forked from OSchip/llvm-project
1295 lines
46 KiB
C++
1295 lines
46 KiB
C++
//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the common interface used by the various execution engine
|
|
// subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ExecutionEngine/ExecutionEngine.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ExecutionEngine/GenericValue.h"
|
|
#include "llvm/ExecutionEngine/JITEventListener.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Object/Archive.h"
|
|
#include "llvm/Object/ObjectFile.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/DynamicLibrary.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Host.h"
|
|
#include "llvm/Support/MutexGuard.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <cmath>
|
|
#include <cstring>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "jit"
|
|
|
|
STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
|
|
STATISTIC(NumGlobals , "Number of global vars initialized");
|
|
|
|
ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
|
|
std::unique_ptr<Module> M, std::string *ErrorStr,
|
|
std::unique_ptr<RTDyldMemoryManager> MCJMM,
|
|
std::unique_ptr<TargetMachine> TM) = nullptr;
|
|
ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
|
|
std::string *ErrorStr) =nullptr;
|
|
|
|
void JITEventListener::anchor() {}
|
|
|
|
ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
|
|
: EEState(*this),
|
|
LazyFunctionCreator(nullptr) {
|
|
CompilingLazily = false;
|
|
GVCompilationDisabled = false;
|
|
SymbolSearchingDisabled = false;
|
|
|
|
// IR module verification is enabled by default in debug builds, and disabled
|
|
// by default in release builds.
|
|
#ifndef NDEBUG
|
|
VerifyModules = true;
|
|
#else
|
|
VerifyModules = false;
|
|
#endif
|
|
|
|
assert(M && "Module is null?");
|
|
Modules.push_back(std::move(M));
|
|
}
|
|
|
|
ExecutionEngine::~ExecutionEngine() {
|
|
clearAllGlobalMappings();
|
|
}
|
|
|
|
namespace {
|
|
/// \brief Helper class which uses a value handler to automatically deletes the
|
|
/// memory block when the GlobalVariable is destroyed.
|
|
class GVMemoryBlock : public CallbackVH {
|
|
GVMemoryBlock(const GlobalVariable *GV)
|
|
: CallbackVH(const_cast<GlobalVariable*>(GV)) {}
|
|
|
|
public:
|
|
/// \brief Returns the address the GlobalVariable should be written into. The
|
|
/// GVMemoryBlock object prefixes that.
|
|
static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
|
|
Type *ElTy = GV->getType()->getElementType();
|
|
size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
|
|
void *RawMemory = ::operator new(
|
|
RoundUpToAlignment(sizeof(GVMemoryBlock),
|
|
TD.getPreferredAlignment(GV))
|
|
+ GVSize);
|
|
new(RawMemory) GVMemoryBlock(GV);
|
|
return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
|
|
}
|
|
|
|
void deleted() override {
|
|
// We allocated with operator new and with some extra memory hanging off the
|
|
// end, so don't just delete this. I'm not sure if this is actually
|
|
// required.
|
|
this->~GVMemoryBlock();
|
|
::operator delete(this);
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
|
|
return GVMemoryBlock::Create(GV, *getDataLayout());
|
|
}
|
|
|
|
void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
|
|
llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
|
|
}
|
|
|
|
void
|
|
ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
|
|
llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
|
|
}
|
|
|
|
void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
|
|
llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
|
|
}
|
|
|
|
bool ExecutionEngine::removeModule(Module *M) {
|
|
for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
|
|
Module *Found = I->get();
|
|
if (Found == M) {
|
|
I->release();
|
|
Modules.erase(I);
|
|
clearGlobalMappingsFromModule(M);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
|
|
for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
|
|
if (Function *F = Modules[i]->getFunction(FnName))
|
|
return F;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) {
|
|
GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
|
|
void *OldVal;
|
|
|
|
// FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
|
|
// GlobalAddressMap.
|
|
if (I == GlobalAddressMap.end())
|
|
OldVal = nullptr;
|
|
else {
|
|
OldVal = I->second;
|
|
GlobalAddressMap.erase(I);
|
|
}
|
|
|
|
GlobalAddressReverseMap.erase(OldVal);
|
|
return OldVal;
|
|
}
|
|
|
|
void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
|
|
MutexGuard locked(lock);
|
|
|
|
DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
|
|
<< "\' to [" << Addr << "]\n";);
|
|
void *&CurVal = EEState.getGlobalAddressMap()[GV];
|
|
assert((!CurVal || !Addr) && "GlobalMapping already established!");
|
|
CurVal = Addr;
|
|
|
|
// If we are using the reverse mapping, add it too.
|
|
if (!EEState.getGlobalAddressReverseMap().empty()) {
|
|
AssertingVH<const GlobalValue> &V =
|
|
EEState.getGlobalAddressReverseMap()[Addr];
|
|
assert((!V || !GV) && "GlobalMapping already established!");
|
|
V = GV;
|
|
}
|
|
}
|
|
|
|
void ExecutionEngine::clearAllGlobalMappings() {
|
|
MutexGuard locked(lock);
|
|
|
|
EEState.getGlobalAddressMap().clear();
|
|
EEState.getGlobalAddressReverseMap().clear();
|
|
}
|
|
|
|
void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
|
|
MutexGuard locked(lock);
|
|
|
|
for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
|
|
EEState.RemoveMapping(FI);
|
|
for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
|
|
GI != GE; ++GI)
|
|
EEState.RemoveMapping(GI);
|
|
}
|
|
|
|
void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
|
|
MutexGuard locked(lock);
|
|
|
|
ExecutionEngineState::GlobalAddressMapTy &Map =
|
|
EEState.getGlobalAddressMap();
|
|
|
|
// Deleting from the mapping?
