
}
|
|
|
|
static inline const CXXRecordDecl*
|
|
getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
|
|
const CXXRecordDecl *Ret = Record;
|
|
while (Record && Record->isLambda()) {
|
|
Ret = Record;
|
|
if (!Record->getParent()) break;
|
|
// Get the Containing Class of this Lambda Class
|
|
Record = dyn_cast_or_null<CXXRecordDecl>(
|
|
Record->getParent()->getParent());
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
static LinkageInfo computeLVForDecl(const NamedDecl *D,
|
|
LVComputationKind computation) {
|
|
// Internal_linkage attribute overrides other considerations.
|
|
if (D->hasAttr<InternalLinkageAttr>())
|
|
return LinkageInfo::internal();
|
|
|
|
// Objective-C: treat all Objective-C declarations as having external
|
|
// linkage.
|
|
switch (D->getKind()) {
|
|
default:
|
|
break;
|
|
|
|
// Per C++ [basic.link]p2, only the names of objects, references,
|
|
// functions, types, templates, namespaces, and values ever have linkage.
|
|
//
|
|
// Note that the name of a typedef, namespace alias, using declaration,
|
|
// and so on are not the name of the corresponding type, namespace, or
|
|
// declaration, so they do *not* have linkage.
|
|
case Decl::ImplicitParam:
|
|
case Decl::Label:
|
|
case Decl::NamespaceAlias:
|
|
case Decl::ParmVar:
|
|
case Decl::Using:
|
|
case Decl::UsingShadow:
|
|
case Decl::UsingDirective:
|
|
return LinkageInfo::none();
|
|
|
|
case Decl::EnumConstant:
|
|
// C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
|
|
return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
|
|
|
|
case Decl::Typedef:
|
|
case Decl::TypeAlias:
|
|
// A typedef declaration has linkage if it gives a type a name for
|
|
// linkage purposes.
|
|
if (!D->getASTContext().getLangOpts().CPlusPlus ||
|
|
!cast<TypedefNameDecl>(D)
|
|
->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
|
|
return LinkageInfo::none();
|
|
break;
|
|
|
|
case Decl::TemplateTemplateParm: // count these as external
|
|
case Decl::NonTypeTemplateParm:
|
|
case Decl::ObjCAtDefsField:
|
|
case Decl::ObjCCategory:
|
|
case Decl::ObjCCategoryImpl:
|
|
case Decl::ObjCCompatibleAlias:
|
|
case Decl::ObjCImplementation:
|
|
case Decl::ObjCMethod:
|
|
case Decl::ObjCProperty:
|
|
case Decl::ObjCPropertyImpl:
|
|
case Decl::ObjCProtocol:
|
|
return LinkageInfo::external();
|
|
|
|
case Decl::CXXRecord: {
|
|
const auto *Record = cast<CXXRecordDecl>(D);
|
|
if (Record->isLambda()) {
|
|
if (!Record->getLambdaManglingNumber()) {
|
|
// This lambda has no mangling number, so it's internal.
|
|
return LinkageInfo::internal();
|
|
}
|
|
|
|
// This lambda has its linkage/visibility determined:
|
|
// - either by the outermost lambda if that lambda has no mangling
|
|
// number.
|
|
// - or by the parent of the outer most lambda
|
|
// This prevents infinite recursion in settings such as nested lambdas
|
|
// used in NSDMI's, for e.g.
|
|
// struct L {
|
|
// int t{};
|
|
// int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
|
|
// };
|
|
const CXXRecordDecl *OuterMostLambda =
|
|
getOutermostEnclosingLambda(Record);
|
|
if (!OuterMostLambda->getLambdaManglingNumber())
|
|
return LinkageInfo::internal();
|
|
|
|
return getLVForClosure(
|
|
OuterMostLambda->getDeclContext()->getRedeclContext(),
|
|
OuterMostLambda->getLambdaContextDecl(), computation);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Handle linkage for namespace-scope names.
|
|
if (D->getDeclContext()->getRedeclContext()->isFileContext())
|
|
return getLVForNamespaceScopeDecl(D, computation);
|
|
|
|
// C++ [basic.link]p5:
|
|
// In addition, a member function, static data member, a named
|
|
// class or enumeration of class scope, or an unnamed class or
|
|
// enumeration defined in a class-scope typedef declaration such
|
|
// that the class or enumeration has the typedef name for linkage
|
|
// purposes (7.1.3), has external linkage if the name of the class
|
|
// has external linkage.
|
|
if (D->getDeclContext()->isRecord())
|
|
return getLVForClassMember(D, computation);
|
|
|
|
// C++ [basic.link]p6:
|
|
// The name of a function declared in block scope and the name of
|
|
// an object declared by a block scope extern declaration have
|
|
// linkage. If there is a visible declaration of an entity with
|
|
// linkage having the same name and type, ignoring entities
|
|
// declared outside the innermost enclosing namespace scope, the
|
|
// block scope declaration declares that same entity and receives
|
|
// the linkage of the previous declaration. If there is more than
|
|
// one such matching entity, the program is ill-formed. Otherwise,
|
|
// if no matching entity is found, the block scope entity receives
|
|
// external linkage.
|
|
if (D->getDeclContext()->isFunctionOrMethod())
|
|
return getLVForLocalDecl(D, computation);
|
|
|
|
// C++ [basic.link]p6:
|
|
// Names not covered by these rules have no linkage.
|
|
return LinkageInfo::none();
|
|
}
|
|
|
|
namespace clang {
|
|
class LinkageComputer {
|
|
public:
|
|
static LinkageInfo getLVForDecl(const NamedDecl *D,
|
|
LVComputationKind computation) {
|
|
// Internal_linkage attribute overrides other considerations.
|
|
if (D->hasAttr<InternalLinkageAttr>())
|
|
return LinkageInfo::internal();
|
|
|
|
if (computation == LVForLinkageOnly && D->hasCachedLinkage())
|
|
return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
|
|
|
|
LinkageInfo LV = computeLVForDecl(D, computation);
|
|
if (D->hasCachedLinkage())
|
|
assert(D->getCachedLinkage() == LV.getLinkage());
|
|
|
|
D->setCachedLinkage(LV.getLinkage());
|
|
|
|
#ifndef NDEBUG
|
|
// In C (because of gnu inline) and in c++ with microsoft extensions an
|
|
// static can follow an extern, so we can have two decls with different
|
|
// linkages.
|
|
const LangOptions &Opts = D->getASTContext().getLangOpts();
|
|
if (!Opts.CPlusPlus || Opts.MicrosoftExt)
|
|
return LV;
|
|
|
|
// We have just computed the linkage for this decl. By induction we know
|
|
// that all other computed linkages match, check that the one we just
|
|
// computed also does.
|
|
NamedDecl *Old = nullptr;
|
|
for (auto I : D->redecls()) {
|
|
auto *T = cast<NamedDecl>(I);
|
|
if (T == D)
|
|
continue;
|
|
if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
|
|
Old = T;
|
|
break;
|
|
}
|
|
}
|
|
assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
|
|
#endif
|
|
|
|
return LV;
|
|
}
|
|
};
|
|
}
|
|
|
|
static LinkageInfo getLVForDecl(const NamedDecl *D,
|
|
LVComputationKind computation) {
|
|
return clang::LinkageComputer::getLVForDecl(D, computation);
|
|
}
|
|
|
|
void NamedDecl::printName(raw_ostream &os) const {
|
|
os << Name;
|
|
}
|
|
|
|
std::string NamedDecl::getQualifiedNameAsString() const {
|
|
std::string QualName;
|
|
llvm::raw_string_ostream OS(QualName);
|
|
printQualifiedName(OS, getASTContext().getPrintingPolicy());
|
|
return OS.str();
|
|
}
|
|
|
|
void NamedDecl::printQualifiedName(raw_ostream &OS) const {
|
|
printQualifiedName(OS, getASTContext().getPrintingPolicy());
|
|
}
|
|
|
|
void NamedDecl::printQualifiedName(raw_ostream &OS,
|
|
const PrintingPolicy &P) const {
|
|
const DeclContext *Ctx = getDeclContext();
|
|
|
|
if (Ctx->isFunctionOrMethod()) {
|
|
printName(OS);
|
|
return;
|
|
}
|
|
|
|
typedef SmallVector<const DeclContext *, 8> ContextsTy;
|
|
ContextsTy Contexts;
|
|
|
|
// Collect contexts.
|
|
while (Ctx && isa<NamedDecl>(Ctx)) {
|
|
Contexts.push_back(Ctx);
|
|
Ctx = Ctx->getParent();
|
|
}
|
|
|
|
for (const DeclContext *DC : reverse(Contexts)) {
|
|
if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
|
|
OS << Spec->getName();
|
|
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
|
|
TemplateSpecializationType::PrintTemplateArgumentList(
|
|
OS, TemplateArgs.asArray(), P);
|
|
} else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
|
|
if (P.SuppressUnwrittenScope &&
|
|
(ND->isAnonymousNamespace() || ND->isInline()))
|
|
continue;
|
|
if (ND->isAnonymousNamespace()) {
|
|
OS << (P.MSVCFormatting ? "`anonymous namespace\'"
|
|
: "(anonymous namespace)");
|
|
}
|
|
else
|
|
OS << *ND;
|
|
} else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
|
|
if (!RD->getIdentifier())
|
|
OS << "(anonymous " << RD->getKindName() << ')';
|
|
else
|
|
OS << *RD;
|
|
} else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
|
|
const FunctionProtoType *FT = nullptr;
|
|
if (FD->hasWrittenPrototype())
|
|
FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
|
|
|
|
OS << *FD << '(';
|
|
if (FT) {
|
|
unsigned NumParams = FD->getNumParams();
|
|
for (unsigned i = 0; i < NumParams; ++i) {
|
|
if (i)
|
|
OS << ", ";
|
|
OS << FD->getParamDecl(i)->getType().stream(P);
|
|
}
|
|
|
|
if (FT->isVariadic()) {
|
|
if (NumParams > 0)
|
|
OS << ", ";
|
|
OS << "...";
|
|
}
|
|
}
|
|
OS << ')';
|
|
} else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
|
|
// C++ [dcl.enum]p10: Each enum-name and each unscoped
|
|
// enumerator is declared in the scope that immediately contains
|
|
// the enum-specifier. Each scoped enumerator is declared in the
|
|
// scope of the enumeration.
|
|
if (ED->isScoped() || ED->getIdentifier())
|
|
OS << *ED;
|
|
else
|
|
continue;
|
|
} else {
|
|
OS << *cast<NamedDecl>(DC);
|
|
}
|
|
OS << "::";
|
|
}
|
|
|
|
if (getDeclName() || isa<DecompositionDecl>(this))
|
|
OS << *this;
|
|
else
|
|
OS << "(anonymous)";
|
|
}
|
|
|
|
void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
|
|
const PrintingPolicy &Policy,
|
|
bool Qualified) const {
|
|
if (Qualified)
|
|
printQualifiedName(OS, Policy);
|
|
else
|
|
printName(OS);
|
|
}
|
|
|
|
template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
|
|
return true;
|
|
}
|
|
static bool isRedeclarableImpl(...) { return false; }
|
|
static bool isRedeclarable(Decl::Kind K) {
|
|
switch (K) {
|
|
#define DECL(Type, Base) \
|
|
case Decl::Type: \
|
|
return isRedeclarableImpl((Type##Decl *)nullptr);
|
|
#define ABSTRACT_DECL(DECL)
|
|
#include "clang/AST/DeclNodes.inc"
|
|
}
|
|
llvm_unreachable("unknown decl kind");
|
|
}
|
|
|
|
bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
|
|
assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
|
|
|
|
// Never replace one imported declaration with another; we need both results
|
|
// when re-exporting.
|
|
if (OldD->isFromASTFile() && isFromASTFile())
|
|
return false;
|
|
|
|
// A kind mismatch implies that the declaration is not replaced.
|
|
if (OldD->getKind() != getKind())
|
|
return false;
|
|
|
|
// For method declarations, we never replace. (Why?)
|
|
if (isa<ObjCMethodDecl>(this))
|
|
return false;
|
|
|
|
// For parameters, pick the newer one. This is either an error or (in
|
|
// Objective-C) permitted as an extension.
|
|
if (isa<ParmVarDecl>(this))
|
|
return true;
|
|
|
|
// Inline namespaces can give us two declarations with the same
|
|
// name and kind in the same scope but different contexts; we should
|
|
// keep both declarations in this case.
|
|
if (!this->getDeclContext()->getRedeclContext()->Equals(
|
|
OldD->getDeclContext()->getRedeclContext()))
|
|
return false;
|
|
|
|
// Using declarations can be replaced if they import the same name from the
|
|
// same context.
|
|
if (auto *UD = dyn_cast<UsingDecl>(this)) {
|
|
ASTContext &Context = getASTContext();
|
|
return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
|
|
Context.getCanonicalNestedNameSpecifier(
|
|
cast<UsingDecl>(OldD)->getQualifier());
|
|
}
|
|
if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
|
|
ASTContext &Context = getASTContext();
|
|
return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
|
|
Context.getCanonicalNestedNameSpecifier(
|
|
cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
|
|
}
|
|
|
|
// UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
|
|
// They can be replaced if they nominate the same namespace.
|
|
// FIXME: Is this true even if they have different module visibility?
