llvm-project/mlir/lib/Dialect/Linalg/Transforms/ComprehensiveBufferize.cpp

3174 lines
130 KiB
C++

//===- ComprehensiveBufferize.cpp - Single pass bufferization -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Perform inplace bufferization within function boundaries.
// This is a specialized pass that supports inplace analysis for a fixed subset
// of ops that have well-defined inplace semantics.
// This pass caters to high-performance codegen where buffer reuse is deemed
// critical: the pass should fail if the bufferized form of the function needs
// to return any buffer.
// Generic control-flow and branching are unsupported.
// Composability with extensible set of ops is not a first-class concern.
//
// Bufferization occurs by:
// a. performing an inPlace analysis `inPlaceAnalysisFuncOpBody`
// which marks each operation within the function with the
// `kInPlaceResultsAttrName` attribute.
// b. traversing each operation in the function and rewriting it in
// buffer form and keeping a BlockAndValueMapping mapping of the
// rewrites. New allocations are introduced during this step.
// TODO: Allocation + depending op hoisting to outermost enclosing
// sequential scope.
// c. at the end of this bufferization, 3 cases may occur:
// i. inplaceable function arguments may be reused in place after the
// function itself has been bufferized. This is encoded by IR resembling:
//
// ```
// #map = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
// func @foo(%A: tensor<?xf32> {linalg.inplaceable = true})
// -> tensor<?xf32> {
// %0 = memref.buffer_cast %A : memref<?xf32, #map>
// // ... uses of %0
// %res = memref.tensor_load %0 : memref<?xf32, #map>
// return %res : tensor<?xf32>
// }
// ```
//
// this is the cue for the bufferization of the function foo (and calls
// to it) may bufferize to `func @foo(%A: memref<?xf32, some_layout>)`.
// To fully achieve bufferization, an additional analysis is needed to
// determine whether function argument/operand pairs bufferize to a
// single inplace buffer argument (i.e. functions may return tensors in
// arbitrary order that may not match argument numbers).
//
// ii. results that don't map to an inplaceable function argument are
// generally allocated. Since memref semantics wrt ownership of the
// underlying memory region are not well-defined, comprehensive
// bufferization chooses to perform allocations in a scoped fashion:
// returning memrefs is always considered illegal.
// Such scenarios are encoded by IR resembling:
//
// ```
// #map = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
// func @foo(%A: tensor<?xf32> {linalg.inplaceable = true})
// -> tensor<?xf32> {
// %0 = memref.buffer_cast %A : memref<?xf32, #map>
// %1 = memref.dim %0, %c0 : memref<?xf32, #map>
// %2 = memref.alloc(%1) : memref<?xf32>
// %3 = memref.cast %2 : memref<?xf32> to memref<?xf32, #map>
// // ... uses of %3
// memref.dealloc %2 : memref<?xf32, #map>
// %res = memref.tensor_load %3 : memref<?xf32, #map>
// return %res : tensor<?xf32>
// }
// ```
//
// this is the cue for the bufferization of the function foo (and calls
// to it) that it must bufferize to `func @foo(%A: memref<?xf32,
// some_layout>,
// %B: memref<?xf32, some_layout>)` (i.e. make a cloned
// allocation of the result tensor)
// To fully achieve bufferization, the alloc/dealloc pair must be lifted
// out of the function at each call site.
//
// iii. as an optimization over ii., it may be possible to reuse an argument
// and only want to return a slice.
// This may forego allocation by letting *all* callers decide whether to
// pass a new *aliasing* memref function argument (i.e. a subview).
// Without loss of generality, callers may agree to allocate a new buffer
// to avoid this aliasing. Such scenarios are encoded by IR resembling:
//
// ```
// #map = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
// func @foo(%arg0: tensor<?xf32> {linalg.inplaceable = true})
// -> tensor<4xf32> {
// %0 = memref.buffer_cast %arg0 : memref<?xf32, #map>
// %1 = memref.subview %0[0] [4] [1] : memref<?xf32, #map> to
// memref<4xf32, #map>
// // ... inplace computes into %1
// %3 = memref.tensor_load %1 : memref<4xf32, #map>
// return %3 : tensor<4xf32>
// }
// ```
//
// Note: In the future, it may be worthwhile to design special bufferization
// ops to encode the desired semantics at function boundaries for i., ii. and
// iii.