|
|
if (!Addr)
|
|
return EEState.RemoveMapping(GV);
|
|
|
|
void *&CurVal = Map[GV];
|
|
void *OldVal = CurVal;
|
|
|
|
if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
|
|
EEState.getGlobalAddressReverseMap().erase(CurVal);
|
|
CurVal = Addr;
|
|
|
|
// If we are using the reverse mapping, add it too.
|
|
if (!EEState.getGlobalAddressReverseMap().empty()) {
|
|
AssertingVH<const GlobalValue> &V =
|
|
EEState.getGlobalAddressReverseMap()[Addr];
|
|
assert((!V || !GV) && "GlobalMapping already established!");
|
|
V = GV;
|
|
}
|
|
return OldVal;
|
|
}
|
|
|
|
void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
|
|
MutexGuard locked(lock);
|
|
|
|
ExecutionEngineState::GlobalAddressMapTy::iterator I =
|
|
EEState.getGlobalAddressMap().find(GV);
|
|
return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr;
|
|
}
|
|
|
|
const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
|
|
MutexGuard locked(lock);
|
|
|
|
// If we haven't computed the reverse mapping yet, do so first.
|
|
if (EEState.getGlobalAddressReverseMap().empty()) {
|
|
for (ExecutionEngineState::GlobalAddressMapTy::iterator
|
|
I = EEState.getGlobalAddressMap().begin(),
|
|
E = EEState.getGlobalAddressMap().end(); I != E; ++I)
|
|
EEState.getGlobalAddressReverseMap().insert(std::make_pair(
|
|
I->second, I->first));
|
|
}
|
|
|
|
std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
|
|
EEState.getGlobalAddressReverseMap().find(Addr);
|
|
return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr;
|
|
}
|
|
|
|
namespace {
|
|
class ArgvArray {
|
|
std::unique_ptr<char[]> Array;
|
|
std::vector<std::unique_ptr<char[]>> Values;
|
|
public:
|
|
/// Turn a vector of strings into a nice argv style array of pointers to null
|
|
/// terminated strings.
|
|
void *reset(LLVMContext &C, ExecutionEngine *EE,
|
|
const std::vector<std::string> &InputArgv);
|
|
};
|
|
} // anonymous namespace
|
|
void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
|
|
const std::vector<std::string> &InputArgv) {
|
|
Values.clear(); // Free the old contents.
|
|
Values.reserve(InputArgv.size());
|
|
unsigned PtrSize = EE->getDataLayout()->getPointerSize();
|
|
Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize);
|
|
|
|
DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n");
|
|
Type *SBytePtr = Type::getInt8PtrTy(C);
|
|
|
|
for (unsigned i = 0; i != InputArgv.size(); ++i) {
|
|
unsigned Size = InputArgv[i].size()+1;
|
|
auto Dest = make_unique<char[]>(Size);
|
|
DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n");
|
|
|
|
std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get());
|
|
Dest[Size-1] = 0;
|
|
|
|
// Endian safe: Array[i] = (PointerTy)Dest;
|
|
EE->StoreValueToMemory(PTOGV(Dest.get()),
|
|
(GenericValue*)(&Array[i*PtrSize]), SBytePtr);
|
|
Values.push_back(std::move(Dest));
|
|
}
|
|
|
|
// Null terminate it
|
|
EE->StoreValueToMemory(PTOGV(nullptr),
|
|
(GenericValue*)(&Array[InputArgv.size()*PtrSize]),
|
|
SBytePtr);
|
|
return Array.get();
|
|
}
|
|
|
|
void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
|
|
bool isDtors) {
|
|
const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
|
|
GlobalVariable *GV = module.getNamedGlobal(Name);
|
|
|
|
// If this global has internal linkage, or if it has a use, then it must be
|
|
// an old-style (llvmgcc3) static ctor with __main linked in and in use. If
|
|
// this is the case, don't execute any of the global ctors, __main will do
|
|
// it.
|
|
if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
|
|
|
|
// Should be an array of '{ i32, void ()* }' structs. The first value is
|
|
// the init priority, which we ignore.
|
|
ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
|
|
if (!InitList)
|
|
return;
|
|
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
|
|
ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
|
|
if (!CS) continue;
|
|
|
|
Constant *FP = CS->getOperand(1);
|
|
if (FP->isNullValue())
|
|
continue; // Found a sentinal value, ignore.
|
|
|
|
// Strip off constant expression casts.
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
|
|
if (CE->isCast())
|
|
FP = CE->getOperand(0);
|
|
|
|
// Execute the ctor/dtor function!
|
|
if (Function *F = dyn_cast<Function>(FP))
|
|
runFunction(F, std::vector<GenericValue>());
|
|
|
|
// FIXME: It is marginally lame that we just do nothing here if we see an
|
|
// entry we don't recognize. It might not be unreasonable for the verifier
|
|
// to not even allow this and just assert here.
|
|
}
|
|
}
|
|
|
|
void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
|
|
// Execute global ctors/dtors for each module in the program.
|
|
for (std::unique_ptr<Module> &M : Modules)
|
|
runStaticConstructorsDestructors(*M, isDtors);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
|
|
static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
|
|
unsigned PtrSize = EE->getDataLayout()->getPointerSize();
|
|
for (unsigned i = 0; i < PtrSize; ++i)
|
|
if (*(i + (uint8_t*)Loc))
|
|
return false;
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
int ExecutionEngine::runFunctionAsMain(Function *Fn,
|
|
const std::vector<std::string> &argv,
|
|
const char * const * envp) {
|
|
std::vector<GenericValue> GVArgs;
|
|
GenericValue GVArgc;
|
|
GVArgc.IntVal = APInt(32, argv.size());
|
|
|
|
// Check main() type
|
|
unsigned NumArgs = Fn->getFunctionType()->getNumParams();
|
|
FunctionType *FTy = Fn->getFunctionType();
|
|
Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
|
|
|
|
// Check the argument types.
