llvm-project/lld/ELF/AArch64ErrataFix.cpp

491 lines
19 KiB
C++

//===- AArch64ErrataFix.cpp -----------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This file implements Section Patching for the purpose of working around
// errata in CPUs. The general principle is that an erratum sequence of one or
// more instructions is detected in the instruction stream, one of the
// instructions in the sequence is replaced with a branch to a patch sequence
// of replacement instructions. At the end of the replacement sequence the
// patch branches back to the instruction stream.
// This technique is only suitable for fixing an erratum when:
// - There is a set of necessary conditions required to trigger the erratum that
// can be detected at static link time.
// - There is a set of replacement instructions that can be used to remove at
// least one of the necessary conditions that trigger the erratum.
// - We can overwrite an instruction in the erratum sequence with a branch to
// the replacement sequence.
// - We can place the replacement sequence within range of the branch.
// FIXME:
// - At this stage the implementation only supports detection and not fixing,
// this is sufficient to test the decode and recognition of the erratum
// sequence.
// - The implementation here only supports one patch, the AArch64 Cortex-53
// errata 843419 that affects r0p0, r0p1, r0p2 and r0p4 versions of the core.
// To keep the initial version simple there is no support for multiple
// architectures or selection of different patches.
//===----------------------------------------------------------------------===//
#include "AArch64ErrataFix.h"
#include "Config.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "Strings.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/Memory.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::elf;
// Helper functions to identify instructions and conditions needed to trigger
// the Cortex-A53-843419 erratum.
// ADRP
// | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) |
static bool isADRP(uint32_t Instr) {
return (Instr & 0x9f000000) == 0x90000000;
}
// Load and store bit patterns from ARMv8-A ARM ARM.
// Instructions appear in order of appearance starting from table in
// C4.1.3 Loads and Stores.
// All loads and stores have 1 (at bit postion 27), (0 at bit position 25).
// | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) |
static bool isLoadStoreClass(uint32_t Instr) {
return (Instr & 0x0a000000) == 0x08000000;
}
// LDN/STN multiple no offset
// | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) |
// LDN/STN multiple post-indexed
// | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) |
// L == 0 for stores.
// Utility routine to decode opcode field of LDN/STN multiple structure
// instructions to find the ST1 instructions.
// opcode == 0010 ST1 4 registers.
// opcode == 0110 ST1 3 registers.
// opcode == 0111 ST1 1 register.
// opcode == 1010 ST1 2 registers.
static bool isST1MultipleOpcode(uint32_t Instr) {
return (Instr & 0x0000f000) == 0x00002000 ||
(Instr & 0x0000f000) == 0x00006000 ||
(Instr & 0x0000f000) == 0x00007000 ||
(Instr & 0x0000f000) == 0x0000a000;
}
static bool isST1Multiple(uint32_t Instr) {
return (Instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(Instr);
}
// Writes to Rn (writeback).
static bool isST1MultiplePost(uint32_t Instr) {
return (Instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(Instr);
}
// LDN/STN single no offset
// | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)|
// LDN/STN single post-indexed
// | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)|
// L == 0 for stores
// Utility routine to decode opcode field of LDN/STN single structure
// instructions to find the ST1 instructions.
// R == 0 for ST1 and ST3, R == 1 for ST2 and ST4.
// opcode == 000 ST1 8-bit.
// opcode == 010 ST1 16-bit.
// opcode == 100 ST1 32 or 64-bit (Size determines which).
static bool isST1SingleOpcode(uint32_t Instr) {
return (Instr & 0x0040e000) == 0x00000000 ||
(Instr & 0x0040e000) == 0x00004000 ||
(Instr & 0x0040e000) == 0x00008000;
}
static bool isST1Single(uint32_t Instr) {
return (Instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(Instr);
}
// Writes to Rn (writeback).
static bool isST1SinglePost(uint32_t Instr) {
return (Instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(Instr);
}
static bool isST1(uint32_t Instr) {
return isST1Multiple(Instr) || isST1MultiplePost(Instr) ||
isST1Single(Instr) || isST1SinglePost(Instr);
}
// Load/store exclusive
// | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) |
// L == 0 for Stores.
static bool isLoadStoreExclusive(uint32_t Instr) {
return (Instr & 0x3f000000) == 0x08000000;
}
static bool isLoadExclusive(uint32_t Instr) {
return (Instr & 0x3f400000) == 0x08400000;
}
// Load register literal
// | opc (2) 01 | 1 V 00 | imm19 | Rt (5) |
static bool isLoadLiteral(uint32_t Instr) {
return (Instr & 0x3b000000) == 0x18000000;
}
// Load/store no-allocate pair
// (offset)
// | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
// L == 0 for stores.