//
// Lastly, note that layout map chosen to bufferize is the most dynamic
// canonical strided layout of the proper rank. This ensures compatibility with
// expected layouts after transformations. Combinations of memref.cast +
// canonicalization are responsible for clean ups.
#include "mlir/Dialect/Linalg/Transforms/ComprehensiveBufferize.h"
#include "PassDetail.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/AsmState.h"
#include "mlir/IR/Operation.h"
#include "mlir/Interfaces/InferTypeOpInterface.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/BufferUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#define DEBUG_TYPE "comprehensive-module-bufferize"
using namespace mlir;
using namespace linalg;
using namespace tensor;
using BufferRelation = BufferizationAliasInfo::BufferRelation;
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
#define LDBG(X) LLVM_DEBUG(DBGS() << X)
// TODO: from some HW description.
static constexpr int64_t kBufferAlignments = 128;
// Forward declarations.
static std::string printOperationInfo(Operation *, bool prefix = true);
static std::string printValueInfo(Value, bool prefix = true);
//===----------------------------------------------------------------------===//
// Generic helpers.
//===----------------------------------------------------------------------===//
static bool isaTensor(Type t) { return t.isa<TensorType>(); }
/// Return the FuncOp called by `callOp`.
static FuncOp getCalledFunction(CallOpInterface callOp) {
SymbolRefAttr sym = callOp.getCallableForCallee().dyn_cast<SymbolRefAttr>();
if (!sym)
return nullptr;
return dyn_cast_or_null<FuncOp>(
SymbolTable::lookupNearestSymbolFrom(callOp, sym));
}
/// Return the unique ReturnOp that terminates `funcOp`.
/// Return nullptr if there is no such unique ReturnOp.
static ReturnOp getAssumedUniqueReturnOp(FuncOp funcOp) {
ReturnOp returnOp;
for (Block &b : funcOp.body()) {
if (auto candidateOp = dyn_cast<ReturnOp>(b.getTerminator())) {
if (returnOp)
return nullptr;
returnOp = candidateOp;
}
}
return returnOp;
}
/// Return true if `value` is the result of an InitTensorOp or a cast thereof.
static bool isInitTensorOp(Value value) {
tensor::CastOp castOp;
while ((castOp = value.getDefiningOp<tensor::CastOp>()))
value = castOp.source();
return value.getDefiningOp<InitTensorOp>();
}
//===----------------------------------------------------------------------===//
// Bufferization-specific BlockAndValueMapping support with debugging.
//===----------------------------------------------------------------------===//
/// Wrapper for better debugging.
static void map(BlockAndValueMapping &bvm, ValueRange keys, ValueRange values) {
assert(!keys.empty() && "Unexpected empty keys");
LDBG("\n\tMap: " << printValueInfo(keys.front())
<< "\n\tto: " << printValueInfo(values.front()) << '\n');
return bvm.map(keys, values);
}
/// Wrapper for better debugging.
static void map(BlockAndValueMapping &bvm, Value key, Value value) {
LDBG("\n\tMap: " << printValueInfo(key) << "\n\tto: " << printValueInfo(value)
<< '\n');
return bvm.map(key, value);
}
/// Wrapper for better debugging.
static Value lookup(const BlockAndValueMapping &bvm, Value key) {
// TODO: if key comes from bbArg, forward.
assert(key.getType().isa<TensorType>());
Value v = bvm.lookupOrNull(key);
if (v)
return v;
Operation *parentOp;
if (auto bbArg = key.dyn_cast<BlockArgument>()) {
if (isa<FuncOp>(key.getParentBlock()->getParentOp()))
parentOp = key.getParentBlock()->getParentOp();
else
parentOp = key.getParentBlock()->getParentOp()->getParentOfType<FuncOp>();
} else {
parentOp = key.getDefiningOp()->getParentOfType<FuncOp>();
}
LDBG("In func:\n" << *parentOp << "\nNO VALUE FOR KEY: " << key << '\n');
(void)parentOp;
return Value();
}
//===----------------------------------------------------------------------===//
// Bufferization-specific attribute manipulation.