|
|
if (NumArgs > 3)
|
|
report_fatal_error("Invalid number of arguments of main() supplied");
|
|
if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
|
|
report_fatal_error("Invalid type for third argument of main() supplied");
|
|
if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
|
|
report_fatal_error("Invalid type for second argument of main() supplied");
|
|
if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
|
|
report_fatal_error("Invalid type for first argument of main() supplied");
|
|
if (!FTy->getReturnType()->isIntegerTy() &&
|
|
!FTy->getReturnType()->isVoidTy())
|
|
report_fatal_error("Invalid return type of main() supplied");
|
|
|
|
ArgvArray CArgv;
|
|
ArgvArray CEnv;
|
|
if (NumArgs) {
|
|
GVArgs.push_back(GVArgc); // Arg #0 = argc.
|
|
if (NumArgs > 1) {
|
|
// Arg #1 = argv.
|
|
GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
|
|
assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
|
|
"argv[0] was null after CreateArgv");
|
|
if (NumArgs > 2) {
|
|
std::vector<std::string> EnvVars;
|
|
for (unsigned i = 0; envp[i]; ++i)
|
|
EnvVars.push_back(envp[i]);
|
|
// Arg #2 = envp.
|
|
GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
|
|
}
|
|
}
|
|
}
|
|
|
|
return runFunction(Fn, GVArgs).IntVal.getZExtValue();
|
|
}
|
|
|
|
EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
|
|
: M(std::move(M)), MCJMM(nullptr) {
|
|
InitEngine();
|
|
}
|
|
|
|
EngineBuilder::~EngineBuilder() {}
|
|
|
|
EngineBuilder &EngineBuilder::setMCJITMemoryManager(
|
|
std::unique_ptr<RTDyldMemoryManager> mcjmm) {
|
|
MCJMM = std::move(mcjmm);
|
|
return *this;
|
|
}
|
|
|
|
void EngineBuilder::InitEngine() {
|
|
WhichEngine = EngineKind::Either;
|
|
ErrorStr = nullptr;
|
|
OptLevel = CodeGenOpt::Default;
|
|
MCJMM = nullptr;
|
|
Options = TargetOptions();
|
|
RelocModel = Reloc::Default;
|
|
CMModel = CodeModel::JITDefault;
|
|
|
|
// IR module verification is enabled by default in debug builds, and disabled
|
|
// by default in release builds.
|
|
#ifndef NDEBUG
|
|
VerifyModules = true;
|
|
#else
|
|
VerifyModules = false;
|
|
#endif
|
|
}
|
|
|
|
ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
|
|
std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
|
|
|
|
// Make sure we can resolve symbols in the program as well. The zero arg
|
|
// to the function tells DynamicLibrary to load the program, not a library.
|
|
if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
|
|
return nullptr;
|
|
|
|
// If the user specified a memory manager but didn't specify which engine to
|
|
// create, we assume they only want the JIT, and we fail if they only want
|
|
// the interpreter.
|
|
if (MCJMM) {
|
|
if (WhichEngine & EngineKind::JIT)
|
|
WhichEngine = EngineKind::JIT;
|
|
else {
|
|
if (ErrorStr)
|
|
*ErrorStr = "Cannot create an interpreter with a memory manager.";
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Unless the interpreter was explicitly selected or the JIT is not linked,
|
|
// try making a JIT.
|
|
if ((WhichEngine & EngineKind::JIT) && TheTM) {
|
|
Triple TT(M->getTargetTriple());
|
|
if (!TM->getTarget().hasJIT()) {
|
|
errs() << "WARNING: This target JIT is not designed for the host"
|
|
<< " you are running. If bad things happen, please choose"
|
|
<< " a different -march switch.\n";
|
|
}
|
|
|
|
ExecutionEngine *EE = nullptr;
|
|
if (ExecutionEngine::MCJITCtor)
|
|
EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MCJMM),
|
|
std::move(TheTM));
|
|
if (EE) {
|
|
EE->setVerifyModules(VerifyModules);
|
|
return EE;
|
|
}
|
|
}
|
|
|
|
// If we can't make a JIT and we didn't request one specifically, try making
|
|
// an interpreter instead.
|
|
if (WhichEngine & EngineKind::Interpreter) {
|
|
if (ExecutionEngine::InterpCtor)
|
|
return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
|
|
if (ErrorStr)
|
|
*ErrorStr = "Interpreter has not been linked in.";
|
|
return nullptr;
|
|
}
|
|
|
|
if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
|
|
if (ErrorStr)
|
|
*ErrorStr = "JIT has not been linked in.";
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
|
|
if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
|
|
return getPointerToFunction(F);
|
|
|
|
MutexGuard locked(lock);
|
|
if (void *P = EEState.getGlobalAddressMap()[GV])
|
|
return P;
|
|
|
|
// Global variable might have been added since interpreter started.
|
|
if (GlobalVariable *GVar =
|
|
const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
|
|
EmitGlobalVariable(GVar);
|
|
else
|
|
llvm_unreachable("Global hasn't had an address allocated yet!");
|
|
|
|
return EEState.getGlobalAddressMap()[GV];
|
|
}
|
|
|
|
/// \brief Converts a Constant* into a GenericValue, including handling of
|
|
/// ConstantExpr values.
|
|
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
|
|
// If its undefined, return the garbage.