// Never writes to register
static bool isSTNP(uint32_t Instr) {
return (Instr & 0x3bc00000) == 0x28000000;
}
// Load/store register pair
// (post-indexed)
// | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
// L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP
// Writes to Rn.
static bool isSTPPost(uint32_t Instr) {
return (Instr & 0x3bc00000) == 0x28800000;
}
// (offset)
// | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
static bool isSTPOffset(uint32_t Instr) {
return (Instr & 0x3bc00000) == 0x29000000;
}
// (pre-index)
// | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
// Writes to Rn.
static bool isSTPPre(uint32_t Instr) {
return (Instr & 0x3bc00000) == 0x29800000;
}
static bool isSTP(uint32_t Instr) {
return isSTPPost(Instr) || isSTPOffset(Instr) || isSTPPre(Instr);
}
// Load/store register (unscaled immediate)
// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) |
// V == 0 for Scalar, V == 1 for Simd/FP.
static bool isLoadStoreUnscaled(uint32_t Instr) {
return (Instr & 0x3b000c00) == 0x38000000;
}
// Load/store register (immediate post-indexed)
// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) |
static bool isLoadStoreImmediatePost(uint32_t Instr) {
return (Instr & 0x3b200c00) == 0x38000400;
}
// Load/store register (unprivileged)
// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) |
static bool isLoadStoreUnpriv(uint32_t Instr) {
return (Instr & 0x3b200c00) == 0x38000800;
}
// Load/store register (immediate pre-indexed)
// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) |
static bool isLoadStoreImmediatePre(uint32_t Instr) {
return (Instr & 0x3b200c00) == 0x38000c00;
}
// Load/store register (register offset)
// | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt |
static bool isLoadStoreRegisterOff(uint32_t Instr) {
return (Instr & 0x3b200c00) == 0x38200800;
}
// Load/store register (unsigned immediate)
// | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) |
static bool isLoadStoreRegisterUnsigned(uint32_t Instr) {
return (Instr & 0x3b000000) == 0x39000000;
}
// Rt is always in bit position 0 - 4.
static uint32_t getRt(uint32_t Instr) { return (Instr & 0x1f); }
// Rn is always in bit position 5 - 9.
static uint32_t getRn(uint32_t Instr) { return (Instr >> 5) & 0x1f; }
// C4.1.2 Branches, Exception Generating and System instructions
// | op0 (3) 1 | 01 op1 (4) | x (22) |
// op0 == 010 101 op1 == 0xxx Conditional Branch.
// op0 == 110 101 op1 == 1xxx Unconditional Branch Register.
// op0 == x00 101 op1 == xxxx Unconditional Branch immediate.
// op0 == x01 101 op1 == 0xxx Compare and branch immediate.
// op0 == x01 101 op1 == 1xxx Test and branch immediate.
static bool isBranch(uint32_t Instr) {
return ((Instr & 0xfe000000) == 0xd6000000) || // Cond branch.
((Instr & 0xfe000000) == 0x54000000) || // Uncond branch reg.
((Instr & 0x7c000000) == 0x14000000) || // Uncond branch imm.
((Instr & 0x7c000000) == 0x34000000); // Compare and test branch.
}
static bool isV8SingleRegisterNonStructureLoadStore(uint32_t Instr) {
return isLoadStoreUnscaled(Instr) || isLoadStoreImmediatePost(Instr) ||
isLoadStoreUnpriv(Instr) || isLoadStoreImmediatePre(Instr) ||
isLoadStoreRegisterOff(Instr) || isLoadStoreRegisterUnsigned(Instr);
}
// Note that this function refers to v8.0 only and does not include the
// additional load and store instructions added for in later revisions of
// the architecture such as the Atomic memory operations introduced
// in v8.1.
static bool isV8NonStructureLoad(uint32_t Instr) {
if (isLoadExclusive(Instr))
return true;
if (isLoadLiteral(Instr))
return true;
else if (isV8SingleRegisterNonStructureLoadStore(Instr)) {
// For Load and Store single register, Loads are derived from a
// combination of the Size, V and Opc fields.
uint32_t Size = (Instr >> 30) & 0xff;
uint32_t V = (Instr >> 26) & 0x1;
uint32_t Opc = (Instr >> 22) & 0x3;
// For the load and store instructions that we are decoding.
// Opc == 0 are all stores.