|
|
if (auto *UD = dyn_cast<UsingDirectiveDecl>(this))
|
|
return UD->getNominatedNamespace()->getOriginalNamespace() ==
|
|
cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
|
|
->getOriginalNamespace();
|
|
|
|
if (isRedeclarable(getKind())) {
|
|
if (getCanonicalDecl() != OldD->getCanonicalDecl())
|
|
return false;
|
|
|
|
if (IsKnownNewer)
|
|
return true;
|
|
|
|
// Check whether this is actually newer than OldD. We want to keep the
|
|
// newer declaration. This loop will usually only iterate once, because
|
|
// OldD is usually the previous declaration.
|
|
for (auto D : redecls()) {
|
|
if (D == OldD)
|
|
break;
|
|
|
|
// If we reach the canonical declaration, then OldD is not actually older
|
|
// than this one.
|
|
//
|
|
// FIXME: In this case, we should not add this decl to the lookup table.
|
|
if (D->isCanonicalDecl())
|
|
return false;
|
|
}
|
|
|
|
// It's a newer declaration of the same kind of declaration in the same
|
|
// scope: we want this decl instead of the existing one.
|
|
return true;
|
|
}
|
|
|
|
// In all other cases, we need to keep both declarations in case they have
|
|
// different visibility. Any attempt to use the name will result in an
|
|
// ambiguity if more than one is visible.
|
|
return false;
|
|
}
|
|
|
|
bool NamedDecl::hasLinkage() const {
|
|
return getFormalLinkage() != NoLinkage;
|
|
}
|
|
|
|
NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
|
|
NamedDecl *ND = this;
|
|
while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
|
|
ND = UD->getTargetDecl();
|
|
|
|
if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
|
|
return AD->getClassInterface();
|
|
|
|
if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
|
|
return AD->getNamespace();
|
|
|
|
return ND;
|
|
}
|
|
|
|
bool NamedDecl::isCXXInstanceMember() const {
|
|
if (!isCXXClassMember())
|
|
return false;
|
|
|
|
const NamedDecl *D = this;
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
|
|
return true;
|
|
if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
|
|
return MD->isInstance();
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DeclaratorDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename DeclT>
|
|
static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
|
|
if (decl->getNumTemplateParameterLists() > 0)
|
|
return decl->getTemplateParameterList(0)->getTemplateLoc();
|
|
else
|
|
return decl->getInnerLocStart();
|
|
}
|
|
|
|
SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
|
|
TypeSourceInfo *TSI = getTypeSourceInfo();
|
|
if (TSI) return TSI->getTypeLoc().getBeginLoc();
|
|
return SourceLocation();
|
|
}
|
|
|
|
void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
|
|
if (QualifierLoc) {
|
|
// Make sure the extended decl info is allocated.
|
|
if (!hasExtInfo()) {
|
|
// Save (non-extended) type source info pointer.
|
|
auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
|
|
// Allocate external info struct.
|
|
DeclInfo = new (getASTContext()) ExtInfo;
|
|
// Restore savedTInfo into (extended) decl info.
|
|
getExtInfo()->TInfo = savedTInfo;
|
|
}
|
|
// Set qualifier info.
|
|
getExtInfo()->QualifierLoc = QualifierLoc;
|
|
} else {
|
|
// Here Qualifier == 0, i.e., we are removing the qualifier (if any).
|
|
if (hasExtInfo()) {
|
|
if (getExtInfo()->NumTemplParamLists == 0) {
|
|
// Save type source info pointer.
|
|
TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
|
|
// Deallocate the extended decl info.
|
|
getASTContext().Deallocate(getExtInfo());
|
|
// Restore savedTInfo into (non-extended) decl info.
|
|
DeclInfo = savedTInfo;
|
|
}
|
|
else
|
|
getExtInfo()->QualifierLoc = QualifierLoc;
|
|
}
|
|
}
|
|
}
|
|
|
|
void DeclaratorDecl::setTemplateParameterListsInfo(
|
|
ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
|
|
assert(!TPLists.empty());
|
|
// Make sure the extended decl info is allocated.
|
|
if (!hasExtInfo()) {
|
|
// Save (non-extended) type source info pointer.
|
|
auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
|
|
// Allocate external info struct.
|
|
DeclInfo = new (getASTContext()) ExtInfo;
|
|
// Restore savedTInfo into (extended) decl info.
|
|
getExtInfo()->TInfo = savedTInfo;
|
|
}
|
|
// Set the template parameter lists info.
|
|
getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
|
|
}
|
|
|
|
SourceLocation DeclaratorDecl::getOuterLocStart() const {
|
|
return getTemplateOrInnerLocStart(this);
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Helper function: returns true if QT is or contains a type
|
|
// having a postfix component.
|
|
bool typeIsPostfix(clang::QualType QT) {
|
|
while (true) {
|
|
const Type* T = QT.getTypePtr();
|
|
switch (T->getTypeClass()) {
|
|
default:
|
|
return false;
|
|
case Type::Pointer:
|
|
QT = cast<PointerType>(T)->getPointeeType();
|
|
break;
|
|
case Type::BlockPointer:
|
|
QT = cast<BlockPointerType>(T)->getPointeeType();
|
|
break;
|
|
case Type::MemberPointer:
|
|
QT = cast<MemberPointerType>(T)->getPointeeType();
|
|
break;
|
|
case Type::LValueReference:
|
|
case Type::RValueReference:
|
|
QT = cast<ReferenceType>(T)->getPointeeType();
|
|
break;
|
|
case Type::PackExpansion:
|
|
QT = cast<PackExpansionType>(T)->getPattern();
|
|
break;
|
|
case Type::Paren:
|
|
case Type::ConstantArray:
|
|
case Type::DependentSizedArray:
|
|
case Type::IncompleteArray:
|
|
case Type::VariableArray:
|
|
case Type::FunctionProto:
|
|
case Type::FunctionNoProto:
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
SourceRange DeclaratorDecl::getSourceRange() const {
|
|
SourceLocation RangeEnd = getLocation();
|
|
if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
|
|
// If the declaration has no name or the type extends past the name take the
|
|
// end location of the type.
|
|
if (!getDeclName() || typeIsPostfix(TInfo->getType()))
|
|
RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
|
|
}
|
|
return SourceRange(getOuterLocStart(), RangeEnd);
|
|
}
|
|
|
|
void QualifierInfo::setTemplateParameterListsInfo(
|
|
ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
|
|
// Free previous template parameters (if any).
|
|
if (NumTemplParamLists > 0) {
|
|
Context.Deallocate(TemplParamLists);
|
|
TemplParamLists = nullptr;
|
|
NumTemplParamLists = 0;
|
|
}
|
|
// Set info on matched template parameter lists (if any).
|
|
if (!TPLists.empty()) {
|
|
TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
|
|
NumTemplParamLists = TPLists.size();
|
|
std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VarDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
|
|
switch (SC) {
|
|
case SC_None: break;
|
|
case SC_Auto: return "auto";
|
|
case SC_Extern: return "extern";
|
|
case SC_PrivateExtern: return "__private_extern__";
|
|
case SC_Register: return "register";
|
|
case SC_Static: return "static";
|
|
}
|
|
|
|
llvm_unreachable("Invalid storage class");
|
|
}
|
|
|
|
VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
|
|
StorageClass SC)
|
|
: DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
|
|
redeclarable_base(C), Init() {
|
|
static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
|
|
"VarDeclBitfields too large!");
|
|
static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
|
|
"ParmVarDeclBitfields too large!");
|
|
static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
|
|
"NonParmVarDeclBitfields too large!");
|
|
AllBits = 0;
|
|
VarDeclBits.SClass = SC;
|
|
// Everything else is implicitly initialized to false.
|
|
}
|
|
|
|
VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartL, SourceLocation IdL,
|
|
IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
|
|
StorageClass S) {
|
|
return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
|
|
}
|
|
|
|
VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
return new (C, ID)
|
|
VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
|
|
QualType(), nullptr, SC_None);
|
|
}
|
|
|
|
void VarDecl::setStorageClass(StorageClass SC) {
|
|
assert(isLegalForVariable(SC));
|
|
VarDeclBits.SClass = SC;
|
|
}
|
|
|
|
VarDecl::TLSKind VarDecl::getTLSKind() const {
|
|
switch (VarDeclBits.TSCSpec) {
|
|
case TSCS_unspecified:
|
|
if (!hasAttr<ThreadAttr>() &&
|
|
!(getASTContext().getLangOpts().OpenMPUseTLS &&
|
|
getASTContext().getTargetInfo().isTLSSupported() &&
|
|
hasAttr<OMPThreadPrivateDeclAttr>()))
|
|
return TLS_None;
|
|
return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
|
|
LangOptions::MSVC2015)) ||
|
|
hasAttr<OMPThreadPrivateDeclAttr>())
|
|
? TLS_Dynamic
|
|
: TLS_Static;
|
|
case TSCS___thread: // Fall through.
|
|
case TSCS__Thread_local:
|
|
return TLS_Static;
|
|
case TSCS_thread_local:
|
|
return TLS_Dynamic;
|
|
}
|
|
llvm_unreachable("Unknown thread storage class specifier!");
|
|
}
|
|
|
|
SourceRange VarDecl::getSourceRange() const {
|
|
if (const Expr *Init = getInit()) {
|
|
SourceLocation InitEnd = Init->getLocEnd();
|
|
// If Init is implicit, ignore its source range and fallback on
|
|
// DeclaratorDecl::getSourceRange() to handle postfix elements.
|
|
if (InitEnd.isValid() && InitEnd != getLocation())
|
|
return SourceRange(getOuterLocStart(), InitEnd);
|
|
}
|
|
return DeclaratorDecl::getSourceRange();
|
|
}
|
|
|
|
template<typename T>
|
|
static LanguageLinkage getDeclLanguageLinkage(const T &D) {
|
|
// C++ [dcl.link]p1: All function types, function names with external linkage,
|
|
// and variable names with external linkage have a language linkage.
|
|
if (!D.hasExternalFormalLinkage())
|
|
return NoLanguageLinkage;
|
|
|
|
// Language linkage is a C++ concept, but saying that everything else in C has
|
|
// C language linkage fits the implementation nicely.
|
|
ASTContext &Context = D.getASTContext();
|
|
if (!Context.getLangOpts().CPlusPlus)
|
|
return CLanguageLinkage;
|
|
|
|
// C++ [dcl.link]p4: A C language linkage is ignored in determining the
|
|
// language linkage of the names of class members and the function type of
|
|
// class member functions.
|
|
const DeclContext *DC = D.getDeclContext();
|
|
if (DC->isRecord())
|
|
return CXXLanguageLinkage;
|
|
|
|
// If the first decl is in an extern "C" context, any other redeclaration
|
|
// will have C language linkage. If the first one is not in an extern "C"
|
|
// context, we would have reported an error for any other decl being in one.
|
|
if (isFirstInExternCContext(&D))
|
|
return CLanguageLinkage;
|
|
return CXXLanguageLinkage;
|
|
}
|
|
|
|
template<typename T>
|
|
static bool isDeclExternC(const T &D) {
|
|
// Since the context is ignored for class members, they can only have C++
|
|
// language linkage or no language linkage.
|
|
const DeclContext *DC = D.getDeclContext();
|
|
if (DC->isRecord()) {
|
|
assert(D.getASTContext().getLangOpts().CPlusPlus);
|
|
return false;
|
|
}
|
|
|
|
return D.getLanguageLinkage() == CLanguageLinkage;
|
|
}
|
|
|
|
LanguageLinkage VarDecl::getLanguageLinkage() const {
|
|
return getDeclLanguageLinkage(*this);
|
|
}
|
|
|
|
bool VarDecl::isExternC() const {
|
|
return isDeclExternC(*this);
|
|
}
|
|
|
|
bool VarDecl::isInExternCContext() const {
|
|
return getLexicalDeclContext()->isExternCContext();
|
|
}
|
|
|
|
bool VarDecl::isInExternCXXContext() const {
|
|
return getLexicalDeclContext()->isExternCXXContext();
|
|
}
|
|
|
|
VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
|
|
|
|
VarDecl::DefinitionKind
|
|
VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
|
|
// C++ [basic.def]p2:
|
|
// A declaration is a definition unless [...] it contains the 'extern'
|
|
// specifier or a linkage-specification and neither an initializer [...],
|
|
// it declares a non-inline static data member in a class declaration [...],
|
|
// it declares a static data member outside a class definition and the variable
|
|
// was defined within the class with the constexpr specifier [...],
|
|
// C++1y [temp.expl.spec]p15:
|
|
// An explicit specialization of a static data member or an explicit
|
|
// specialization of a static data member template is a definition if the
|
|
// declaration includes an initializer; otherwise, it is a declaration.
|
|
//
|
|
// FIXME: How do you declare (but not define) a partial specialization of
|
|
// a static data member template outside the containing class?
|
|
if (isThisDeclarationADemotedDefinition())
|
|
return DeclarationOnly;
|
|
|
|
if (isStaticDataMember()) {
|
|
if (isOutOfLine() &&
|
|
!(getCanonicalDecl()->isInline() &&
|
|
getCanonicalDecl()->isConstexpr()) &&
|
|
(hasInit() ||
|
|
// If the first declaration is out-of-line, this may be an
|
|
// instantiation of an out-of-line partial specialization of a variable
|
|
// template for which we have not yet instantiated the initializer.