|
|
if (isa<UndefValue>(C)) {
|
|
GenericValue Result;
|
|
switch (C->getType()->getTypeID()) {
|
|
default:
|
|
break;
|
|
case Type::IntegerTyID:
|
|
case Type::X86_FP80TyID:
|
|
case Type::FP128TyID:
|
|
case Type::PPC_FP128TyID:
|
|
// Although the value is undefined, we still have to construct an APInt
|
|
// with the correct bit width.
|
|
Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
|
|
break;
|
|
case Type::StructTyID: {
|
|
// if the whole struct is 'undef' just reserve memory for the value.
|
|
if(StructType *STy = dyn_cast<StructType>(C->getType())) {
|
|
unsigned int elemNum = STy->getNumElements();
|
|
Result.AggregateVal.resize(elemNum);
|
|
for (unsigned int i = 0; i < elemNum; ++i) {
|
|
Type *ElemTy = STy->getElementType(i);
|
|
if (ElemTy->isIntegerTy())
|
|
Result.AggregateVal[i].IntVal =
|
|
APInt(ElemTy->getPrimitiveSizeInBits(), 0);
|
|
else if (ElemTy->isAggregateType()) {
|
|
const Constant *ElemUndef = UndefValue::get(ElemTy);
|
|
Result.AggregateVal[i] = getConstantValue(ElemUndef);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case Type::VectorTyID:
|
|
// if the whole vector is 'undef' just reserve memory for the value.
|
|
const VectorType* VTy = dyn_cast<VectorType>(C->getType());
|
|
const Type *ElemTy = VTy->getElementType();
|
|
unsigned int elemNum = VTy->getNumElements();
|
|
Result.AggregateVal.resize(elemNum);
|
|
if (ElemTy->isIntegerTy())
|
|
for (unsigned int i = 0; i < elemNum; ++i)
|
|
Result.AggregateVal[i].IntVal =
|
|
APInt(ElemTy->getPrimitiveSizeInBits(), 0);
|
|
break;
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
// Otherwise, if the value is a ConstantExpr...
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
Constant *Op0 = CE->getOperand(0);
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::GetElementPtr: {
|
|
// Compute the index
|
|
GenericValue Result = getConstantValue(Op0);
|
|
APInt Offset(DL->getPointerSizeInBits(), 0);
|
|
cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset);
|
|
|
|
char* tmp = (char*) Result.PointerVal;
|
|
Result = PTOGV(tmp + Offset.getSExtValue());
|
|
return Result;
|
|
}
|
|
case Instruction::Trunc: {
|
|
GenericValue GV = getConstantValue(Op0);
|
|
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
|
|
GV.IntVal = GV.IntVal.trunc(BitWidth);
|
|
return GV;
|
|
}
|
|
case Instruction::ZExt: {
|
|
GenericValue GV = getConstantValue(Op0);
|
|
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
|
|
GV.IntVal = GV.IntVal.zext(BitWidth);
|
|
return GV;
|
|
}
|
|
case Instruction::SExt: {
|
|
GenericValue GV = getConstantValue(Op0);
|
|
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
|
|
GV.IntVal = GV.IntVal.sext(BitWidth);
|
|
return GV;
|
|
}
|
|
case Instruction::FPTrunc: {
|
|
// FIXME long double
|
|
GenericValue GV = getConstantValue(Op0);
|
|
GV.FloatVal = float(GV.DoubleVal);
|
|
return GV;
|
|
}
|
|
case Instruction::FPExt:{
|
|
// FIXME long double
|
|
GenericValue GV = getConstantValue(Op0);
|
|
GV.DoubleVal = double(GV.FloatVal);
|
|
return GV;
|
|
}
|
|
case Instruction::UIToFP: {
|
|
GenericValue GV = getConstantValue(Op0);
|
|
if (CE->getType()->isFloatTy())
|
|
GV.FloatVal = float(GV.IntVal.roundToDouble());
|
|
else if (CE->getType()->isDoubleTy())
|
|
GV.DoubleVal = GV.IntVal.roundToDouble();
|
|
else if (CE->getType()->isX86_FP80Ty()) {
|
|
APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
|
|
(void)apf.convertFromAPInt(GV.IntVal,
|
|
false,
|
|
APFloat::rmNearestTiesToEven);
|
|
GV.IntVal = apf.bitcastToAPInt();
|
|
}
|
|
return GV;
|
|
}
|
|
case Instruction::SIToFP: {
|
|
GenericValue GV = getConstantValue(Op0);
|
|
if (CE->getType()->isFloatTy())
|
|
GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
|
|
else if (CE->getType()->isDoubleTy())
|
|
GV.DoubleVal = GV.IntVal.signedRoundToDouble();
|
|
else if (CE->getType()->isX86_FP80Ty()) {
|
|
APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
|
|
(void)apf.convertFromAPInt(GV.IntVal,
|
|
true,
|
|
APFloat::rmNearestTiesToEven);
|
|
GV.IntVal = apf.bitcastToAPInt();
|
|
}
|
|
return GV;
|
|
}
|
|
case Instruction::FPToUI: // double->APInt conversion handles sign
|
|
case Instruction::FPToSI: {
|
|
GenericValue GV = getConstantValue(Op0);
|
|
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
|
|
if (Op0->getType()->isFloatTy())
|
|
GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
|
|
else if (Op0->getType()->isDoubleTy())
|
|
GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
|
|
else if (Op0->getType()->isX86_FP80Ty()) {
|
|
APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal);
|
|
uint64_t v;
|
|
bool ignored;
|
|
(void)apf.convertToInteger(&v, BitWidth,
|
|
CE->getOpcode()==Instruction::FPToSI,
|
|
APFloat::rmTowardZero, &ignored);
|
|
GV.IntVal = v; // endian?