// Opc == 1 with a couple of exceptions are loads. The exceptions are:
// Size == 00 (0), V == 1, Opc == 10 (2) which is a store and
// Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch.
return Opc != 0 && !(Size == 0 && V == 1 && Opc == 2) &&
!(Size == 3 && V == 0 && Opc == 2);
}
return false;
}
// The following decode instructions are only complete up to the instructions
// needed for errata 843419.
// Instruction with writeback updates the index register after the load/store.
static bool hasWriteback(uint32_t Instr) {
return isLoadStoreImmediatePre(Instr) || isLoadStoreImmediatePost(Instr) ||
isSTPPre(Instr) || isSTPPost(Instr) || isST1SinglePost(Instr) ||
isST1MultiplePost(Instr);
}
// For the load and store class of instructions, a load can write to the
// destination register, a load and a store can write to the base register when
// the instruction has writeback.
static bool doesLoadStoreWriteToReg(uint32_t Instr, uint32_t Reg) {
return (isV8NonStructureLoad(Instr) && getRt(Instr) == Reg) ||
(hasWriteback(Instr) && getRn(Instr) == Reg);
}
// Scanner for Cortex-A53 errata 843419
// Full details are available in the Cortex A53 MPCore revision 0 Software
// Developers Errata Notice (ARM-EPM-048406).
//
// The instruction sequence that triggers the erratum is common in compiled
// AArch64 code, however it is sensitive to the offset of the sequence within
// a 4k page. This means that by scanning and fixing the patch after we have
// assigned addresses we only need to disassemble and fix instances of the
// sequence in the range of affected offsets.
//
// In summary the erratum conditions are a series of 4 instructions:
// 1.) An ADRP instruction that writes to register Rn with low 12 bits of
// address of instruction either 0xff8 or 0xffc.
// 2.) A load or store instruction that can be:
// - A single register load or store, of either integer or vector registers.
// - An STP or STNP, of either integer or vector registers.
// - An Advanced SIMD ST1 store instruction.
// - Must not write to Rn, but may optionally read from it.
// 3.) An optional instruction that is not a branch and does not write to Rn.
// 4.) A load or store from the Load/store register (unsigned immediate) class
// that uses Rn as the base address register.
//
// Note that we do not attempt to scan for Sequence 2 as described in the
// Software Developers Errata Notice as this has been assessed to be extremely
// unlikely to occur in compiled code. This matches gold and ld.bfd behavior.
// Return true if the Instruction sequence Adrp, Instr2, and Instr4 match
// the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.),
// and 4.) in the Scanner for Cortex-A53 errata comment above.
static bool is843419ErratumSequence(uint32_t Instr1, uint32_t Instr2,
uint32_t Instr4) {
if (!isADRP(Instr1))
return false;
uint32_t Rn = getRt(Instr1);
return isLoadStoreClass(Instr2) &&
(isLoadStoreExclusive(Instr2) || isLoadLiteral(Instr2) ||
isV8SingleRegisterNonStructureLoadStore(Instr2) || isSTP(Instr2) ||
isSTNP(Instr2) || isST1(Instr2)) &&
!doesLoadStoreWriteToReg(Instr2, Rn) &&
isLoadStoreRegisterUnsigned(Instr4) && getRn(Instr4) == Rn;
}
static void report843419Fix(uint64_t AdrpAddr) {
if (!Config->Verbose)
return;
message("detected cortex-a53-843419 erratum sequence starting at " +
utohexstr(AdrpAddr) + " in unpatched output.");
}
// Scan the instruction sequence starting at Offset Off from the base of
// InputSection IS. We update Off in this function rather than in the caller as
// we can skip ahead much further into the section when we know how many
// instructions we've scanned.
// Return the offset of the load or store instruction in IS that we want to
// patch or 0 if no patch required.
static uint64_t scanCortexA53Errata843419(InputSection *IS, uint64_t &Off,
uint64_t Limit) {
uint64_t ISAddr = IS->getParent()->Addr + IS->OutSecOff;
// Advance Off so that (ISAddr + Off) modulo 0x1000 is at least 0xff8.
uint64_t InitialPageOff = (ISAddr + Off) & 0xfff;
if (InitialPageOff < 0xff8)
Off += 0xff8 - InitialPageOff;
bool OptionalAllowed = Limit - Off > 12;
if (Off >= Limit || Limit - Off < 12) {
// Need at least 3 4-byte sized instructions to trigger erratum.