|
|
(getFirstDecl()->isOutOfLine()
|
|
? getTemplateSpecializationKind() == TSK_Undeclared
|
|
: getTemplateSpecializationKind() !=
|
|
TSK_ExplicitSpecialization) ||
|
|
isa<VarTemplatePartialSpecializationDecl>(this)))
|
|
return Definition;
|
|
else if (!isOutOfLine() && isInline())
|
|
return Definition;
|
|
else
|
|
return DeclarationOnly;
|
|
}
|
|
// C99 6.7p5:
|
|
// A definition of an identifier is a declaration for that identifier that
|
|
// [...] causes storage to be reserved for that object.
|
|
// Note: that applies for all non-file-scope objects.
|
|
// C99 6.9.2p1:
|
|
// If the declaration of an identifier for an object has file scope and an
|
|
// initializer, the declaration is an external definition for the identifier
|
|
if (hasInit())
|
|
return Definition;
|
|
|
|
if (hasDefiningAttr())
|
|
return Definition;
|
|
|
|
if (const auto *SAA = getAttr<SelectAnyAttr>())
|
|
if (!SAA->isInherited())
|
|
return Definition;
|
|
|
|
// A variable template specialization (other than a static data member
|
|
// template or an explicit specialization) is a declaration until we
|
|
// instantiate its initializer.
|
|
if (isa<VarTemplateSpecializationDecl>(this) &&
|
|
getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
|
|
return DeclarationOnly;
|
|
|
|
if (hasExternalStorage())
|
|
return DeclarationOnly;
|
|
|
|
// [dcl.link] p7:
|
|
// A declaration directly contained in a linkage-specification is treated
|
|
// as if it contains the extern specifier for the purpose of determining
|
|
// the linkage of the declared name and whether it is a definition.
|
|
if (isSingleLineLanguageLinkage(*this))
|
|
return DeclarationOnly;
|
|
|
|
// C99 6.9.2p2:
|
|
// A declaration of an object that has file scope without an initializer,
|
|
// and without a storage class specifier or the scs 'static', constitutes
|
|
// a tentative definition.
|
|
// No such thing in C++.
|
|
if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
|
|
return TentativeDefinition;
|
|
|
|
// What's left is (in C, block-scope) declarations without initializers or
|
|
// external storage. These are definitions.
|
|
return Definition;
|
|
}
|
|
|
|
VarDecl *VarDecl::getActingDefinition() {
|
|
DefinitionKind Kind = isThisDeclarationADefinition();
|
|
if (Kind != TentativeDefinition)
|
|
return nullptr;
|
|
|
|
VarDecl *LastTentative = nullptr;
|
|
VarDecl *First = getFirstDecl();
|
|
for (auto I : First->redecls()) {
|
|
Kind = I->isThisDeclarationADefinition();
|
|
if (Kind == Definition)
|
|
return nullptr;
|
|
else if (Kind == TentativeDefinition)
|
|
LastTentative = I;
|
|
}
|
|
return LastTentative;
|
|
}
|
|
|
|
VarDecl *VarDecl::getDefinition(ASTContext &C) {
|
|
VarDecl *First = getFirstDecl();
|
|
for (auto I : First->redecls()) {
|
|
if (I->isThisDeclarationADefinition(C) == Definition)
|
|
return I;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
|
|
DefinitionKind Kind = DeclarationOnly;
|
|
|
|
const VarDecl *First = getFirstDecl();
|
|
for (auto I : First->redecls()) {
|
|
Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
|
|
if (Kind == Definition)
|
|
break;
|
|
}
|
|
|
|
return Kind;
|
|
}
|
|
|
|
const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
|
|
for (auto I : redecls()) {
|
|
if (auto Expr = I->getInit()) {
|
|
D = I;
|
|
return Expr;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool VarDecl::hasInit() const {
|
|
if (auto *P = dyn_cast<ParmVarDecl>(this))
|
|
if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
|
|
return false;
|
|
|
|
return !Init.isNull();
|
|
}
|
|
|
|
Expr *VarDecl::getInit() {
|
|
if (!hasInit())
|
|
return nullptr;
|
|
|
|
if (auto *S = Init.dyn_cast<Stmt *>())
|
|
return cast<Expr>(S);
|
|
|
|
return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
|
|
}
|
|
|
|
Stmt **VarDecl::getInitAddress() {
|
|
if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
|
|
return &ES->Value;
|
|
|
|
return Init.getAddrOfPtr1();
|
|
}
|
|
|
|
bool VarDecl::isOutOfLine() const {
|
|
if (Decl::isOutOfLine())
|
|
return true;
|
|
|
|
if (!isStaticDataMember())
|
|
return false;
|
|
|
|
// If this static data member was instantiated from a static data member of
|
|
// a class template, check whether that static data member was defined
|
|
// out-of-line.
|
|
if (VarDecl *VD = getInstantiatedFromStaticDataMember())
|
|
return VD->isOutOfLine();
|
|
|
|
return false;
|
|
}
|
|
|
|
void VarDecl::setInit(Expr *I) {
|
|
if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
|
|
Eval->~EvaluatedStmt();
|
|
getASTContext().Deallocate(Eval);
|
|
}
|
|
|
|
Init = I;
|
|
}
|
|
|
|
bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
|
|
const LangOptions &Lang = C.getLangOpts();
|
|
|
|
if (!Lang.CPlusPlus)
|
|
return false;
|
|
|
|
// In C++11, any variable of reference type can be used in a constant
|
|
// expression if it is initialized by a constant expression.
|
|
if (Lang.CPlusPlus11 && getType()->isReferenceType())
|
|
return true;
|
|
|
|
// Only const objects can be used in constant expressions in C++. C++98 does
|
|
// not require the variable to be non-volatile, but we consider this to be a
|
|
// defect.
|
|
if (!getType().isConstQualified() || getType().isVolatileQualified())
|
|
return false;
|
|
|
|
// In C++, const, non-volatile variables of integral or enumeration types
|
|
// can be used in constant expressions.
|
|
if (getType()->isIntegralOrEnumerationType())
|
|
return true;
|
|
|
|
// Additionally, in C++11, non-volatile constexpr variables can be used in
|
|
// constant expressions.
|
|
return Lang.CPlusPlus11 && isConstexpr();
|
|
}
|
|
|
|
/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
|
|
/// form, which contains extra information on the evaluated value of the
|
|
/// initializer.
|
|
EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
|
|
auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
|
|
if (!Eval) {
|
|
// Note: EvaluatedStmt contains an APValue, which usually holds
|
|
// resources not allocated from the ASTContext. We need to do some
|
|
// work to avoid leaking those, but we do so in VarDecl::evaluateValue
|
|
// where we can detect whether there's anything to clean up or not.
|
|
Eval = new (getASTContext()) EvaluatedStmt;
|
|
Eval->Value = Init.get<Stmt *>();
|
|
Init = Eval;
|
|
}
|
|
return Eval;
|
|
}
|
|
|
|
APValue *VarDecl::evaluateValue() const {
|
|
SmallVector<PartialDiagnosticAt, 8> Notes;
|
|
return evaluateValue(Notes);
|
|
}
|
|
|
|
namespace {
|
|
// Destroy an APValue that was allocated in an ASTContext.
|
|
void DestroyAPValue(void* UntypedValue) {
|
|
static_cast<APValue*>(UntypedValue)->~APValue();
|
|
}
|
|
} // namespace
|
|
|
|
APValue *VarDecl::evaluateValue(
|
|
SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
|
|
EvaluatedStmt *Eval = ensureEvaluatedStmt();
|
|
|
|
// We only produce notes indicating why an initializer is non-constant the
|
|
// first time it is evaluated. FIXME: The notes won't always be emitted the
|
|
// first time we try evaluation, so might not be produced at all.
|
|
if (Eval->WasEvaluated)
|
|
return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
|
|
|
|
const auto *Init = cast<Expr>(Eval->Value);
|
|
assert(!Init->isValueDependent());
|
|
|
|
if (Eval->IsEvaluating) {
|
|
// FIXME: Produce a diagnostic for self-initialization.
|
|
Eval->CheckedICE = true;
|
|
Eval->IsICE = false;
|
|
return nullptr;
|
|
}
|
|
|
|
Eval->IsEvaluating = true;
|
|
|
|
bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
|
|
this, Notes);
|
|
|
|
// Ensure the computed APValue is cleaned up later if evaluation succeeded,
|
|
// or that it's empty (so that there's nothing to clean up) if evaluation
|
|
// failed.
|
|
if (!Result)
|
|
Eval->Evaluated = APValue();
|
|
else if (Eval->Evaluated.needsCleanup())
|
|
getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
|
|
|
|
Eval->IsEvaluating = false;
|
|
Eval->WasEvaluated = true;
|
|
|
|
// In C++11, we have determined whether the initializer was a constant
|
|
// expression as a side-effect.
|
|
if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
|
|
Eval->CheckedICE = true;
|
|
Eval->IsICE = Result && Notes.empty();
|
|
}
|
|
|
|
return Result ? &Eval->Evaluated : nullptr;
|
|
}
|
|
|
|
APValue *VarDecl::getEvaluatedValue() const {
|
|
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
|
|
if (Eval->WasEvaluated)
|
|
return &Eval->Evaluated;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool VarDecl::isInitKnownICE() const {
|
|
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
|
|
return Eval->CheckedICE;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool VarDecl::isInitICE() const {
|
|
assert(isInitKnownICE() &&
|
|
"Check whether we already know that the initializer is an ICE");
|
|
return Init.get<EvaluatedStmt *>()->IsICE;
|
|
}
|
|
|
|
bool VarDecl::checkInitIsICE() const {
|
|
// Initializers of weak variables are never ICEs.
|
|
if (isWeak())
|
|
return false;
|
|
|
|
EvaluatedStmt *Eval = ensureEvaluatedStmt();
|
|
if (Eval->CheckedICE)
|
|
// We have already checked whether this subexpression is an
|
|
// integral constant expression.
|
|
return Eval->IsICE;
|
|
|
|
const auto *Init = cast<Expr>(Eval->Value);
|
|
assert(!Init->isValueDependent());
|
|
|
|
// In C++11, evaluate the initializer to check whether it's a constant
|
|
// expression.
|
|
if (getASTContext().getLangOpts().CPlusPlus11) {
|
|
SmallVector<PartialDiagnosticAt, 8> Notes;
|
|
evaluateValue(Notes);
|
|
return Eval->IsICE;
|
|
}
|
|
|
|
// It's an ICE whether or not the definition we found is
|
|
// out-of-line. See DR 721 and the discussion in Clang PR
|
|
// 6206 for details.
|
|
|
|
if (Eval->CheckingICE)
|
|
return false;
|
|
Eval->CheckingICE = true;
|
|
|
|
Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
|
|
Eval->CheckingICE = false;
|
|
Eval->CheckedICE = true;
|
|
return Eval->IsICE;
|
|
}
|
|
|
|
VarDecl *VarDecl::getTemplateInstantiationPattern() const {
|
|
// If it's a variable template specialization, find the template or partial
|
|
// specialization from which it was instantiated.
|
|
if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(this)) {
|
|
auto From = VDTemplSpec->getInstantiatedFrom();
|
|
if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
|
|
while (auto *NewVTD = VTD->getInstantiatedFromMemberTemplate()) {
|
|
if (NewVTD->isMemberSpecialization())
|
|
break;
|
|
VTD = NewVTD;
|
|
}
|
|
return VTD->getTemplatedDecl()->getDefinition();
|
|
}
|
|
if (auto *VTPSD =
|
|
From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
|
|
while (auto *NewVTPSD = VTPSD->getInstantiatedFromMember()) {
|
|
if (NewVTPSD->isMemberSpecialization())
|
|
break;
|
|
VTPSD = NewVTPSD;
|
|
}
|
|
return VTPSD->getDefinition();
|
|
}
|
|
}
|
|
|
|
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
|
|
if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
|
|
VarDecl *VD = getInstantiatedFromStaticDataMember();
|
|
while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
|
|
VD = NewVD;
|
|
return VD->getDefinition();
|
|
}
|
|
}
|
|
|
|
if (VarTemplateDecl *VarTemplate = getDescribedVarTemplate()) {
|
|
|
|
while (VarTemplate->getInstantiatedFromMemberTemplate()) {
|
|
if (VarTemplate->isMemberSpecialization())
|
|
break;
|
|
VarTemplate = VarTemplate->getInstantiatedFromMemberTemplate();
|
|
}
|
|
|
|
assert((!VarTemplate->getTemplatedDecl() ||
|
|
!isTemplateInstantiation(getTemplateSpecializationKind())) &&
|
|
"couldn't find pattern for variable instantiation");
|
|
|
|
return VarTemplate->getTemplatedDecl();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
|
|
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
|
|
return cast<VarDecl>(MSI->getInstantiatedFrom());
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
|
|
if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
|
|
return Spec->getSpecializationKind();
|
|
|
|
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
|
|
return MSI->getTemplateSpecializationKind();
|
|
|
|
return TSK_Undeclared;
|
|
}
|
|
|
|
SourceLocation VarDecl::getPointOfInstantiation() const {
|
|
if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
|
|
return Spec->getPointOfInstantiation();
|
|
|
|
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
|
|
return MSI->getPointOfInstantiation();
|
|
|
|
return SourceLocation();
|
|
}
|
|
|
|
VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
|
|
return getASTContext().getTemplateOrSpecializationInfo(this)
|
|
.dyn_cast<VarTemplateDecl *>();
|
|
}
|
|
|
|
void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
|
|
getASTContext().setTemplateOrSpecializationInfo(this, Template);
|
|
}
|
|
|
|
MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
|
|
if (isStaticDataMember())
|
|
// FIXME: Remove ?