|
|
}
|
|
return GV;
|
|
}
|
|
case Instruction::PtrToInt: {
|
|
GenericValue GV = getConstantValue(Op0);
|
|
uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType());
|
|
assert(PtrWidth <= 64 && "Bad pointer width");
|
|
GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
|
|
uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType());
|
|
GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
|
|
return GV;
|
|
}
|
|
case Instruction::IntToPtr: {
|
|
GenericValue GV = getConstantValue(Op0);
|
|
uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType());
|
|
GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
|
|
assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
|
|
GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
|
|
return GV;
|
|
}
|
|
case Instruction::BitCast: {
|
|
GenericValue GV = getConstantValue(Op0);
|
|
Type* DestTy = CE->getType();
|
|
switch (Op0->getType()->getTypeID()) {
|
|
default: llvm_unreachable("Invalid bitcast operand");
|
|
case Type::IntegerTyID:
|
|
assert(DestTy->isFloatingPointTy() && "invalid bitcast");
|
|
if (DestTy->isFloatTy())
|
|
GV.FloatVal = GV.IntVal.bitsToFloat();
|
|
else if (DestTy->isDoubleTy())
|
|
GV.DoubleVal = GV.IntVal.bitsToDouble();
|
|
break;
|
|
case Type::FloatTyID:
|
|
assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
|
|
GV.IntVal = APInt::floatToBits(GV.FloatVal);
|
|
break;
|
|
case Type::DoubleTyID:
|
|
assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
|
|
GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
|
|
break;
|
|
case Type::PointerTyID:
|
|
assert(DestTy->isPointerTy() && "Invalid bitcast");
|
|
break; // getConstantValue(Op0) above already converted it
|
|
}
|
|
return GV;
|
|
}
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor: {
|
|
GenericValue LHS = getConstantValue(Op0);
|
|
GenericValue RHS = getConstantValue(CE->getOperand(1));
|
|
GenericValue GV;
|
|
switch (CE->getOperand(0)->getType()->getTypeID()) {
|
|
default: llvm_unreachable("Bad add type!");
|
|
case Type::IntegerTyID:
|
|
switch (CE->getOpcode()) {
|
|
default: llvm_unreachable("Invalid integer opcode");
|
|
case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
|
|
case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
|
|
case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
|
|
case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
|
|
case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
|
|
case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
|
|
case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
|
|
case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
|
|
case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
|
|
case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
|
|
}
|
|
break;
|
|
case Type::FloatTyID:
|
|
switch (CE->getOpcode()) {
|
|
default: llvm_unreachable("Invalid float opcode");
|
|
case Instruction::FAdd:
|
|
GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
|
|
case Instruction::FSub:
|
|
GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
|
|
case Instruction::FMul:
|
|
GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
|
|
case Instruction::FDiv:
|
|
GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
|
|
case Instruction::FRem:
|
|
GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
|
|
}
|
|
break;
|
|
case Type::DoubleTyID:
|
|
switch (CE->getOpcode()) {
|
|
default: llvm_unreachable("Invalid double opcode");
|
|
case Instruction::FAdd:
|
|
GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
|
|
case Instruction::FSub:
|
|
GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
|
|
case Instruction::FMul:
|
|
GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
|
|
case Instruction::FDiv:
|
|
GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
|
|
case Instruction::FRem:
|
|
GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
|
|
}
|
|
break;
|
|
case Type::X86_FP80TyID:
|
|
case Type::PPC_FP128TyID:
|
|
case Type::FP128TyID: {
|
|
const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
|
|
APFloat apfLHS = APFloat(Sem, LHS.IntVal);
|
|
switch (CE->getOpcode()) {
|
|
default: llvm_unreachable("Invalid long double opcode");
|
|
case Instruction::FAdd:
|
|
apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
|
|
GV.IntVal = apfLHS.bitcastToAPInt();
|
|
break;
|
|
case Instruction::FSub:
|
|
apfLHS.subtract(APFloat(Sem, RHS.IntVal),
|
|
APFloat::rmNearestTiesToEven);
|
|
GV.IntVal = apfLHS.bitcastToAPInt();
|
|
break;
|
|
case Instruction::FMul:
|
|
apfLHS.multiply(APFloat(Sem, RHS.IntVal),
|
|
APFloat::rmNearestTiesToEven);
|
|
GV.IntVal = apfLHS.bitcastToAPInt();
|
|
break;
|
|
case Instruction::FDiv:
|
|
apfLHS.divide(APFloat(Sem, RHS.IntVal),
|
|
APFloat::rmNearestTiesToEven);
|
|
GV.IntVal = apfLHS.bitcastToAPInt();
|
|
break;
|
|
case Instruction::FRem:
|
|
apfLHS.mod(APFloat(Sem, RHS.IntVal),
|
|
APFloat::rmNearestTiesToEven);
|
|
GV.IntVal = apfLHS.bitcastToAPInt();
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return GV;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
SmallString<256> Msg;
|
|
raw_svector_ostream OS(Msg);
|
|
OS << "ConstantExpr not handled: " << *CE;
|
|
report_fatal_error(OS.str());
|
|
}
|
|
|
|
// Otherwise, we have a simple constant.