Off = Limit;
return 0;
}
uint64_t PatchOff = 0;
const uint8_t *Buf = IS->Data.begin();
const uint32_t *InstBuf = reinterpret_cast<const uint32_t *>(Buf + Off);
uint32_t Instr1 = *InstBuf++;
uint32_t Instr2 = *InstBuf++;
uint32_t Instr3 = *InstBuf++;
if (is843419ErratumSequence(Instr1, Instr2, Instr3)) {
PatchOff = Off + 8;
} else if (OptionalAllowed && !isBranch(Instr3)) {
uint32_t Instr4 = *InstBuf++;
if (is843419ErratumSequence(Instr1, Instr2, Instr4))
PatchOff = Off + 12;
}
if (((ISAddr + Off) & 0xfff) == 0xff8)
Off += 4;
else
Off += 0xffc;
return PatchOff;
}
// The AArch64 ABI permits data in executable sections. We must avoid scanning
// this data as if it were instructions to avoid false matches.
// The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe
// half open intervals [Symbol Value, Next Symbol Value) of code and data
// within sections. If there is no next symbol then the half open interval is
// [Symbol Value, End of section). The type, code or data, is determined by the
// mapping symbol name, $x for code, $d for data.
std::map<InputSection *,
std::vector<const Defined *>> static makeAArch64SectionMap() {
std::map<InputSection *, std::vector<const Defined *>> SectionMap;
auto IsCodeMapSymbol = [](const Symbol *B) {
return B->getName() == "$x" || B->getName().startswith("$x.");
};
auto IsDataMapSymbol = [](const Symbol *B) {
return B->getName() == "$d" || B->getName().startswith("$d.");
};
// Collect mapping symbols for every executable InputSection.
for (InputFile *File : ObjectFiles) {
auto *F = cast<ObjFile<ELF64LE>>(File);
for (Symbol *B : F->getLocalSymbols()) {
auto *Def = dyn_cast<Defined>(B);
if (!Def)
continue;
if (!IsCodeMapSymbol(Def) && !IsDataMapSymbol(Def))
continue;
if (auto *Sec = dyn_cast<InputSection>(Def->Section))
if (Sec->Flags & SHF_EXECINSTR)
SectionMap[Sec].push_back(Def);
}
}
// For each InputSection make sure the mapping symbols are in sorted in
// ascending order and free from consecutive runs of mapping symbols with
// the same type. For example we must remove the redundant $d.1 from $x.0
// $d.0 $d.1 $x.1.
for (auto &KV : SectionMap) {
std::vector<const Defined *> &MapSyms = KV.second;
if (MapSyms.size() <= 1)
continue;
std::stable_sort(
MapSyms.begin(), MapSyms.end(),
[](const Defined *A, const Defined *B) { return A->Value < B->Value; });
MapSyms.erase(
std::unique(MapSyms.begin(), MapSyms.end(),
[=](const Defined *A, const Defined *B) {
return (IsCodeMapSymbol(A) && IsCodeMapSymbol(B)) ||
(IsDataMapSymbol(A) && IsDataMapSymbol(B));
}),
MapSyms.end());
}
return SectionMap;
}
static void scanInputSectionDescription(std::vector<const Defined *> &MapSyms,
InputSection *IS) {
// Use SectionMap to make sure we only scan code and not inline data.
// We have already sorted MapSyms in ascending order and removed
// consecutive mapping symbols of the same type. Our range of
// executable instructions to scan is therefore [CodeSym->Value,
// DataSym->Value) or [CodeSym->Value, section size).
auto CodeSym = llvm::find_if(MapSyms, [&](const Defined *MS) {
return MS->getName().startswith("$x");
});
while (CodeSym != MapSyms.end()) {
auto DataSym = std::next(CodeSym);
uint64_t Off = (*CodeSym)->Value;
uint64_t Limit =
(DataSym == MapSyms.end()) ? IS->Data.size() : (*DataSym)->Value;
while (Off < Limit) {
uint64_t StartAddr = IS->getParent()->Addr + IS->OutSecOff + Off;
if (scanCortexA53Errata843419(IS, Off, Limit))
report843419Fix(StartAddr);
}
if (DataSym == MapSyms.end())
break;
CodeSym = std::next(DataSym);
}
}
// Scan all the executable code in an AArch64 link to detect the Cortex-A53
// erratum 843419.
// FIXME: The current implementation only scans for the erratum sequence, it
// does not attempt to fix it.
void lld::elf::reportA53Errata843419Fixes() {
std::map<InputSection *, std::vector<const Defined *>> SectionMap =
makeAArch64SectionMap();
for (OutputSection *OS : OutputSections) {
if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR))
continue;
for (BaseCommand *BC : OS->SectionCommands)
if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) {
for (InputSection *IS : ISD->Sections) {
// LLD doesn't use the erratum sequence in SyntheticSections.
if (isa<SyntheticSection>(IS))
continue;
scanInputSectionDescription(SectionMap[IS], IS);
}
}
}
}