|
|
// return getASTContext().getInstantiatedFromStaticDataMember(this);
|
|
return getASTContext().getTemplateOrSpecializationInfo(this)
|
|
.dyn_cast<MemberSpecializationInfo *>();
|
|
return nullptr;
|
|
}
|
|
|
|
void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
|
|
SourceLocation PointOfInstantiation) {
|
|
assert((isa<VarTemplateSpecializationDecl>(this) ||
|
|
getMemberSpecializationInfo()) &&
|
|
"not a variable or static data member template specialization");
|
|
|
|
if (VarTemplateSpecializationDecl *Spec =
|
|
dyn_cast<VarTemplateSpecializationDecl>(this)) {
|
|
Spec->setSpecializationKind(TSK);
|
|
if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
|
|
Spec->getPointOfInstantiation().isInvalid())
|
|
Spec->setPointOfInstantiation(PointOfInstantiation);
|
|
}
|
|
|
|
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
|
|
MSI->setTemplateSpecializationKind(TSK);
|
|
if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
|
|
MSI->getPointOfInstantiation().isInvalid())
|
|
MSI->setPointOfInstantiation(PointOfInstantiation);
|
|
}
|
|
}
|
|
|
|
void
|
|
VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
|
|
TemplateSpecializationKind TSK) {
|
|
assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
|
|
"Previous template or instantiation?");
|
|
getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ParmVarDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc,
|
|
SourceLocation IdLoc, IdentifierInfo *Id,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
StorageClass S, Expr *DefArg) {
|
|
return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
|
|
S, DefArg);
|
|
}
|
|
|
|
QualType ParmVarDecl::getOriginalType() const {
|
|
TypeSourceInfo *TSI = getTypeSourceInfo();
|
|
QualType T = TSI ? TSI->getType() : getType();
|
|
if (const auto *DT = dyn_cast<DecayedType>(T))
|
|
return DT->getOriginalType();
|
|
return T;
|
|
}
|
|
|
|
ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
return new (C, ID)
|
|
ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
|
|
nullptr, QualType(), nullptr, SC_None, nullptr);
|
|
}
|
|
|
|
SourceRange ParmVarDecl::getSourceRange() const {
|
|
if (!hasInheritedDefaultArg()) {
|
|
SourceRange ArgRange = getDefaultArgRange();
|
|
if (ArgRange.isValid())
|
|
return SourceRange(getOuterLocStart(), ArgRange.getEnd());
|
|
}
|
|
|
|
// DeclaratorDecl considers the range of postfix types as overlapping with the
|
|
// declaration name, but this is not the case with parameters in ObjC methods.
|
|
if (isa<ObjCMethodDecl>(getDeclContext()))
|
|
return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
|
|
|
|
return DeclaratorDecl::getSourceRange();
|
|
}
|
|
|
|
Expr *ParmVarDecl::getDefaultArg() {
|
|
assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
|
|
assert(!hasUninstantiatedDefaultArg() &&
|
|
"Default argument is not yet instantiated!");
|
|
|
|
Expr *Arg = getInit();
|
|
if (auto *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
|
|
return E->getSubExpr();
|
|
|
|
return Arg;
|
|
}
|
|
|
|
void ParmVarDecl::setDefaultArg(Expr *defarg) {
|
|
ParmVarDeclBits.DefaultArgKind = DAK_Normal;
|
|
Init = defarg;
|
|
}
|
|
|
|
SourceRange ParmVarDecl::getDefaultArgRange() const {
|
|
switch (ParmVarDeclBits.DefaultArgKind) {
|
|
case DAK_None:
|
|
case DAK_Unparsed:
|
|
// Nothing we can do here.
|
|
return SourceRange();
|
|
|
|
case DAK_Uninstantiated:
|
|
return getUninstantiatedDefaultArg()->getSourceRange();
|
|
|
|
case DAK_Normal:
|
|
if (const Expr *E = getInit())
|
|
return E->getSourceRange();
|
|
|
|
// Missing an actual expression, may be invalid.
|
|
return SourceRange();
|
|
}
|
|
llvm_unreachable("Invalid default argument kind.");
|
|
}
|
|
|
|
void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
|
|
ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
|
|
Init = arg;
|
|
}
|
|
|
|
Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
|
|
assert(hasUninstantiatedDefaultArg() &&
|
|
"Wrong kind of initialization expression!");
|
|
return cast_or_null<Expr>(Init.get<Stmt *>());
|
|
}
|
|
|
|
bool ParmVarDecl::hasDefaultArg() const {
|
|
// FIXME: We should just return false for DAK_None here once callers are
|
|
// prepared for the case that we encountered an invalid default argument and
|
|
// were unable to even build an invalid expression.
|
|
return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
|
|
!Init.isNull();
|
|
}
|
|
|
|
bool ParmVarDecl::isParameterPack() const {
|
|
return isa<PackExpansionType>(getType());
|
|
}
|
|
|
|
void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
|
|
getASTContext().setParameterIndex(this, parameterIndex);
|
|
ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
|
|
}
|
|
|
|
unsigned ParmVarDecl::getParameterIndexLarge() const {
|
|
return getASTContext().getParameterIndex(this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FunctionDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void FunctionDecl::getNameForDiagnostic(
|
|
raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
|
|
NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
|
|
const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
|
|
if (TemplateArgs)
|
|
TemplateSpecializationType::PrintTemplateArgumentList(
|
|
OS, TemplateArgs->asArray(), Policy);
|
|
}
|
|
|
|
bool FunctionDecl::isVariadic() const {
|
|
if (const auto *FT = getType()->getAs<FunctionProtoType>())
|
|
return FT->isVariadic();
|
|
return false;
|
|
}
|
|
|
|
bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
|
|
for (auto I : redecls()) {
|
|
if (I->Body || I->IsLateTemplateParsed) {
|
|
Definition = I;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool FunctionDecl::hasTrivialBody() const
|
|
{
|
|
Stmt *S = getBody();
|
|
if (!S) {
|
|
// Since we don't have a body for this function, we don't know if it's
|
|
// trivial or not.
|
|
return false;
|
|
}
|
|
|
|
if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
|
|
for (auto I : redecls()) {
|
|
if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
|
|
I->hasDefiningAttr()) {
|
|
Definition = I->IsDeleted ? I->getCanonicalDecl() : I;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
|
|
if (!hasBody(Definition))
|
|
return nullptr;
|
|
|
|
if (Definition->Body)
|
|
return Definition->Body.get(getASTContext().getExternalSource());
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void FunctionDecl::setBody(Stmt *B) {
|
|
Body = B;
|
|
if (B)
|
|
EndRangeLoc = B->getLocEnd();
|
|
}
|
|
|
|
void FunctionDecl::setPure(bool P) {
|
|
IsPure = P;
|
|
if (P)
|
|
if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
|
|
Parent->markedVirtualFunctionPure();
|
|
}
|
|
|
|
template<std::size_t Len>
|
|
static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
|
|
IdentifierInfo *II = ND->getIdentifier();
|
|
return II && II->isStr(Str);
|
|
}
|
|
|
|
bool FunctionDecl::isMain() const {
|
|
const TranslationUnitDecl *tunit =
|
|
dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
|
|
return tunit &&
|
|
!tunit->getASTContext().getLangOpts().Freestanding &&
|
|
isNamed(this, "main");
|
|
}
|
|
|
|
bool FunctionDecl::isMSVCRTEntryPoint() const {
|
|
const TranslationUnitDecl *TUnit =
|
|
dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
|
|
if (!TUnit)
|
|
return false;
|
|
|
|
// Even though we aren't really targeting MSVCRT if we are freestanding,
|
|
// semantic analysis for these functions remains the same.
|
|
|
|
// MSVCRT entry points only exist on MSVCRT targets.
|
|
if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
|
|
return false;
|
|
|
|
// Nameless functions like constructors cannot be entry points.
|
|
if (!getIdentifier())
|
|
return false;
|
|
|
|
return llvm::StringSwitch<bool>(getName())
|
|
.Cases("main", // an ANSI console app
|
|
"wmain", // a Unicode console App
|
|
"WinMain", // an ANSI GUI app
|
|
"wWinMain", // a Unicode GUI app
|
|
"DllMain", // a DLL
|
|
true)
|
|
.Default(false);
|
|
}
|
|
|
|
bool FunctionDecl::isReservedGlobalPlacementOperator() const {
|
|
assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
|
|
assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
|
|
getDeclName().getCXXOverloadedOperator() == OO_Delete ||
|
|
getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
|
|
getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
|
|
|
|
if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
|
|
return false;
|
|
|
|
const auto *proto = getType()->castAs<FunctionProtoType>();
|
|
if (proto->getNumParams() != 2 || proto->isVariadic())
|
|
return false;
|
|
|
|
ASTContext &Context =
|
|
cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
|
|
->getASTContext();
|
|
|
|
// The result type and first argument type are constant across all
|
|
// these operators. The second argument must be exactly void*.
|
|
return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
|
|
}
|
|
|
|
bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
|
|
if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
|
|
return false;
|
|
if (getDeclName().getCXXOverloadedOperator() != OO_New &&
|
|
getDeclName().getCXXOverloadedOperator() != OO_Delete &&
|
|
getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
|
|
getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
|
|
return false;
|
|
|
|
if (isa<CXXRecordDecl>(getDeclContext()))
|
|
return false;
|
|
|
|
// This can only fail for an invalid 'operator new' declaration.
|
|
if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
|
|
return false;
|
|
|
|
const auto *FPT = getType()->castAs<FunctionProtoType>();
|
|
if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
|
|
return false;
|
|
|
|
// If this is a single-parameter function, it must be a replaceable global
|
|
// allocation or deallocation function.
|
|
if (FPT->getNumParams() == 1)
|
|
return true;
|
|
|
|
unsigned Params = 1;
|
|
QualType Ty = FPT->getParamType(Params);
|
|
ASTContext &Ctx = getASTContext();
|
|
|
|
auto Consume = [&] {
|
|
++Params;
|
|
Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
|
|
};
|
|
|
|
// In C++14, the next parameter can be a 'std::size_t' for sized delete.
|
|
bool IsSizedDelete = false;
|
|
if (Ctx.getLangOpts().SizedDeallocation &&
|
|
(getDeclName().getCXXOverloadedOperator() == OO_Delete ||
|
|
getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
|
|
Ctx.hasSameType(Ty, Ctx.getSizeType())) {
|
|
IsSizedDelete = true;
|
|
Consume();
|
|
}
|
|
|
|
// In C++17, the next parameter can be a 'std::align_val_t' for aligned
|
|
// new/delete.
|
|
if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT())
|
|
Consume();
|
|
|
|
// Finally, if this is not a sized delete, the final parameter can
|
|
// be a 'const std::nothrow_t&'.
|
|
if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
|
|
Ty = Ty->getPointeeType();
|
|
if (Ty.getCVRQualifiers() != Qualifiers::Const)
|
|
return false;
|
|
const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
|
|
if (RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace())
|
|
Consume();
|
|
}
|
|
|
|
return Params == FPT->getNumParams();
|
|
}
|
|
|
|
LanguageLinkage FunctionDecl::getLanguageLinkage() const {
|
|
return getDeclLanguageLinkage(*this);
|
|
}
|
|
|
|
bool FunctionDecl::isExternC() const {
|
|
return isDeclExternC(*this);
|
|
}
|
|
|
|
bool FunctionDecl::isInExternCContext() const {
|
|
return getLexicalDeclContext()->isExternCContext();
|
|
}
|
|
|
|
bool FunctionDecl::isInExternCXXContext() const {
|
|
return getLexicalDeclContext()->isExternCXXContext();
|
|
}
|
|
|
|
bool FunctionDecl::isGlobal() const {
|
|
if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
|
|
return Method->isStatic();
|
|
|
|
if (getCanonicalDecl()->getStorageClass() == SC_Static)
|
|
return false;
|
|
|
|
for (const DeclContext *DC = getDeclContext();
|
|
DC->isNamespace();
|
|
DC = DC->getParent()) {
|
|
if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
|
|
if (!Namespace->getDeclName())
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool FunctionDecl::isNoReturn() const {
|
|
if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
|
|
hasAttr<C11NoReturnAttr>())
|
|
return true;
|
|
|
|
if (auto *FnTy = getType()->getAs<FunctionType>())
|
|
return FnTy->getNoReturnAttr();
|
|
|
|
return false;
|
|
}
|
|
|
|
void
|
|
FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
|
|
redeclarable_base::setPreviousDecl(PrevDecl);
|
|
|
|
if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
|
|
FunctionTemplateDecl *PrevFunTmpl
|
|
= PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
|
|
assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
|
|
FunTmpl->setPreviousDecl(PrevFunTmpl);
|
|
}
|
|
|
|
if (PrevDecl && PrevDecl->IsInline)
|
|
IsInline = true;
|
|
}
|
|
|
|
FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
|
|
|
|
/// \brief Returns a value indicating whether this function
|
|
/// corresponds to a builtin function.