// These could be simplified with helper structs on the side, for now attributes
// allow simple embedding in the IR which simplifies testing.
// This could also be folded in BufferizationAliasInfo or a Bufferizer class
// that uses BufferizationAliasInfo.
//===----------------------------------------------------------------------===//
/// Attribute marker to specify op results that can be bufferized inPlace.
constexpr StringLiteral kInPlaceResultsAttrName = "__inplace_results_attr__";
// TODO: proper enum.
enum class InPlaceSpec {
False,
True,
None,
};
static StringRef stringify(InPlaceSpec val) {
switch (val) {
case InPlaceSpec::False:
return "false";
case InPlaceSpec::True:
return "true";
case InPlaceSpec::None:
return "none";
}
return "";
}
static Optional<InPlaceSpec> symbolize(StringRef str) {
return StringSwitch<Optional<InPlaceSpec>>(str)
.Case("false", InPlaceSpec::False)
.Case("true", InPlaceSpec::True)
.Case("none", InPlaceSpec::None)
.Default(None);
}
/// Mark whether OpResult can actually be bufferized inplace.
/// If `inPlace` is `InPlaceSpec::True`, the use-def chain analysis has
/// guaranteed that no subsequent write would occur to the bufferized
/// tensor value (i.e. the result can be bufferized inPlace).
static void setInPlaceOpResult(OpResult opResult,
InPlaceSpec inPlace = InPlaceSpec::True) {
if (!opResult)
return;
Operation *op = opResult.getOwner();
auto attr =
op->getAttr(kInPlaceResultsAttrName).dyn_cast_or_null<ArrayAttr>();
SmallVector<StringRef> inPlaceVector =
attr ? SmallVector<StringRef>(
llvm::to_vector<4>(attr.getAsValueRange<StringAttr>()))
: SmallVector<StringRef>(op->getNumResults(),
stringify(InPlaceSpec::None));
LDBG("->set inPlace=" << stringify(inPlace) << " <- #"
<< opResult.getResultNumber() << ": "
<< printOperationInfo(op) << "\n");
inPlaceVector[opResult.getResultNumber()] = stringify(inPlace);
op->setAttr(kInPlaceResultsAttrName,
OpBuilder(op).getStrArrayAttr(inPlaceVector));
}
/// Get the InPlaceSpec attribute entry `kInPlaceResultsAttrName` for
/// `opResult`. If the result is `InPlaceSpec::True`, the use-def chain analysis
/// has guaranteed that no subsequent read of the tensor value occurs and the
/// result can be buferized inPlace.
/// If no InPlaceSpec attribute has been set for `opResult`, return
/// InPlaceSpec::None.
static InPlaceSpec getInPlace(OpResult opResult) {
if (!opResult)
return InPlaceSpec::None;
Operation *op = opResult.getOwner();
auto attr =
op->getAttr(kInPlaceResultsAttrName).dyn_cast_or_null<ArrayAttr>();
if (!attr)
return InPlaceSpec::None;
// Must return a proper value.
return *symbolize(*(attr.getAsValueRange<StringAttr>().begin() +
opResult.getResultNumber()));
}
/// Get inPlace information for `bbArg`.
/// FuncOp allow argument attributes, we use those to encode the information.
/// BlockArgument of other ops delegate to their owner's parent op.
static InPlaceSpec getInPlace(BlockArgument bbArg) {
if (auto funcOp = dyn_cast<FuncOp>(bbArg.getOwner()->getParentOp())) {
BoolAttr inplaceAttr = funcOp.getArgAttrOfType<BoolAttr>(
bbArg.getArgNumber(), LinalgDialect::kInplaceableAttrName);
if (!inplaceAttr)
return InPlaceSpec::None;
return inplaceAttr.getValue() ? InPlaceSpec::True : InPlaceSpec::False;
}
// Interestingly, scf::ForOp's and TiledLoop's bbArg can **always** be viewed
// inplace from the perspective of ops nested under:
// 1. Either the matching iter operand is not bufferized inplace and an
// alloc + optional copy makes the bbArg itself inplaceable.