|
|
GenericValue Result;
|
|
switch (C->getType()->getTypeID()) {
|
|
case Type::FloatTyID:
|
|
Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
|
|
break;
|
|
case Type::DoubleTyID:
|
|
Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
|
|
break;
|
|
case Type::X86_FP80TyID:
|
|
case Type::FP128TyID:
|
|
case Type::PPC_FP128TyID:
|
|
Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
|
|
break;
|
|
case Type::IntegerTyID:
|
|
Result.IntVal = cast<ConstantInt>(C)->getValue();
|
|
break;
|
|
case Type::PointerTyID:
|
|
if (isa<ConstantPointerNull>(C))
|
|
Result.PointerVal = nullptr;
|
|
else if (const Function *F = dyn_cast<Function>(C))
|
|
Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
|
|
else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
|
|
Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
|
|
else
|
|
llvm_unreachable("Unknown constant pointer type!");
|
|
break;
|
|
case Type::VectorTyID: {
|
|
unsigned elemNum;
|
|
Type* ElemTy;
|
|
const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
|
|
const ConstantVector *CV = dyn_cast<ConstantVector>(C);
|
|
const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
|
|
|
|
if (CDV) {
|
|
elemNum = CDV->getNumElements();
|
|
ElemTy = CDV->getElementType();
|
|
} else if (CV || CAZ) {
|
|
VectorType* VTy = dyn_cast<VectorType>(C->getType());
|
|
elemNum = VTy->getNumElements();
|
|
ElemTy = VTy->getElementType();
|
|
} else {
|
|
llvm_unreachable("Unknown constant vector type!");
|
|
}
|
|
|
|
Result.AggregateVal.resize(elemNum);
|
|
// Check if vector holds floats.
|
|
if(ElemTy->isFloatTy()) {
|
|
if (CAZ) {
|
|
GenericValue floatZero;
|
|
floatZero.FloatVal = 0.f;
|
|
std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
|
|
floatZero);
|
|
break;
|
|
}
|
|
if(CV) {
|
|
for (unsigned i = 0; i < elemNum; ++i)
|
|
if (!isa<UndefValue>(CV->getOperand(i)))
|
|
Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
|
|
CV->getOperand(i))->getValueAPF().convertToFloat();
|
|
break;
|
|
}
|
|
if(CDV)
|
|
for (unsigned i = 0; i < elemNum; ++i)
|
|
Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
|
|
|
|
break;
|
|
}
|
|
// Check if vector holds doubles.
|
|
if (ElemTy->isDoubleTy()) {
|
|
if (CAZ) {
|
|
GenericValue doubleZero;
|
|
doubleZero.DoubleVal = 0.0;
|
|
std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
|
|
doubleZero);
|
|
break;
|
|
}
|
|
if(CV) {
|
|
for (unsigned i = 0; i < elemNum; ++i)
|
|
if (!isa<UndefValue>(CV->getOperand(i)))
|
|
Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
|
|
CV->getOperand(i))->getValueAPF().convertToDouble();
|
|
break;
|
|
}
|
|
if(CDV)
|
|
for (unsigned i = 0; i < elemNum; ++i)
|
|
Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
|
|
|
|
break;
|
|
}
|
|
// Check if vector holds integers.
|
|
if (ElemTy->isIntegerTy()) {
|
|
if (CAZ) {
|
|
GenericValue intZero;
|
|
intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
|
|
std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
|
|
intZero);
|
|
break;
|
|
}
|
|
if(CV) {
|
|
for (unsigned i = 0; i < elemNum; ++i)
|
|
if (!isa<UndefValue>(CV->getOperand(i)))
|
|
Result.AggregateVal[i].IntVal = cast<ConstantInt>(
|
|
CV->getOperand(i))->getValue();
|
|
else {
|
|
Result.AggregateVal[i].IntVal =
|
|
APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
|
|
}
|
|
break;
|
|
}
|
|
if(CDV)
|
|
for (unsigned i = 0; i < elemNum; ++i)
|
|
Result.AggregateVal[i].IntVal = APInt(
|
|
CDV->getElementType()->getPrimitiveSizeInBits(),
|
|
CDV->getElementAsInteger(i));
|
|
|
|
break;
|
|
}
|
|
llvm_unreachable("Unknown constant pointer type!");
|
|
}
|
|
break;
|
|
|
|
default:
|
|
SmallString<256> Msg;
|
|
raw_svector_ostream OS(Msg);
|
|
OS << "ERROR: Constant unimplemented for type: " << *C->getType();
|
|
report_fatal_error(OS.str());
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
|
|
/// with the integer held in IntVal.
|
|
static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
|
|
unsigned StoreBytes) {
|
|
assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
|
|
const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
|
|
|
|
if (sys::IsLittleEndianHost) {
|
|
// Little-endian host - the source is ordered from LSB to MSB. Order the
|
|
// destination from LSB to MSB: Do a straight copy.
|
|
memcpy(Dst, Src, StoreBytes);
|
|
} else {
|
|
// Big-endian host - the source is an array of 64 bit words ordered from
|
|
// LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
|
|
// from MSB to LSB: Reverse the word order, but not the bytes in a word.
|
|
while (StoreBytes > sizeof(uint64_t)) {
|
|
StoreBytes -= sizeof(uint64_t);
|
|
// May not be aligned so use memcpy.