|
|
///
|
|
/// The function corresponds to a built-in function if it is
|
|
/// declared at translation scope or within an extern "C" block and
|
|
/// its name matches with the name of a builtin. The returned value
|
|
/// will be 0 for functions that do not correspond to a builtin, a
|
|
/// value of type \c Builtin::ID if in the target-independent range
|
|
/// \c [1,Builtin::First), or a target-specific builtin value.
|
|
unsigned FunctionDecl::getBuiltinID() const {
|
|
if (!getIdentifier())
|
|
return 0;
|
|
|
|
unsigned BuiltinID = getIdentifier()->getBuiltinID();
|
|
if (!BuiltinID)
|
|
return 0;
|
|
|
|
ASTContext &Context = getASTContext();
|
|
if (Context.getLangOpts().CPlusPlus) {
|
|
const auto *LinkageDecl =
|
|
dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext());
|
|
// In C++, the first declaration of a builtin is always inside an implicit
|
|
// extern "C".
|
|
// FIXME: A recognised library function may not be directly in an extern "C"
|
|
// declaration, for instance "extern "C" { namespace std { decl } }".
|
|
if (!LinkageDecl) {
|
|
if (BuiltinID == Builtin::BI__GetExceptionInfo &&
|
|
Context.getTargetInfo().getCXXABI().isMicrosoft())
|
|
return Builtin::BI__GetExceptionInfo;
|
|
return 0;
|
|
}
|
|
if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
|
|
return 0;
|
|
}
|
|
|
|
// If the function is marked "overloadable", it has a different mangled name
|
|
// and is not the C library function.
|
|
if (hasAttr<OverloadableAttr>())
|
|
return 0;
|
|
|
|
if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
|
|
return BuiltinID;
|
|
|
|
// This function has the name of a known C library
|
|
// function. Determine whether it actually refers to the C library
|
|
// function or whether it just has the same name.
|
|
|
|
// If this is a static function, it's not a builtin.
|
|
if (getStorageClass() == SC_Static)
|
|
return 0;
|
|
|
|
// OpenCL v1.2 s6.9.f - The library functions defined in
|
|
// the C99 standard headers are not available.
|
|
if (Context.getLangOpts().OpenCL &&
|
|
Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
|
|
return 0;
|
|
|
|
return BuiltinID;
|
|
}
|
|
|
|
|
|
/// getNumParams - Return the number of parameters this function must have
|
|
/// based on its FunctionType. This is the length of the ParamInfo array
|
|
/// after it has been created.
|
|
unsigned FunctionDecl::getNumParams() const {
|
|
const auto *FPT = getType()->getAs<FunctionProtoType>();
|
|
return FPT ? FPT->getNumParams() : 0;
|
|
}
|
|
|
|
void FunctionDecl::setParams(ASTContext &C,
|
|
ArrayRef<ParmVarDecl *> NewParamInfo) {
|
|
assert(!ParamInfo && "Already has param info!");
|
|
assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
|
|
|
|
// Zero params -> null pointer.
|
|
if (!NewParamInfo.empty()) {
|
|
ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
|
|
std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
|
|
}
|
|
}
|
|
|
|
void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
|
|
assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
|
|
|
|
if (!NewDecls.empty()) {
|
|
NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
|
|
std::copy(NewDecls.begin(), NewDecls.end(), A);
|
|
DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size());
|
|
// Move declarations introduced in prototype to the function context.
|
|
for (auto I : NewDecls) {
|
|
DeclContext *DC = I->getDeclContext();
|
|
// Forward-declared reference to an enumeration is not added to
|
|
// declaration scope, so skip declaration that is absent from its
|
|
// declaration contexts.
|
|
if (DC->containsDecl(I)) {
|
|
DC->removeDecl(I);
|
|
I->setDeclContext(this);
|
|
addDecl(I);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// getMinRequiredArguments - Returns the minimum number of arguments
|
|
/// needed to call this function. This may be fewer than the number of
|
|
/// function parameters, if some of the parameters have default
|
|
/// arguments (in C++) or are parameter packs (C++11).
|
|
unsigned FunctionDecl::getMinRequiredArguments() const {
|
|
if (!getASTContext().getLangOpts().CPlusPlus)
|
|
return getNumParams();
|
|
|
|
unsigned NumRequiredArgs = 0;
|
|
for (auto *Param : parameters())
|
|
if (!Param->isParameterPack() && !Param->hasDefaultArg())
|
|
++NumRequiredArgs;
|
|
return NumRequiredArgs;
|
|
}
|
|
|
|
/// \brief The combination of the extern and inline keywords under MSVC forces
|
|
/// the function to be required.
|
|
///
|
|
/// Note: This function assumes that we will only get called when isInlined()
|
|
/// would return true for this FunctionDecl.
|
|
bool FunctionDecl::isMSExternInline() const {
|
|
assert(isInlined() && "expected to get called on an inlined function!");
|
|
|
|
const ASTContext &Context = getASTContext();
|
|
if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
|
|
!hasAttr<DLLExportAttr>())
|
|
return false;
|
|
|
|
for (const FunctionDecl *FD = getMostRecentDecl(); FD;
|
|
FD = FD->getPreviousDecl())
|
|
if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
|
|
if (Redecl->getStorageClass() != SC_Extern)
|
|
return false;
|
|
|
|
for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
|
|
FD = FD->getPreviousDecl())
|
|
if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
|
|
// Only consider file-scope declarations in this test.
|
|
if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
|
|
return false;
|
|
|
|
// Only consider explicit declarations; the presence of a builtin for a
|
|
// libcall shouldn't affect whether a definition is externally visible.
|
|
if (Redecl->isImplicit())
|
|
return false;
|
|
|
|
if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
|
|
return true; // Not an inline definition
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief For a function declaration in C or C++, determine whether this
|
|
/// declaration causes the definition to be externally visible.
|
|
///
|
|
/// For instance, this determines if adding the current declaration to the set
|
|
/// of redeclarations of the given functions causes
|
|
/// isInlineDefinitionExternallyVisible to change from false to true.
|
|
bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
|
|
assert(!doesThisDeclarationHaveABody() && !willHaveBody() &&
|
|
"Must have a declaration without a body.");
|
|
|
|
ASTContext &Context = getASTContext();
|
|
|
|
if (Context.getLangOpts().MSVCCompat) {
|
|
const FunctionDecl *Definition;
|
|
if (hasBody(Definition) && Definition->isInlined() &&
|
|
redeclForcesDefMSVC(this))
|
|
return true;
|
|
}
|
|
|
|
if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
|
|
// With GNU inlining, a declaration with 'inline' but not 'extern', forces
|
|
// an externally visible definition.
|
|
//
|
|
// FIXME: What happens if gnu_inline gets added on after the first
|
|
// declaration?
|
|
if (!isInlineSpecified() || getStorageClass() == SC_Extern)
|
|
return false;
|
|
|
|
const FunctionDecl *Prev = this;
|
|
bool FoundBody = false;
|
|
while ((Prev = Prev->getPreviousDecl())) {
|
|
FoundBody |= Prev->Body.isValid();
|
|
|
|
if (Prev->Body) {
|
|
// If it's not the case that both 'inline' and 'extern' are
|
|
// specified on the definition, then it is always externally visible.
|
|
if (!Prev->isInlineSpecified() ||
|
|
Prev->getStorageClass() != SC_Extern)
|
|
return false;
|
|
} else if (Prev->isInlineSpecified() &&
|
|
Prev->getStorageClass() != SC_Extern) {
|
|
return false;
|
|
}
|
|
}
|
|
return FoundBody;
|
|
}
|
|
|
|
if (Context.getLangOpts().CPlusPlus)
|
|
return false;
|
|
|
|
// C99 6.7.4p6:
|
|
// [...] If all of the file scope declarations for a function in a
|
|
// translation unit include the inline function specifier without extern,
|
|
// then the definition in that translation unit is an inline definition.
|
|
if (isInlineSpecified() && getStorageClass() != SC_Extern)
|
|
return false;
|
|
const FunctionDecl *Prev = this;
|
|
bool FoundBody = false;
|
|
while ((Prev = Prev->getPreviousDecl())) {
|
|
FoundBody |= Prev->Body.isValid();
|
|
if (RedeclForcesDefC99(Prev))
|
|
return false;
|
|
}
|
|
return FoundBody;
|
|
}
|
|
|
|
SourceRange FunctionDecl::getReturnTypeSourceRange() const {
|
|
const TypeSourceInfo *TSI = getTypeSourceInfo();
|
|
if (!TSI)
|
|
return SourceRange();
|
|
FunctionTypeLoc FTL =
|
|
TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
|
|
if (!FTL)
|
|
return SourceRange();
|
|
|
|
// Skip self-referential return types.
|
|
const SourceManager &SM = getASTContext().getSourceManager();
|
|
SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
|
|
SourceLocation Boundary = getNameInfo().getLocStart();
|
|
if (RTRange.isInvalid() || Boundary.isInvalid() ||
|
|
!SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
|
|
return SourceRange();
|
|
|
|
return RTRange;
|
|
}
|
|
|
|
const Attr *FunctionDecl::getUnusedResultAttr() const {
|
|
QualType RetType = getReturnType();
|
|
if (RetType->isRecordType()) {
|
|
const CXXRecordDecl *Ret = RetType->getAsCXXRecordDecl();
|
|
const auto *MD = dyn_cast<CXXMethodDecl>(this);
|
|
if (Ret && !(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
|
|
if (const auto *R = Ret->getAttr<WarnUnusedResultAttr>())
|
|
return R;
|
|
}
|
|
} else if (const auto *ET = RetType->getAs<EnumType>()) {
|
|
if (const EnumDecl *ED = ET->getDecl()) {
|
|
if (const auto *R = ED->getAttr<WarnUnusedResultAttr>())
|
|
return R;
|
|
}
|
|
}
|
|
return getAttr<WarnUnusedResultAttr>();
|
|
}
|
|
|
|
/// \brief For an inline function definition in C, or for a gnu_inline function
|
|
/// in C++, determine whether the definition will be externally visible.
|
|
///
|
|
/// Inline function definitions are always available for inlining optimizations.
|
|
/// However, depending on the language dialect, declaration specifiers, and
|
|
/// attributes, the definition of an inline function may or may not be
|
|
/// "externally" visible to other translation units in the program.
|
|
///
|
|
/// In C99, inline definitions are not externally visible by default. However,
|
|
/// if even one of the global-scope declarations is marked "extern inline", the
|
|
/// inline definition becomes externally visible (C99 6.7.4p6).
|
|
///
|
|
/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
|
|
/// definition, we use the GNU semantics for inline, which are nearly the
|
|
/// opposite of C99 semantics. In particular, "inline" by itself will create
|
|
/// an externally visible symbol, but "extern inline" will not create an
|
|
/// externally visible symbol.
|
|
bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
|
|
assert(doesThisDeclarationHaveABody() ||
|
|
willHaveBody() && "Must be a function definition");
|
|
assert(isInlined() && "Function must be inline");
|
|
ASTContext &Context = getASTContext();
|
|
|
|
if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
|
|
// Note: If you change the logic here, please change
|
|
// doesDeclarationForceExternallyVisibleDefinition as well.
|
|
//
|
|
// If it's not the case that both 'inline' and 'extern' are
|
|
// specified on the definition, then this inline definition is
|
|
// externally visible.
|
|
if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
|
|
return true;
|
|
|
|
// If any declaration is 'inline' but not 'extern', then this definition
|
|
// is externally visible.
|
|
for (auto Redecl : redecls()) {
|
|
if (Redecl->isInlineSpecified() &&
|
|
Redecl->getStorageClass() != SC_Extern)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// The rest of this function is C-only.
|
|
assert(!Context.getLangOpts().CPlusPlus &&
|
|
"should not use C inline rules in C++");
|
|
|
|
// C99 6.7.4p6:
|
|
// [...] If all of the file scope declarations for a function in a
|
|
// translation unit include the inline function specifier without extern,
|
|
// then the definition in that translation unit is an inline definition.
|
|
for (auto Redecl : redecls()) {
|
|
if (RedeclForcesDefC99(Redecl))
|
|
return true;
|
|
}
|
|
|
|
// C99 6.7.4p6:
|
|
// An inline definition does not provide an external definition for the
|
|
// function, and does not forbid an external definition in another
|
|
// translation unit.
|
|
return false;
|
|
}
|
|
|
|
/// getOverloadedOperator - Which C++ overloaded operator this
|
|
/// function represents, if any.
|
|
OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
|
|
if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
|
|
return getDeclName().getCXXOverloadedOperator();
|
|
else
|
|
return OO_None;
|
|
}
|
|
|
|
/// getLiteralIdentifier - The literal suffix identifier this function
|
|
/// represents, if any.