// 2. Or the matching iter operand is bufferized inplace and bbArg just
// bufferizes to that too.
if (isa<scf::ForOp, TiledLoopOp>(bbArg.getOwner()->getParentOp()))
return InPlaceSpec::True;
// Unknown cases.
return InPlaceSpec::None;
}
/// Set the attribute that triggers inplace bufferization on a FuncOp argument
/// `bbArg`.
static void
setInPlaceFuncArgument(BlockArgument bbArg,
InPlaceSpec inPlaceSpec = InPlaceSpec::True) {
auto funcOp = cast<FuncOp>(bbArg.getOwner()->getParentOp());
funcOp.setArgAttr(
bbArg.getArgNumber(), LinalgDialect::kInplaceableAttrName,
BoolAttr::get(bbArg.getContext(), inPlaceSpec == InPlaceSpec::True));
}
/// Remove the attribute that triggers inplace bufferization on a FuncOp
/// argument `bbArg`.
static void removeBufferizationFuncArguments(BlockArgument bbArg) {
auto funcOp = cast<FuncOp>(bbArg.getOwner()->getParentOp());
funcOp.removeArgAttr(bbArg.getArgNumber(),
LinalgDialect::kBufferLayoutAttrName);
funcOp.removeArgAttr(bbArg.getArgNumber(),
LinalgDialect::kInplaceableAttrName);
}
LLVM_ATTRIBUTE_UNUSED static InPlaceSpec getInPlace(Value v) {
if (auto bbArg = v.dyn_cast<BlockArgument>())
return getInPlace(bbArg);
return getInPlace(v.cast<OpResult>());
}
//===----------------------------------------------------------------------===//
// Printing helpers.
//===----------------------------------------------------------------------===//
/// Helper method printing the bufferization information of a buffer / tensor.
static void printTensorOrBufferInfo(std::string prefix, Value value,
AsmState &state, llvm::raw_ostream &os) {
if (!value.getType().isa<ShapedType>())
return;
os << prefix;
value.printAsOperand(os, state);
os << " : " << value.getType();
if (getInPlace(value) == InPlaceSpec::None)
return;
os << " [InPlace=" << stringify(getInPlace(value)) << "]";
}
/// Print the operation name and bufferization information.
static std::string printOperationInfo(Operation *op, bool prefix) {
std::string result;
llvm::raw_string_ostream os(result);
AsmState state(op->getParentOfType<mlir::FuncOp>());
StringRef tab = prefix ? "\n[" DEBUG_TYPE "]\t" : "";
os << tab << op->getName();
SmallVector<Value> shapedOperands;
for (OpOperand &opOperand : op->getOpOperands()) {
std::string prefix =
llvm::formatv("{0} -> #{1} ", tab, opOperand.getOperandNumber());
printTensorOrBufferInfo(prefix, opOperand.get(), state, os);
}
for (OpResult opResult : op->getOpResults()) {
std::string prefix =
llvm::formatv("{0} <- #{1} ", tab, opResult.getResultNumber());
printTensorOrBufferInfo(prefix, opResult, state, os);
}
return result;
}
/// Print the bufferization information for the defining op or block argument.
static std::string printValueInfo(Value value, bool prefix) {
auto *op = value.getDefiningOp();
if (op)
return printOperationInfo(op, prefix);
// Print the block argument bufferization information.
std::string result;
llvm::raw_string_ostream os(result);
AsmState state(value.getParentRegion()->getParentOfType<mlir::FuncOp>());
os << value;
printTensorOrBufferInfo("\n\t - ", value, state, os);
return result;
}
//===----------------------------------------------------------------------===//
// Op-specific semantics helper to retrieve matching inplaceable result.
// These should become proper interfaces interfaces when the time is right.