|
|
memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
|
|
Src += sizeof(uint64_t);
|
|
}
|
|
|
|
memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
|
|
}
|
|
}
|
|
|
|
void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
|
|
GenericValue *Ptr, Type *Ty) {
|
|
const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty);
|
|
|
|
switch (Ty->getTypeID()) {
|
|
default:
|
|
dbgs() << "Cannot store value of type " << *Ty << "!\n";
|
|
break;
|
|
case Type::IntegerTyID:
|
|
StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
|
|
break;
|
|
case Type::FloatTyID:
|
|
*((float*)Ptr) = Val.FloatVal;
|
|
break;
|
|
case Type::DoubleTyID:
|
|
*((double*)Ptr) = Val.DoubleVal;
|
|
break;
|
|
case Type::X86_FP80TyID:
|
|
memcpy(Ptr, Val.IntVal.getRawData(), 10);
|
|
break;
|
|
case Type::PointerTyID:
|
|
// Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
|
|
if (StoreBytes != sizeof(PointerTy))
|
|
memset(&(Ptr->PointerVal), 0, StoreBytes);
|
|
|
|
*((PointerTy*)Ptr) = Val.PointerVal;
|
|
break;
|
|
case Type::VectorTyID:
|
|
for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
|
|
if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
|
|
*(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
|
|
if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
|
|
*(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
|
|
if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
|
|
unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
|
|
StoreIntToMemory(Val.AggregateVal[i].IntVal,
|
|
(uint8_t*)Ptr + numOfBytes*i, numOfBytes);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian())
|
|
// Host and target are different endian - reverse the stored bytes.
|
|
std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
|
|
}
|
|
|
|
/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
|
|
/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
|
|
static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
|
|
assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
|
|
uint8_t *Dst = reinterpret_cast<uint8_t *>(
|
|
const_cast<uint64_t *>(IntVal.getRawData()));
|
|
|
|
if (sys::IsLittleEndianHost)
|
|
// Little-endian host - the destination must be ordered from LSB to MSB.
|
|
// The source is ordered from LSB to MSB: Do a straight copy.
|
|
memcpy(Dst, Src, LoadBytes);
|
|
else {
|
|
// Big-endian - the destination is an array of 64 bit words ordered from
|
|
// LSW to MSW. Each word must be ordered from MSB to LSB. The source is
|
|
// ordered from MSB to LSB: Reverse the word order, but not the bytes in
|
|
// a word.
|
|
while (LoadBytes > sizeof(uint64_t)) {
|
|
LoadBytes -= sizeof(uint64_t);
|
|
// May not be aligned so use memcpy.
|
|
memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
|
|
Dst += sizeof(uint64_t);
|
|
}
|
|
|
|
memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
|
|
}
|
|
}
|
|
|
|
/// FIXME: document
|
|
///
|
|
void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
|
|
GenericValue *Ptr,
|
|
Type *Ty) {
|
|
const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty);
|
|
|
|
switch (Ty->getTypeID()) {
|
|
case Type::IntegerTyID:
|
|
// An APInt with all words initially zero.
|
|
Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
|
|
LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
|
|
break;
|
|
case Type::FloatTyID:
|
|
Result.FloatVal = *((float*)Ptr);
|
|
break;
|
|
case Type::DoubleTyID:
|
|
Result.DoubleVal = *((double*)Ptr);
|
|
break;
|
|
case Type::PointerTyID:
|
|
Result.PointerVal = *((PointerTy*)Ptr);
|
|
break;
|
|
case Type::X86_FP80TyID: {
|
|
// This is endian dependent, but it will only work on x86 anyway.
|
|
// FIXME: Will not trap if loading a signaling NaN.
|
|
uint64_t y[2];
|
|
memcpy(y, Ptr, 10);
|
|
Result.IntVal = APInt(80, y);
|
|
break;
|
|
}
|
|
case Type::VectorTyID: {
|
|
const VectorType *VT = cast<VectorType>(Ty);
|
|
const Type *ElemT = VT->getElementType();
|
|
const unsigned numElems = VT->getNumElements();
|
|
if (ElemT->isFloatTy()) {
|
|
Result.AggregateVal.resize(numElems);
|
|
for (unsigned i = 0; i < numElems; ++i)
|
|
Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
|
|
}
|
|
if (ElemT->isDoubleTy()) {
|
|
Result.AggregateVal.resize(numElems);
|
|
for (unsigned i = 0; i < numElems; ++i)
|
|
Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
|
|
}
|
|
if (ElemT->isIntegerTy()) {
|
|
GenericValue intZero;
|
|
const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
|
|
intZero.IntVal = APInt(elemBitWidth, 0);
|
|
Result.AggregateVal.resize(numElems, intZero);
|
|
for (unsigned i = 0; i < numElems; ++i)
|
|
LoadIntFromMemory(Result.AggregateVal[i].IntVal,
|
|
(uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
SmallString<256> Msg;
|
|
raw_svector_ostream OS(Msg);
|
|
OS << "Cannot load value of type " << *Ty << "!";
|
|
report_fatal_error(OS.str());
|
|
}
|
|
}
|
|
|
|
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
|
|
DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
|
|
DEBUG(Init->dump());
|
|
if (isa<UndefValue>(Init))
|
|
return;
|
|
|
|
if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
|
|
unsigned ElementSize =
|
|
getDataLayout()->getTypeAllocSize(CP->getType()->getElementType());
|
|
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
|
|
InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
|
|
return;
|
|
}
|
|
|
|
if (isa<ConstantAggregateZero>(Init)) {
|
|
memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType()));
|
|
return;
|
|
}
|
|
|
|
if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
|
|
unsigned ElementSize =
|
|
getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType());
|
|
for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
|
|
InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
|
|
return;
|
|
}
|
|
|
|
if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
|
|
const StructLayout *SL =
|
|
getDataLayout()->getStructLayout(cast<StructType>(CPS->getType()));
|
|
for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
|
|
InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
|
|
return;
|
|
}
|
|
|
|
if (const ConstantDataSequential *CDS =
|
|
dyn_cast<ConstantDataSequential>(Init)) {
|
|
// CDS is already laid out in host memory order.