|
|
const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
|
|
if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
|
|
return getDeclName().getCXXLiteralIdentifier();
|
|
else
|
|
return nullptr;
|
|
}
|
|
|
|
FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
|
|
if (TemplateOrSpecialization.isNull())
|
|
return TK_NonTemplate;
|
|
if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
|
|
return TK_FunctionTemplate;
|
|
if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
|
|
return TK_MemberSpecialization;
|
|
if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
|
|
return TK_FunctionTemplateSpecialization;
|
|
if (TemplateOrSpecialization.is
|
|
<DependentFunctionTemplateSpecializationInfo*>())
|
|
return TK_DependentFunctionTemplateSpecialization;
|
|
|
|
llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
|
|
}
|
|
|
|
FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
|
|
if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
|
|
return cast<FunctionDecl>(Info->getInstantiatedFrom());
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
|
|
return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>();
|
|
}
|
|
|
|
void
|
|
FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
|
|
FunctionDecl *FD,
|
|
TemplateSpecializationKind TSK) {
|
|
assert(TemplateOrSpecialization.isNull() &&
|
|
"Member function is already a specialization");
|
|
MemberSpecializationInfo *Info
|
|
= new (C) MemberSpecializationInfo(FD, TSK);
|
|
TemplateOrSpecialization = Info;
|
|
}
|
|
|
|
FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
|
|
return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
|
|
}
|
|
|
|
void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
|
|
TemplateOrSpecialization = Template;
|
|
}
|
|
|
|
bool FunctionDecl::isImplicitlyInstantiable() const {
|
|
// If the function is invalid, it can't be implicitly instantiated.
|
|
if (isInvalidDecl())
|
|
return false;
|
|
|
|
switch (getTemplateSpecializationKind()) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
return false;
|
|
|
|
case TSK_ImplicitInstantiation:
|
|
return true;
|
|
|
|
// It is possible to instantiate TSK_ExplicitSpecialization kind
|
|
// if the FunctionDecl has a class scope specialization pattern.
|
|
case TSK_ExplicitSpecialization:
|
|
return getClassScopeSpecializationPattern() != nullptr;
|
|
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
// Handled below.
|
|
break;
|
|
}
|
|
|
|
// Find the actual template from which we will instantiate.
|
|
const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
|
|
bool HasPattern = false;
|
|
if (PatternDecl)
|
|
HasPattern = PatternDecl->hasBody(PatternDecl);
|
|
|
|
// C++0x [temp.explicit]p9:
|
|
// Except for inline functions, other explicit instantiation declarations
|
|
// have the effect of suppressing the implicit instantiation of the entity
|
|
// to which they refer.
|
|
if (!HasPattern || !PatternDecl)
|
|
return true;
|
|
|
|
return PatternDecl->isInlined();
|
|
}
|
|
|
|
bool FunctionDecl::isTemplateInstantiation() const {
|
|
switch (getTemplateSpecializationKind()) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitSpecialization:
|
|
return false;
|
|
case TSK_ImplicitInstantiation:
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
return true;
|
|
}
|
|
llvm_unreachable("All TSK values handled.");
|
|
}
|
|
|
|
FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
|
|
// Handle class scope explicit specialization special case.
|
|
if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
|
|
return getClassScopeSpecializationPattern();
|
|
|
|
// If this is a generic lambda call operator specialization, its
|
|
// instantiation pattern is always its primary template's pattern
|
|
// even if its primary template was instantiated from another
|
|
// member template (which happens with nested generic lambdas).
|
|
// Since a lambda's call operator's body is transformed eagerly,
|
|
// we don't have to go hunting for a prototype definition template
|
|
// (i.e. instantiated-from-member-template) to use as an instantiation
|
|
// pattern.
|
|
|
|
if (isGenericLambdaCallOperatorSpecialization(
|
|
dyn_cast<CXXMethodDecl>(this))) {
|
|
assert(getPrimaryTemplate() && "A generic lambda specialization must be "
|
|
"generated from a primary call operator "
|
|
"template");
|
|
assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() &&
|
|
"A generic lambda call operator template must always have a body - "
|
|
"even if instantiated from a prototype (i.e. as written) member "
|
|
"template");
|
|
return getPrimaryTemplate()->getTemplatedDecl();
|
|
}
|
|
|
|
if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
|
|
while (Primary->getInstantiatedFromMemberTemplate()) {
|
|
// If we have hit a point where the user provided a specialization of
|
|
// this template, we're done looking.
|
|
if (Primary->isMemberSpecialization())
|
|
break;
|
|
Primary = Primary->getInstantiatedFromMemberTemplate();
|
|
}
|
|
|
|
return Primary->getTemplatedDecl();
|
|
}
|
|
|
|
return getInstantiatedFromMemberFunction();
|
|
}
|
|
|
|
FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
|
|
if (FunctionTemplateSpecializationInfo *Info
|
|
= TemplateOrSpecialization
|
|
.dyn_cast<FunctionTemplateSpecializationInfo*>()) {
|
|
return Info->Template.getPointer();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
|
|
return getASTContext().getClassScopeSpecializationPattern(this);
|
|
}
|
|
|
|
FunctionTemplateSpecializationInfo *
|
|
FunctionDecl::getTemplateSpecializationInfo() const {
|
|
return TemplateOrSpecialization
|
|
.dyn_cast<FunctionTemplateSpecializationInfo *>();
|
|
}
|
|
|
|
const TemplateArgumentList *
|
|
FunctionDecl::getTemplateSpecializationArgs() const {
|
|
if (FunctionTemplateSpecializationInfo *Info
|
|
= TemplateOrSpecialization
|
|
.dyn_cast<FunctionTemplateSpecializationInfo*>()) {
|
|
return Info->TemplateArguments;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
const ASTTemplateArgumentListInfo *
|
|
FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
|
|
if (FunctionTemplateSpecializationInfo *Info
|
|
= TemplateOrSpecialization
|
|
.dyn_cast<FunctionTemplateSpecializationInfo*>()) {
|
|
return Info->TemplateArgumentsAsWritten;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void
|
|
FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
|
|
FunctionTemplateDecl *Template,
|
|
const TemplateArgumentList *TemplateArgs,
|
|
void *InsertPos,
|
|
TemplateSpecializationKind TSK,
|
|
const TemplateArgumentListInfo *TemplateArgsAsWritten,
|
|
SourceLocation PointOfInstantiation) {
|
|
assert(TSK != TSK_Undeclared &&
|
|
"Must specify the type of function template specialization");
|
|
FunctionTemplateSpecializationInfo *Info
|
|
= TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
|
|
if (!Info)
|
|
Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
|
|
TemplateArgs,
|
|
TemplateArgsAsWritten,
|
|
PointOfInstantiation);
|
|
TemplateOrSpecialization = Info;
|
|
Template->addSpecialization(Info, InsertPos);
|
|
}
|
|
|
|
void
|
|
FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
|
|
const UnresolvedSetImpl &Templates,
|
|
const TemplateArgumentListInfo &TemplateArgs) {
|
|
assert(TemplateOrSpecialization.isNull());
|
|
DependentFunctionTemplateSpecializationInfo *Info =
|
|
DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
|
|
TemplateArgs);
|
|
TemplateOrSpecialization = Info;
|
|
}
|
|
|
|
DependentFunctionTemplateSpecializationInfo *
|
|
FunctionDecl::getDependentSpecializationInfo() const {
|
|
return TemplateOrSpecialization
|
|
.dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
|
|
}
|
|
|
|
DependentFunctionTemplateSpecializationInfo *
|
|
DependentFunctionTemplateSpecializationInfo::Create(
|
|
ASTContext &Context, const UnresolvedSetImpl &Ts,
|
|
const TemplateArgumentListInfo &TArgs) {
|
|
void *Buffer = Context.Allocate(
|
|
totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
|
|
TArgs.size(), Ts.size()));
|
|
return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
|
|
}
|
|
|
|
DependentFunctionTemplateSpecializationInfo::
|
|
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
|
|
const TemplateArgumentListInfo &TArgs)
|
|
: AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
|
|
|
|
NumTemplates = Ts.size();
|
|
NumArgs = TArgs.size();
|
|
|
|
FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
|
|
for (unsigned I = 0, E = Ts.size(); I != E; ++I)
|
|
TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
|
|
|
|
TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
|
|
for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
|
|
new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
|
|
}
|
|
|
|
TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
|
|
// For a function template specialization, query the specialization
|
|
// information object.
|
|
FunctionTemplateSpecializationInfo *FTSInfo
|
|
= TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
|
|
if (FTSInfo)
|
|
return FTSInfo->getTemplateSpecializationKind();
|
|
|
|
MemberSpecializationInfo *MSInfo
|
|
= TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
|
|
if (MSInfo)
|
|
return MSInfo->getTemplateSpecializationKind();
|
|
|
|
return TSK_Undeclared;
|
|
}
|
|
|
|
void
|
|
FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
|
|
SourceLocation PointOfInstantiation) {
|
|
if (FunctionTemplateSpecializationInfo *FTSInfo
|
|
= TemplateOrSpecialization.dyn_cast<
|
|
FunctionTemplateSpecializationInfo*>()) {
|
|
FTSInfo->setTemplateSpecializationKind(TSK);
|
|
if (TSK != TSK_ExplicitSpecialization &&
|
|
PointOfInstantiation.isValid() &&
|
|
FTSInfo->getPointOfInstantiation().isInvalid())
|
|
FTSInfo->setPointOfInstantiation(PointOfInstantiation);
|
|
} else if (MemberSpecializationInfo *MSInfo
|
|
= TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
|
|
MSInfo->setTemplateSpecializationKind(TSK);
|
|
if (TSK != TSK_ExplicitSpecialization &&
|
|
PointOfInstantiation.isValid() &&
|
|
MSInfo->getPointOfInstantiation().isInvalid())
|
|
MSInfo->setPointOfInstantiation(PointOfInstantiation);
|
|
} else
|
|
llvm_unreachable("Function cannot have a template specialization kind");
|
|
}
|
|
|
|
SourceLocation FunctionDecl::getPointOfInstantiation() const {
|
|
if (FunctionTemplateSpecializationInfo *FTSInfo
|
|
= TemplateOrSpecialization.dyn_cast<
|
|
FunctionTemplateSpecializationInfo*>())
|
|
return FTSInfo->getPointOfInstantiation();
|
|
else if (MemberSpecializationInfo *MSInfo
|
|
= TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
|
|
return MSInfo->getPointOfInstantiation();
|
|
|
|
return SourceLocation();
|
|
}
|
|
|
|
bool FunctionDecl::isOutOfLine() const {
|
|
if (Decl::isOutOfLine())
|
|
return true;
|
|
|
|
// If this function was instantiated from a member function of a
|
|
// class template, check whether that member function was defined out-of-line.
|
|
if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
|
|
const FunctionDecl *Definition;
|
|
if (FD->hasBody(Definition))
|
|
return Definition->isOutOfLine();
|
|
}
|
|
|
|
// If this function was instantiated from a function template,
|
|
// check whether that function template was defined out-of-line.
|
|
if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
|
|
const FunctionDecl *Definition;
|
|
if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
|
|
return Definition->isOutOfLine();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
SourceRange FunctionDecl::getSourceRange() const {
|
|
return SourceRange(getOuterLocStart(), EndRangeLoc);
|
|
}
|
|
|
|
unsigned FunctionDecl::getMemoryFunctionKind() const {
|
|
IdentifierInfo *FnInfo = getIdentifier();
|
|
|
|
if (!FnInfo)
|
|
return 0;
|
|
|
|
// Builtin handling.