// Modulo better naming, these helpers / interfaces comprise information on:
// 1. Whether an op has a known bufferization behavior (i.e. an instance of
// BufferizableOpInterface).
// 2. Whether an op, when bufferized inplace, can guarantee an
// (OpOperand, OpResult) pair bufferizes to equivalent (i.e. the same)
// buffers in memory.
// 3. Whether an op operand, when bufferized inplace, aliases a return value.
// 4. Whether an op return value, when bufferized inplace, aliases an operand.
// 5. Whether an op bufferizes to a memory read.
// 6. Whether an op bufferizes to a memory write.
// 7. The buffer relationship between an operand and it corresponding result
// (in case of in-place bufferization).
// These interfaces are necessary to distinguish between various cases and allow
// special inplace behavior for (ExtractSliceOp, InsertSliceOp) pairs.
//===----------------------------------------------------------------------===//
/// Return `true` if the op is explicitly supported by bufferization or if it
/// has no result tensors.
/// Other cases must be conservative.
static bool hasKnownBufferizationAliasingBehavior(Operation *op) {
return
// clang-format off
isa<CallOpInterface,
tensor::CastOp,
ConstantOp,
tensor::DimOp,
ExtractSliceOp,
scf::IfOp,
scf::ForOp,
InsertSliceOp,
InitTensorOp,
LinalgOp,
ReturnOp,
TiledLoopOp,
VectorTransferOpInterface,
linalg::YieldOp,
scf::YieldOp>(op)
// clang-format on
|| (none_of(op->getResultTypes(), isaTensor) &&
none_of(op->getOperandTypes(), isaTensor));
}
/// Return the OpResult that may bufferize into the same buffer as `opOperand`
/// when the op is bufferized inplace.
/// Return null if no such result exists.
static OpResult getInplaceableOpResult(TiledLoopOp op, OpOperand &opOperand) {
return op.getTiedOpResult(opOperand);
}
/// Return the OpResult that may bufferize into the same buffer as `opOperand`
/// when the op is bufferized inplace.
/// Return null if no such result exists.
static OpResult getInplaceableOpResult(scf::ForOp forOp, OpOperand &opOperand) {
if (!opOperand.get().getType().isa<RankedTensorType>())
return OpResult();
return forOp.getResultForOpOperand(opOperand);
}
/// Return the OpResult that may bufferize into the same buffer as `opOperand`
/// when the op is bufferized inplace.
/// Return null if no such result exists.
static OpResult getInplaceableOpResult(LinalgOp linalgOp,
OpOperand &opOperand) {
if (!opOperand.get().getType().isa<RankedTensorType>())
return OpResult();
// For now assume inputs are never inplaceable.
// TODO: refine this.
if (opOperand.getOperandNumber() < linalgOp.getNumInputs())
return OpResult();
int64_t outputOperandIndex =
opOperand.getOperandNumber() - linalgOp.getNumInputs();
int64_t numOutputBuffers = 0;
for (unsigned idx = 0; idx < outputOperandIndex; ++idx)
if (!linalgOp.getOutputOperand(idx)->get().getType().isa<TensorType>())
++numOutputBuffers;
return linalgOp->getResult(outputOperandIndex - numOutputBuffers);
}
/// Return the OpResult that may bufferize into the same buffer as `opOperand`
/// when the op is bufferized inplace.
/// Return null if no such result exists.
static OpResult getInplaceableOpResult(VectorTransferOpInterface op,
OpOperand &opOperand) {
if (opOperand.get() != op.source() ||
!op.source().getType().isa<TensorType>() ||
isa<vector::TransferReadOp>(op))
return OpResult();
return op->getResult(0);
}
/// Return the OpResult that may bufferize into the same buffer as `opOperand`
/// when the op is bufferized inplace.
/// Return null if no such result exists.
static OpResult getInplaceableOpResult(InsertSliceOp op, OpOperand &opOperand) {
if (&opOperand != &op->getOpOperand(1) /*dest*/)
return OpResult();
return op->getResult(0);
}
/// Return the OpResult that may bufferize into the same buffer as `opOperand`
/// when the op is bufferized inplace.