|
|
StringRef Data = CDS->getRawDataValues();
|
|
memcpy(Addr, Data.data(), Data.size());
|
|
return;
|
|
}
|
|
|
|
if (Init->getType()->isFirstClassType()) {
|
|
GenericValue Val = getConstantValue(Init);
|
|
StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
|
|
return;
|
|
}
|
|
|
|
DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
|
|
llvm_unreachable("Unknown constant type to initialize memory with!");
|
|
}
|
|
|
|
/// EmitGlobals - Emit all of the global variables to memory, storing their
|
|
/// addresses into GlobalAddress. This must make sure to copy the contents of
|
|
/// their initializers into the memory.
|
|
void ExecutionEngine::emitGlobals() {
|
|
// Loop over all of the global variables in the program, allocating the memory
|
|
// to hold them. If there is more than one module, do a prepass over globals
|
|
// to figure out how the different modules should link together.
|
|
std::map<std::pair<std::string, Type*>,
|
|
const GlobalValue*> LinkedGlobalsMap;
|
|
|
|
if (Modules.size() != 1) {
|
|
for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
|
|
Module &M = *Modules[m];
|
|
for (const auto &GV : M.globals()) {
|
|
if (GV.hasLocalLinkage() || GV.isDeclaration() ||
|
|
GV.hasAppendingLinkage() || !GV.hasName())
|
|
continue;// Ignore external globals and globals with internal linkage.
|
|
|
|
const GlobalValue *&GVEntry =
|
|
LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())];
|
|
|
|
// If this is the first time we've seen this global, it is the canonical
|
|
// version.
|
|
if (!GVEntry) {
|
|
GVEntry = &GV;
|
|
continue;
|
|
}
|
|
|
|
// If the existing global is strong, never replace it.
|
|
if (GVEntry->hasExternalLinkage())
|
|
continue;
|
|
|
|
// Otherwise, we know it's linkonce/weak, replace it if this is a strong
|
|
// symbol. FIXME is this right for common?
|
|
if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
|
|
GVEntry = &GV;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<const GlobalValue*> NonCanonicalGlobals;
|
|
for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
|
|
Module &M = *Modules[m];
|
|
for (const auto &GV : M.globals()) {
|
|
// In the multi-module case, see what this global maps to.
|
|
if (!LinkedGlobalsMap.empty()) {
|
|
if (const GlobalValue *GVEntry =
|
|
LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) {
|
|
// If something else is the canonical global, ignore this one.
|
|
if (GVEntry != &GV) {
|
|
NonCanonicalGlobals.push_back(&GV);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!GV.isDeclaration()) {
|
|
addGlobalMapping(&GV, getMemoryForGV(&GV));
|
|
} else {
|
|
// External variable reference. Try to use the dynamic loader to
|
|
// get a pointer to it.
|
|
if (void *SymAddr =
|
|
sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName()))
|
|
addGlobalMapping(&GV, SymAddr);
|
|
else {
|
|
report_fatal_error("Could not resolve external global address: "
|
|
+GV.getName());
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there are multiple modules, map the non-canonical globals to their
|
|
// canonical location.
|
|
if (!NonCanonicalGlobals.empty()) {
|
|
for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
|
|
const GlobalValue *GV = NonCanonicalGlobals[i];
|
|
const GlobalValue *CGV =
|
|
LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
|
|
void *Ptr = getPointerToGlobalIfAvailable(CGV);
|
|
assert(Ptr && "Canonical global wasn't codegen'd!");
|
|
addGlobalMapping(GV, Ptr);
|
|
}
|
|
}
|
|
|
|
// Now that all of the globals are set up in memory, loop through them all
|
|
// and initialize their contents.
|
|
for (const auto &GV : M.globals()) {
|
|
if (!GV.isDeclaration()) {
|
|
if (!LinkedGlobalsMap.empty()) {
|
|
if (const GlobalValue *GVEntry =
|
|
LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())])
|
|
if (GVEntry != &GV) // Not the canonical variable.
|
|
continue;
|
|
}
|
|
EmitGlobalVariable(&GV);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// EmitGlobalVariable - This method emits the specified global variable to the
|
|
// address specified in GlobalAddresses, or allocates new memory if it's not
|
|
// already in the map.
|
|
void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
|
|
void *GA = getPointerToGlobalIfAvailable(GV);
|
|
|
|
if (!GA) {
|
|
// If it's not already specified, allocate memory for the global.
|
|
GA = getMemoryForGV(GV);
|
|
|
|
// If we failed to allocate memory for this global, return.
|
|
if (!GA) return;
|
|
|
|
addGlobalMapping(GV, GA);
|
|
}
|
|
|
|
// Don't initialize if it's thread local, let the client do it.
|
|
if (!GV->isThreadLocal())
|
|
InitializeMemory(GV->getInitializer(), GA);
|
|
|
|
Type *ElTy = GV->getType()->getElementType();
|
|
size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy);
|
|
NumInitBytes += (unsigned)GVSize;
|
|
++NumGlobals;
|
|
}
|
|
|
|
ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
|
|
: EE(EE), GlobalAddressMap(this) {
|
|
}
|
|
|
|
sys::Mutex *
|
|
ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
|
|
return &EES->EE.lock;
|
|
}
|
|
|
|
void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
|
|
const GlobalValue *Old) {
|
|
void *OldVal = EES->GlobalAddressMap.lookup(Old);
|
|
EES->GlobalAddressReverseMap.erase(OldVal);
|
|
}
|
|
|
|
void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
|
|
const GlobalValue *,
|
|
const GlobalValue *) {
|
|
llvm_unreachable("The ExecutionEngine doesn't know how to handle a"
|
|
" RAUW on a value it has a global mapping for.");
|
|
}
|