|
|
switch (getBuiltinID()) {
|
|
case Builtin::BI__builtin_memset:
|
|
case Builtin::BI__builtin___memset_chk:
|
|
case Builtin::BImemset:
|
|
return Builtin::BImemset;
|
|
|
|
case Builtin::BI__builtin_memcpy:
|
|
case Builtin::BI__builtin___memcpy_chk:
|
|
case Builtin::BImemcpy:
|
|
return Builtin::BImemcpy;
|
|
|
|
case Builtin::BI__builtin_memmove:
|
|
case Builtin::BI__builtin___memmove_chk:
|
|
case Builtin::BImemmove:
|
|
return Builtin::BImemmove;
|
|
|
|
case Builtin::BIstrlcpy:
|
|
case Builtin::BI__builtin___strlcpy_chk:
|
|
return Builtin::BIstrlcpy;
|
|
|
|
case Builtin::BIstrlcat:
|
|
case Builtin::BI__builtin___strlcat_chk:
|
|
return Builtin::BIstrlcat;
|
|
|
|
case Builtin::BI__builtin_memcmp:
|
|
case Builtin::BImemcmp:
|
|
return Builtin::BImemcmp;
|
|
|
|
case Builtin::BI__builtin_strncpy:
|
|
case Builtin::BI__builtin___strncpy_chk:
|
|
case Builtin::BIstrncpy:
|
|
return Builtin::BIstrncpy;
|
|
|
|
case Builtin::BI__builtin_strncmp:
|
|
case Builtin::BIstrncmp:
|
|
return Builtin::BIstrncmp;
|
|
|
|
case Builtin::BI__builtin_strncasecmp:
|
|
case Builtin::BIstrncasecmp:
|
|
return Builtin::BIstrncasecmp;
|
|
|
|
case Builtin::BI__builtin_strncat:
|
|
case Builtin::BI__builtin___strncat_chk:
|
|
case Builtin::BIstrncat:
|
|
return Builtin::BIstrncat;
|
|
|
|
case Builtin::BI__builtin_strndup:
|
|
case Builtin::BIstrndup:
|
|
return Builtin::BIstrndup;
|
|
|
|
case Builtin::BI__builtin_strlen:
|
|
case Builtin::BIstrlen:
|
|
return Builtin::BIstrlen;
|
|
|
|
case Builtin::BI__builtin_bzero:
|
|
case Builtin::BIbzero:
|
|
return Builtin::BIbzero;
|
|
|
|
default:
|
|
if (isExternC()) {
|
|
if (FnInfo->isStr("memset"))
|
|
return Builtin::BImemset;
|
|
else if (FnInfo->isStr("memcpy"))
|
|
return Builtin::BImemcpy;
|
|
else if (FnInfo->isStr("memmove"))
|
|
return Builtin::BImemmove;
|
|
else if (FnInfo->isStr("memcmp"))
|
|
return Builtin::BImemcmp;
|
|
else if (FnInfo->isStr("strncpy"))
|
|
return Builtin::BIstrncpy;
|
|
else if (FnInfo->isStr("strncmp"))
|
|
return Builtin::BIstrncmp;
|
|
else if (FnInfo->isStr("strncasecmp"))
|
|
return Builtin::BIstrncasecmp;
|
|
else if (FnInfo->isStr("strncat"))
|
|
return Builtin::BIstrncat;
|
|
else if (FnInfo->isStr("strndup"))
|
|
return Builtin::BIstrndup;
|
|
else if (FnInfo->isStr("strlen"))
|
|
return Builtin::BIstrlen;
|
|
else if (FnInfo->isStr("bzero"))
|
|
return Builtin::BIbzero;
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FieldDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, QualType T,
|
|
TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
|
|
InClassInitStyle InitStyle) {
|
|
return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
|
|
BW, Mutable, InitStyle);
|
|
}
|
|
|
|
FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
|
|
SourceLocation(), nullptr, QualType(), nullptr,
|
|
nullptr, false, ICIS_NoInit);
|
|
}
|
|
|
|
bool FieldDecl::isAnonymousStructOrUnion() const {
|
|
if (!isImplicit() || getDeclName())
|
|
return false;
|
|
|
|
if (const auto *Record = getType()->getAs<RecordType>())
|
|
return Record->getDecl()->isAnonymousStructOrUnion();
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
|
|
assert(isBitField() && "not a bitfield");
|
|
auto *BitWidth = static_cast<Expr *>(InitStorage.getPointer());
|
|
return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
|
|
}
|
|
|
|
unsigned FieldDecl::getFieldIndex() const {
|
|
const FieldDecl *Canonical = getCanonicalDecl();
|
|
if (Canonical != this)
|
|
return Canonical->getFieldIndex();
|
|
|
|
if (CachedFieldIndex) return CachedFieldIndex - 1;
|
|
|
|
unsigned Index = 0;
|
|
const RecordDecl *RD = getParent();
|
|
|
|
for (auto *Field : RD->fields()) {
|
|
Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
|
|
++Index;
|
|
}
|
|
|
|
assert(CachedFieldIndex && "failed to find field in parent");
|
|
return CachedFieldIndex - 1;
|
|
}
|
|
|
|
SourceRange FieldDecl::getSourceRange() const {
|
|
switch (InitStorage.getInt()) {
|
|
// All three of these cases store an optional Expr*.
|
|
case ISK_BitWidthOrNothing:
|
|
case ISK_InClassCopyInit:
|
|
case ISK_InClassListInit:
|
|
if (const auto *E = static_cast<const Expr *>(InitStorage.getPointer()))
|
|
return SourceRange(getInnerLocStart(), E->getLocEnd());
|
|
// FALLTHROUGH
|
|
|
|
case ISK_CapturedVLAType:
|
|
return DeclaratorDecl::getSourceRange();
|
|
}
|
|
llvm_unreachable("bad init storage kind");
|
|
}
|
|
|
|
void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
|
|
assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
|
|
"capturing type in non-lambda or captured record.");
|
|
assert(InitStorage.getInt() == ISK_BitWidthOrNothing &&
|
|
InitStorage.getPointer() == nullptr &&
|
|
"bit width, initializer or captured type already set");
|
|
InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
|
|
ISK_CapturedVLAType);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TagDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SourceLocation TagDecl::getOuterLocStart() const {
|
|
return getTemplateOrInnerLocStart(this);
|
|
}
|
|
|
|
SourceRange TagDecl::getSourceRange() const {
|
|
SourceLocation RBraceLoc = BraceRange.getEnd();
|
|
SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
|
|
return SourceRange(getOuterLocStart(), E);
|
|
}
|
|
|
|
TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
|
|
|
|
void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
|
|
TypedefNameDeclOrQualifier = TDD;
|
|
if (const Type *T = getTypeForDecl()) {
|
|
(void)T;
|
|
assert(T->isLinkageValid());
|
|
}
|
|
assert(isLinkageValid());
|
|
}
|
|
|
|
void TagDecl::startDefinition() {
|
|
IsBeingDefined = true;
|
|
|
|
if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
|
|
struct CXXRecordDecl::DefinitionData *Data =
|
|
new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
|
|
for (auto I : redecls())
|
|
cast<CXXRecordDecl>(I)->DefinitionData = Data;
|
|
}
|
|
}
|
|
|
|
void TagDecl::completeDefinition() {
|
|
assert((!isa<CXXRecordDecl>(this) ||
|
|
cast<CXXRecordDecl>(this)->hasDefinition()) &&
|
|
"definition completed but not started");
|
|
|
|
IsCompleteDefinition = true;
|
|
IsBeingDefined = false;
|
|
|
|
if (ASTMutationListener *L = getASTMutationListener())
|
|
L->CompletedTagDefinition(this);
|
|
}
|
|
|
|
TagDecl *TagDecl::getDefinition() const {
|
|
if (isCompleteDefinition())
|
|
return const_cast<TagDecl *>(this);
|
|
|
|
// If it's possible for us to have an out-of-date definition, check now.
|
|
if (MayHaveOutOfDateDef) {
|
|
if (IdentifierInfo *II = getIdentifier()) {
|
|
if (II->isOutOfDate()) {
|
|
updateOutOfDate(*II);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
|
|
return CXXRD->getDefinition();
|
|
|
|
for (auto R : redecls())
|
|
if (R->isCompleteDefinition())
|
|
return R;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
|
|
if (QualifierLoc) {
|
|
// Make sure the extended qualifier info is allocated.
|
|
if (!hasExtInfo())
|
|
TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
|
|
// Set qualifier info.
|
|
getExtInfo()->QualifierLoc = QualifierLoc;
|
|
} else {
|
|
// Here Qualifier == 0, i.e., we are removing the qualifier (if any).
|
|
if (hasExtInfo()) {
|
|
if (getExtInfo()->NumTemplParamLists == 0) {
|
|
getASTContext().Deallocate(getExtInfo());
|
|
TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
|
|
}
|
|
else
|
|
getExtInfo()->QualifierLoc = QualifierLoc;
|
|
}
|
|
}
|
|
}
|
|
|
|
void TagDecl::setTemplateParameterListsInfo(
|
|
ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
|
|
assert(!TPLists.empty());
|
|
// Make sure the extended decl info is allocated.
|
|
if (!hasExtInfo())
|
|
// Allocate external info struct.
|
|
TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
|
|
// Set the template parameter lists info.
|
|
getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// EnumDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void EnumDecl::anchor() { }
|
|
|
|
EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id,
|
|
EnumDecl *PrevDecl, bool IsScoped,
|
|
bool IsScopedUsingClassTag, bool IsFixed) {
|
|
auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
|
|
IsScoped, IsScopedUsingClassTag, IsFixed);
|
|
Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
|
|
C.getTypeDeclType(Enum, PrevDecl);
|
|
return Enum;
|
|
}
|
|
|
|
EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
EnumDecl *Enum =
|
|
new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
|
|
nullptr, nullptr, false, false, false);
|
|
Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
|
|
return Enum;
|
|
}
|
|
|
|
SourceRange EnumDecl::getIntegerTypeRange() const {
|
|
if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
|
|
return TI->getTypeLoc().getSourceRange();
|
|
return SourceRange();
|
|
}
|
|
|
|
void EnumDecl::completeDefinition(QualType NewType,
|
|
QualType NewPromotionType,
|
|
unsigned NumPositiveBits,
|
|
unsigned NumNegativeBits) {
|
|
assert(!isCompleteDefinition() && "Cannot redefine enums!");
|
|
if (!IntegerType)
|
|
IntegerType = NewType.getTypePtr();
|
|
PromotionType = NewPromotionType;
|
|
setNumPositiveBits(NumPositiveBits);
|
|
setNumNegativeBits(NumNegativeBits);
|
|
TagDecl::completeDefinition();
|
|
}
|
|
|
|
TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
|
|
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
|
|
return MSI->getTemplateSpecializationKind();
|
|
|
|
return TSK_Undeclared;
|
|
}
|
|
|
|
void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
|
|
SourceLocation PointOfInstantiation) {
|
|
MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
|
|
assert(MSI && "Not an instantiated member enumeration?");
|
|
MSI->setTemplateSpecializationKind(TSK);
|
|
if (TSK != TSK_ExplicitSpecialization &&
|
|
PointOfInstantiation.isValid() &&
|
|
MSI->getPointOfInstantiation().isInvalid())
|
|
MSI->setPointOfInstantiation(PointOfInstantiation);
|
|
}
|
|
|
|
EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
|
|
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
|
|
if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
|
|
EnumDecl *ED = getInstantiatedFromMemberEnum();
|
|
while (auto *NewED = ED->getInstantiatedFromMemberEnum())
|
|
ED = NewED;
|
|
return ED;
|
|
}
|
|
}
|
|
|
|
assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
|
|
"couldn't find pattern for enum instantiation");
|
|
return nullptr;
|
|
}
|
|
|
|
EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
|
|
if (SpecializationInfo)
|
|
return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
|
|
TemplateSpecializationKind TSK) {
|
|
assert(!SpecializationInfo && "Member enum is already a specialization");
|
|
SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RecordDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
|
|
DeclContext *DC, SourceLocation StartLoc,
|
|
SourceLocation IdLoc, IdentifierInfo *Id,
|
|
RecordDecl *PrevDecl)
|
|
: TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
|
|
HasFlexibleArrayMember = false;
|
|
AnonymousStructOrUnion = false;
|
|
HasObjectMember = false;
|
|
HasVolatileMember = false;
|
|
LoadedFieldsFromExternalStorage = false;
|
|
assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
|
|
}
|
|
|
|
RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, RecordDecl* PrevDecl) {
|
|
RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
|
|
StartLoc, IdLoc, Id, PrevDecl);
|
|
R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
|
|
|
|
C.getTypeDeclType(R, PrevDecl);
|
|
return R;
|
|
}
|
|
|
|
RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
|
|
RecordDecl *R =
|
|
new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
|
|
SourceLocation(), nullptr, nullptr);
|
|
R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
|
|
return R;
|
|
}
|
|
|
|
bool RecordDecl::isInjectedClassName() const {
|
|
return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
|
|
cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
|
|
}
|
|
|
|
bool RecordDecl::isLambda() const {
|
|
if (auto RD = dyn_cast<CXXRecordDecl>(this))
|
|
return RD->isLambda();
|
|
return false;
|
|
}
|
|
|
|
bool RecordDecl::isCapturedRecord() const {
|
|
return hasAttr<CapturedRecordAttr>();
|
|
}
|
|
|
|
void RecordDecl::setCapturedRecord() {
|
|
addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
|
|
}
|
|
|
|
RecordDecl::field_iterator RecordDecl::field_begin() const {
|
|
if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
|
|
LoadFieldsFromExternalStorage();
|
|
|
|
return field_iterator(decl_iterator(FirstDecl));
|
|
}
|
|
|
|
/// completeDefinition - Notes that the definition of this type is now
|
|
/// complete.
|
|
void RecordDecl::completeDefinition() {
|
|
assert(!isCompleteDefinition() && "Cannot redefine record!");
|
|
TagDecl::completeDefinition();
|
|
}
|
|
|
|
/// isMsStruct - Get whether or not this record uses ms_struct layout.
|
|
/// This which can be turned on with an attribute, pragma, or the
|
|
/// -mms-bitfields command-line option.
|
|
bool RecordDecl::isMsStruct(const ASTContext &C) const {
|
|
return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
|
|
}
|
|
|
|
void RecordDecl::LoadFieldsFromExternalStorage() const {
|
|
ExternalASTSource *Source = getASTContext().getExternalSource();
|
|
assert(hasExternalLexicalStorage() && Source && "No external storage?");
|
|
|
|
// Notify that we have a RecordDecl doing some initialization.
|
|
ExternalASTSource::Deserializing TheFields(Source);
|
|
|
|
SmallVector<Decl*, 64> Decls;
|
|
LoadedFieldsFromExternalStorage = true;
|
|
Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
|
|
return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
|
|
}, Decls);
|
|
|
|
#ifndef NDEBUG
|
|
// Check that all decls we got were FieldDecls.
|
|
for (unsigned i=0, e=Decls.size(); i != e; ++i)
|
|
assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
|
|
#endif
|
|
|
|
if (Decls.empty())
|
|
return;
|
|
|
|
std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
|
|
/*FieldsAlreadyLoaded=*/false);
|
|
}
|
|
|
|
bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
|
|
ASTContext &Context = getASTContext();
|
|
if (!Context.getLangOpts().Sanitize.hasOneOf(
|
|
SanitizerKind::Address | SanitizerKind::KernelAddress) ||
|
|
!Context.getLangOpts().SanitizeAddressFieldPadding)
|
|
return false;
|
|
const auto &Blacklist = Context.getSanitizerBlacklist();
|
|
const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
|
|
// We may be able to relax some of these requirements.
|
|
int ReasonToReject = -1;
|
|
if (!CXXRD || CXXRD->isExternCContext())
|
|
ReasonToReject = 0; // is not C++.
|
|
else if (CXXRD->hasAttr<PackedAttr>())
|
|
ReasonToReject = 1; // is packed.
|
|
else if (CXXRD->isUnion())
|
|
ReasonToReject = 2; // is a union.
|
|
else if (CXXRD->isTriviallyCopyable())
|
|
ReasonToReject = 3; // is trivially copyable.
|
|
else if (CXXRD->hasTrivialDestructor())
|
|
ReasonToReject = 4; // has trivial destructor.
|
|
else if (CXXRD->isStandardLayout())
|
|
ReasonToReject = 5; // is standard layout.
|
|
else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding"))
|
|
ReasonToReject = 6; // is in a blacklisted file.
|
|
else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(),
|
|
"field-padding"))
|
|
ReasonToReject = 7; // is blacklisted.
|
|
|
|
if (EmitRemark) {
|
|
if (ReasonToReject >= 0)
|
|
Context.getDiagnostics().Report(
|
|
getLocation(),
|
|
diag::remark_sanitize_address_insert_extra_padding_rejected)
|
|
<< getQualifiedNameAsString() << ReasonToReject;
|
|
else
|
|
Context.getDiagnostics().Report(
|
|
getLocation(),
|
|
diag::remark_sanitize_address_insert_extra_padding_accepted)
|
|
<< getQualifiedNameAsString();
|
|
}
|
|
return ReasonToReject < 0;
|
|
}
|
|
|
|
const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
|
|
for (const auto *I : fields()) {
|
|
if (I->getIdentifier())
|
|
return I;
|
|
|
|
if (const auto *RT = I->getType()->getAs<RecordType>())
|
|
if (const FieldDecl *NamedDataMember =
|
|
RT->getDecl()->findFirstNamedDataMember())
|
|
return NamedDataMember;
|
|
}
|
|
|
|
// We didn't find a named data member.