/// Return null if no such result exists.
static OpResult getInplaceableOpResult(tensor::CastOp op,
OpOperand &opOperand) {
return op->getResult(0);
}
/// Return the OpResult that may bufferize into the same buffer as `opOperand`
/// when the op is bufferized inplace.
/// The inplace analysis uses this information along with interfering read
/// analysis to determine which op results reuse the same buffer as some
/// operand.
static OpResult getInplaceableOpResult(OpOperand &opOperand) {
return TypeSwitch<Operation *, OpResult>(opOperand.getOwner())
// clang-format off
// Ops that perform destructive updates on operand(s) to produce
// result(s).
.Case<tensor::CastOp,
scf::ForOp,
InsertSliceOp,
LinalgOp,
TiledLoopOp,
VectorTransferOpInterface>(
[&](auto op) { return getInplaceableOpResult(op, opOperand); })
// ExtractSliceOp is special, when bufferized inplace it just returns an
// alias to its operand. Its result is never inplaceable on its operand.
.Case([&](ExtractSliceOp op) { return OpResult(); })
// CallOpInterface is special, it needs to wait for the callee to be
// bufferized and needs to inspect the BufferAliasInfo object. It can't
// make a proper determination by itself and needs to be conservative.
.Case([&](CallOpInterface op) { return OpResult(); })
// Other ops.
.Default([&](Operation *op) { return OpResult(); });
// clang-format on
}
/// Either one of the corresponding yield values from the then/else branches
/// may alias with the result.
static void populateAliasingOpOperands(scf::IfOp op, OpResult result,
SmallVector<OpOperand *> &operands) {
size_t resultNum = std::distance(op->getOpResults().begin(),
llvm::find(op->getOpResults(), result));
operands.push_back(&op.thenYield()->getOpOperand(resultNum));
operands.push_back(&op.elseYield()->getOpOperand(resultNum));
}
/// Determine which OpOperand* will alias with `result` if the op is bufferized
/// in place. Note that multiple OpOperands can may potentially alias with an
/// OpResult. E.g.: std.select in the future.
static SmallVector<OpOperand *> getAliasingOpOperand(OpResult result) {
SmallVector<OpOperand *> r;
// Unknown ops are handled conservatively and never bufferize in-place.
if (!hasKnownBufferizationAliasingBehavior(result.getDefiningOp()))
return SmallVector<OpOperand *>();
TypeSwitch<Operation *>(result.getDefiningOp())
.Case([&](tensor::CastOp op) { r.push_back(&op->getOpOperand(0)); })
.Case([&](ExtractSliceOp op) { r.push_back(&op->getOpOperand(0)); })
.Case([&](scf::IfOp op) { populateAliasingOpOperands(op, result, r); })
// In the case of scf::ForOp, this currently assumes the iter_args / yield
// are 1-1. This may fail and is verified at the end.
// TODO: update this.
.Case([&](scf::ForOp op) {
r.push_back(&op.getIterOpOperands()[result.getResultNumber()]);
})
.Case([&](InsertSliceOp op) { r.push_back(&op->getOpOperand(1)); })
.Case([&](LinalgOp op) {
r.push_back(op.getOutputTensorOperands()[result.getResultNumber()]);
})
.Case([&](TiledLoopOp op) {
// TODO: TiledLoopOp helper method to avoid leaking impl details.
r.push_back(&op->getOpOperand(op.getNumControlOperands() +
op.getNumInputs() +
result.getResultNumber()));
})
.Case([&](vector::TransferWriteOp op) {
r.push_back(&op->getOpOperand(1));
})
.Case<arith::ConstantOp, ConstantOp, CallOpInterface, InitTensorOp>(
[&](auto op) {})
.Default([&](Operation *op) {
op->dump();
llvm_unreachable("unexpected defining op");
});
return r;
}
/// If the an ExtractSliceOp is bufferized in-place, the source operand will
/// alias with the result.
static OpResult getAliasingOpResult(ExtractSliceOp op, OpOperand &opOperand) {
if (op.source() == opOperand.get())
return op->getResult(0);
return OpResult();
}
/// Determine which OpResult will alias with `opOperand` if the op is bufferized
/// in place. This is a superset of `getInplaceableOpResult`.