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BlockDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
|
|
assert(!ParamInfo && "Already has param info!");
|
|
|
|
// Zero params -> null pointer.
|
|
if (!NewParamInfo.empty()) {
|
|
NumParams = NewParamInfo.size();
|
|
ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
|
|
std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
|
|
}
|
|
}
|
|
|
|
void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
|
|
bool CapturesCXXThis) {
|
|
this->CapturesCXXThis = CapturesCXXThis;
|
|
this->NumCaptures = Captures.size();
|
|
|
|
if (Captures.empty()) {
|
|
this->Captures = nullptr;
|
|
return;
|
|
}
|
|
|
|
this->Captures = Captures.copy(Context).data();
|
|
}
|
|
|
|
bool BlockDecl::capturesVariable(const VarDecl *variable) const {
|
|
for (const auto &I : captures())
|
|
// Only auto vars can be captured, so no redeclaration worries.
|
|
if (I.getVariable() == variable)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
SourceRange BlockDecl::getSourceRange() const {
|
|
return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Other Decl Allocation/Deallocation Method Implementations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void TranslationUnitDecl::anchor() { }
|
|
|
|
TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
|
|
return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
|
|
}
|
|
|
|
void PragmaCommentDecl::anchor() { }
|
|
|
|
PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
|
|
TranslationUnitDecl *DC,
|
|
SourceLocation CommentLoc,
|
|
PragmaMSCommentKind CommentKind,
|
|
StringRef Arg) {
|
|
PragmaCommentDecl *PCD =
|
|
new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
|
|
PragmaCommentDecl(DC, CommentLoc, CommentKind);
|
|
memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
|
|
PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
|
|
return PCD;
|
|
}
|
|
|
|
PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
|
|
unsigned ID,
|
|
unsigned ArgSize) {
|
|
return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
|
|
PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
|
|
}
|
|
|
|
void PragmaDetectMismatchDecl::anchor() { }
|
|
|
|
PragmaDetectMismatchDecl *
|
|
PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
|
|
SourceLocation Loc, StringRef Name,
|
|
StringRef Value) {
|
|
size_t ValueStart = Name.size() + 1;
|
|
PragmaDetectMismatchDecl *PDMD =
|
|
new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
|
|
PragmaDetectMismatchDecl(DC, Loc, ValueStart);
|
|
memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
|
|
PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
|
|
memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
|
|
Value.size());
|
|
PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
|
|
return PDMD;
|
|
}
|
|
|
|
PragmaDetectMismatchDecl *
|
|
PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
|
|
unsigned NameValueSize) {
|
|
return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
|
|
PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
|
|
}
|
|
|
|
void ExternCContextDecl::anchor() { }
|
|
|
|
ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
|
|
TranslationUnitDecl *DC) {
|
|
return new (C, DC) ExternCContextDecl(DC);
|
|
}
|
|
|
|
void LabelDecl::anchor() { }
|
|
|
|
LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation IdentL, IdentifierInfo *II) {
|
|
return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
|
|
}
|
|
|
|
LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation IdentL, IdentifierInfo *II,
|
|
SourceLocation GnuLabelL) {
|
|
assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
|
|
return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
|
|
}
|
|
|
|
LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
|
|
SourceLocation());
|
|
}
|
|
|
|
void LabelDecl::setMSAsmLabel(StringRef Name) {
|
|
char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
|
|
memcpy(Buffer, Name.data(), Name.size());
|
|
Buffer[Name.size()] = '\0';
|
|
MSAsmName = Buffer;
|
|
}
|
|
|
|
void ValueDecl::anchor() { }
|
|
|
|
bool ValueDecl::isWeak() const {
|
|
for (const auto *I : attrs())
|
|
if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
|
|
return true;
|
|
|
|
return isWeakImported();
|
|
}
|
|
|
|
void ImplicitParamDecl::anchor() { }
|
|
|
|
ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation IdLoc,
|
|
IdentifierInfo *Id,
|
|
QualType Type) {
|
|
return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type);
|
|
}
|
|
|
|
ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
|
|
unsigned ID) {
|
|
return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr,
|
|
QualType());
|
|
}
|
|
|
|
FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
StorageClass SC,
|
|
bool isInlineSpecified,
|
|
bool hasWrittenPrototype,
|
|
bool isConstexprSpecified) {
|
|
FunctionDecl *New =
|
|
new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
|
|
SC, isInlineSpecified, isConstexprSpecified);
|
|
New->HasWrittenPrototype = hasWrittenPrototype;
|
|
return New;
|
|
}
|
|
|
|
FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
|
|
DeclarationNameInfo(), QualType(), nullptr,
|
|
SC_None, false, false);
|
|
}
|
|
|
|
BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
|
|
return new (C, DC) BlockDecl(DC, L);
|
|
}
|
|
|
|
BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
return new (C, ID) BlockDecl(nullptr, SourceLocation());
|
|
}
|
|
|
|
CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
|
|
: Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
|
|
NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
|
|
|
|
CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
|
|
unsigned NumParams) {
|
|
return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
|
|
CapturedDecl(DC, NumParams);
|
|
}
|
|
|
|
CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
|
|
unsigned NumParams) {
|
|
return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
|
|
CapturedDecl(nullptr, NumParams);
|
|
}
|
|
|
|
Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
|
|
void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
|
|
|
|
bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
|
|
void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
|
|
|
|
EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
|
|
SourceLocation L,
|
|
IdentifierInfo *Id, QualType T,
|
|
Expr *E, const llvm::APSInt &V) {
|
|
return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
|
|
}
|
|
|
|
EnumConstantDecl *
|
|
EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
|
|
QualType(), nullptr, llvm::APSInt());
|
|
}
|
|
|
|
void IndirectFieldDecl::anchor() { }
|
|
|
|
IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
|
|
SourceLocation L, DeclarationName N,
|
|
QualType T,
|
|
MutableArrayRef<NamedDecl *> CH)
|
|
: ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
|
|
ChainingSize(CH.size()) {
|
|
// In C++, indirect field declarations conflict with tag declarations in the
|
|
// same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
|
|
if (C.getLangOpts().CPlusPlus)
|
|
IdentifierNamespace |= IDNS_Tag;
|
|
}
|
|
|
|
IndirectFieldDecl *
|
|
IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
|
|
IdentifierInfo *Id, QualType T,
|
|
llvm::MutableArrayRef<NamedDecl *> CH) {
|
|
return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
|
|
}
|
|
|
|
IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
|
|
unsigned ID) {
|
|
return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
|
|
DeclarationName(), QualType(), None);
|
|
}
|
|
|
|
SourceRange EnumConstantDecl::getSourceRange() const {
|
|
SourceLocation End = getLocation();
|
|
if (Init)
|
|
End = Init->getLocEnd();
|
|
return SourceRange(getLocation(), End);
|
|
}
|
|
|
|
void TypeDecl::anchor() { }
|
|
|
|
TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, SourceLocation IdLoc,
|
|
IdentifierInfo *Id, TypeSourceInfo *TInfo) {
|
|
return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
|
|
}
|
|
|
|
void TypedefNameDecl::anchor() { }
|
|
|
|
TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
|
|
if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
|
|
auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
|
|
auto *ThisTypedef = this;
|
|
if (AnyRedecl && OwningTypedef) {
|
|
OwningTypedef = OwningTypedef->getCanonicalDecl();
|
|
ThisTypedef = ThisTypedef->getCanonicalDecl();
|
|
}
|
|
if (OwningTypedef == ThisTypedef)
|
|
return TT->getDecl();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
|
|
nullptr, nullptr);
|
|
}
|
|
|
|
TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc,
|
|
SourceLocation IdLoc, IdentifierInfo *Id,
|
|
TypeSourceInfo *TInfo) {
|
|
return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
|
|
}
|
|
|
|
TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
|
|
SourceLocation(), nullptr, nullptr);
|
|
}
|
|
|
|
SourceRange TypedefDecl::getSourceRange() const {
|
|
SourceLocation RangeEnd = getLocation();
|
|
if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
|
|
if (typeIsPostfix(TInfo->getType()))
|
|
RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
|
|
}
|
|
return SourceRange(getLocStart(), RangeEnd);
|
|
}
|
|
|
|
SourceRange TypeAliasDecl::getSourceRange() const {
|
|
SourceLocation RangeEnd = getLocStart();
|
|
if (TypeSourceInfo *TInfo = getTypeSourceInfo())
|
|
RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
|
|
return SourceRange(getLocStart(), RangeEnd);
|
|
}
|
|
|
|
void FileScopeAsmDecl::anchor() { }
|
|
|
|
FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
|
|
StringLiteral *Str,
|
|
SourceLocation AsmLoc,
|
|
SourceLocation RParenLoc) {
|
|
return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
|
|
}
|
|
|
|
FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
|
|
unsigned ID) {
|
|
return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
|
|
SourceLocation());
|
|
}
|
|
|
|
void EmptyDecl::anchor() {}
|
|
|
|
EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
|
|
return new (C, DC) EmptyDecl(DC, L);
|
|
}
|
|
|
|
EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
return new (C, ID) EmptyDecl(nullptr, SourceLocation());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ImportDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief Retrieve the number of module identifiers needed to name the given
|
|
/// module.
|
|
static unsigned getNumModuleIdentifiers(Module *Mod) {
|
|
unsigned Result = 1;
|
|
while (Mod->Parent) {
|
|
Mod = Mod->Parent;
|
|
++Result;
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
|
|
Module *Imported,
|
|
ArrayRef<SourceLocation> IdentifierLocs)
|
|
: Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
|
|
NextLocalImport()
|
|
{
|
|
assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
|
|
auto *StoredLocs = getTrailingObjects<SourceLocation>();
|
|
std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
|
|
StoredLocs);
|
|
}
|
|
|
|
ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
|
|
Module *Imported, SourceLocation EndLoc)
|
|
: Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
|
|
NextLocalImport()
|
|
{
|
|
*getTrailingObjects<SourceLocation>() = EndLoc;
|
|
}
|
|
|
|
ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc, Module *Imported,
|
|
ArrayRef<SourceLocation> IdentifierLocs) {
|
|
return new (C, DC,
|
|
additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
|
|
ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
|
|
}
|
|
|
|
ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
|
|
SourceLocation StartLoc,
|
|
Module *Imported,
|
|
SourceLocation EndLoc) {
|
|
ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
|
|
ImportDecl(DC, StartLoc, Imported, EndLoc);
|
|
Import->setImplicit();
|
|
return Import;
|
|
}
|
|
|
|
ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
|
|
unsigned NumLocations) {
|
|
return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
|
|
ImportDecl(EmptyShell());
|
|
}
|
|
|
|
ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
|
|
if (!ImportedAndComplete.getInt())
|
|
return None;
|
|
|
|
const auto *StoredLocs = getTrailingObjects<SourceLocation>();
|
|
return llvm::makeArrayRef(StoredLocs,
|
|
getNumModuleIdentifiers(getImportedModule()));
|
|
}
|
|
|
|
SourceRange ImportDecl::getSourceRange() const {
|
|
if (!ImportedAndComplete.getInt())
|
|
return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
|
|
|
|
return SourceRange(getLocation(), getIdentifierLocs().back());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExportDecl Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExportDecl::anchor() {}
|
|
|
|
ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation ExportLoc) {
|
|
return new (C, DC) ExportDecl(DC, ExportLoc);
|
|
}
|
|
|
|
ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
|
|
return new (C, ID) ExportDecl(nullptr, SourceLocation());
|
|
}
|