/// TODO: in the future this may need to evolve towards a list of OpResult.
static OpResult getAliasingOpResult(OpOperand &opOperand) {
return TypeSwitch<Operation *, OpResult>(opOperand.getOwner())
// ExtractSliceOp is different: its result is not inplaceable on op.source
// but when bufferized inplace, the result is an aliasing subregion of
// op.source.
.Case(
[&](ExtractSliceOp op) { return getAliasingOpResult(op, opOperand); })
// All other ops, return the result of `getInplaceableOpResult`.
.Default(
[&](Operation *op) { return getInplaceableOpResult(opOperand); });
}
// Predeclaration of function.
static bool bufferizesToMemoryRead(OpOperand &opOperand);
/// Return true if the given value is read by an op that bufferizes to a memory
/// read. Also takes into account ops that create an alias but do not read by
/// themselves (e.g., ExtractSliceOp).
static bool isValueRead(Value value) {
SmallVector<OpOperand *> workingSet;
for (OpOperand &use : value.getUses())
workingSet.push_back(&use);
while (!workingSet.empty()) {
OpOperand *uMaybeReading = workingSet.pop_back_val();
// Skip over all ExtractSliceOps. These do not read by themselves but just
// add a new alias.
if (auto extractSliceOp =
dyn_cast<ExtractSliceOp>(uMaybeReading->getOwner()))
for (OpOperand &use : extractSliceOp.result().getUses())
workingSet.push_back(&use);
if (bufferizesToMemoryRead(*uMaybeReading))
return true;
}
return false;
}
/// Return true if `opOperand` bufferizes to a memory read.
static bool bufferizesToMemoryRead(OpOperand &opOperand) {
// Unknown op that returns a tensor. The inplace analysis does not support
// it. Conservatively return true.
if (!hasKnownBufferizationAliasingBehavior(opOperand.getOwner()))
return true;
// ExtractSliceOp alone doesn't bufferize to a memory read, one of its uses
// may.
if (isa<ExtractSliceOp>(opOperand.getOwner()))
return false;
// scf::ForOp alone doesn't bufferize to a memory read, one of the uses of its
// matching bbArg may.
if (auto forOp = dyn_cast<scf::ForOp>(opOperand.getOwner()))
return isValueRead(forOp.getRegionIterArgForOpOperand(opOperand));
// TiledLoop alone doesn't bufferize to a memory read, one of the uses of its
// matching bbArg may.
if (auto tiledLoopOp = dyn_cast<TiledLoopOp>(opOperand.getOwner()))
return isValueRead(tiledLoopOp.getTiedBlockArgument(opOperand));
// CallOpInterface alone doesn't bufferize to a memory read, one of the uses
// of the matching bbArg may. It is the responsibility of the caller to
// inspect bbArgs. In the absence of a BufferizationAliasInfo, we need to be
// conservative.
if (auto callOp = dyn_cast<CallOpInterface>(opOperand.getOwner()))
return true;
if (auto linalgOp = dyn_cast<LinalgOp>(opOperand.getOwner()))
return linalgOp.isInputTensor(&opOperand) ||
linalgOp.isInitTensor(&opOperand);
// All other cases are considered to bufferize to memory reads.
// In particular, terminators are often the last use and need to be considered
// as reads to return the proper value and avoid WAW clobbers.
return true;
}
/// Return true if `opOperand` bufferizes to a memory write.
static bool bufferizesToMemoryWrite(OpOperand &opOperand) {
// These terminators are not writes.
if (isa<ReturnOp, linalg::YieldOp, scf::YieldOp>(opOperand.getOwner()))
return false;
// ExtractSliceOp alone doesn't bufferize to a memory write, one of its uses
// may.
if (isa<ExtractSliceOp>(opOperand.getOwner()))
return false;
// CallOpInterface alone doesn't bufferize to a memory write, one of the uses
// of the matching bbArg may. It is the responsibility of the caller to
// inspect bbArgs. In the absence of a BufferizationAliasInfo, we need to be
// conservative.
if (auto callOp = dyn_cast<CallOpInterface>(opOperand.getOwner()))
return true;
// Unknown op that returns a tensor. The inplace analysis does not support
// it. Conservatively return true.
if (!hasKnownBufferizationAliasingBehavior(opOperand.getOwner()))
return true;
OpResult opResult = getAliasingOpResult(opOperand);
// Only supported op with a matching result for opOperand bufferize to a
// write. E.g., ReturnOp does not bufferize to a write.
return static_cast<bool>(opResult);
}
/// Returns the relationship between the operand and the its corresponding
/// OpResult that it may alias with.
static BufferRelation bufferRelation(OpOperand &operand) {
return TypeSwitch<Operation *, BufferRelation>(operand.getOwner())
// ExtractSliceOp returns a subview of the original tensor.
.Case([&](ExtractSliceOp op) { return BufferRelation::None; })
// All other ops: Buffers are equivalent.
.Default([&](Operation *op) { return BufferRelation::Equivalent; });
}
//===----------------------------------------------------------------------===//
// Bufferization-specific alias analysis.
//===----------------------------------------------------------------------===//
/// Return true if opOperand has been decided to bufferize in-place.
static bool isInplaceMemoryWrite(OpOperand &opOperand) {
// Ops that do not bufferize to a memory write, cannot be write in-place.
if (!bufferizesToMemoryWrite(opOperand))
return false;
OpResult opResult = getAliasingOpResult(opOperand);
return opResult && getInPlace(opResult) == InPlaceSpec::True;
}
BufferizationAliasInfo::BufferizationAliasInfo(Operation *rootOp) {
rootOp->walk([&](Operation *op) {
for (Value v : op->getResults())
if (v.getType().isa<TensorType>())
createAliasInfoEntry(v);
for (Region &r : op->getRegions())
for (Block &b : r.getBlocks())
for (auto bbArg : b.getArguments())
if (bbArg.getType().isa<TensorType>())
createAliasInfoEntry(bbArg);
});
// The return value of an scf::IfOp aliases with both yield values.
rootOp->walk([&](scf::IfOp ifOp) {
if (ifOp->getNumResults() > 0) {
for (auto it : llvm::zip(ifOp.thenYield().results(),
ifOp.elseYield().results(), ifOp.results())) {
aliasInfo.unionSets(std::get<0>(it), std::get<1>(it));
aliasInfo.unionSets(std::get<0>(it), std::get<2>(it));
equivalentInfo.unionSets(std::get<0>(it), std::get<1>(it));
equivalentInfo.unionSets(std::get<0>(it), std::get<2>(it));
}
}
});
}
/// Add a new entry for `v` in the `aliasInfo` and `equivalentInfo`. In the
/// beginning the alias and equivalence sets only contain `v` itself.
void BufferizationAliasInfo::createAliasInfoEntry(Value v) {
aliasInfo.insert(v);
equivalentInfo.insert(v);
}
/// Insert an info entry for `newValue` and merge its alias set with that of
/// `alias`.
void BufferizationAliasInfo::insertNewBufferAlias(Value newValue, Value alias) {
createAliasInfoEntry(newValue);
aliasInfo.unionSets(newValue, alias);
}
/// Insert an info entry for `newValue` and merge its alias set with that of
/// `alias`. Additionally, merge their equivalence classes.
void BufferizationAliasInfo::insertNewBufferEquivalence(Value newValue,
Value alias) {
insertNewBufferAlias(newValue, alias);
equivalentInfo.unionSets(newValue, alias);
}
/// Return true if, under current bufferization decisions, the buffer of `value`
/// is not writable.
bool BufferizationAliasInfo::aliasesNonWritableBuffer(Value value) const {
LDBG("----Start aliasesNonWritableBuffer\n");
for (Value v : getAliases(value)) {
LDBG("-----------examine: " << printValueInfo(v) << '\n');
if (bufferizesToWritableMemory(v)) {
LDBG("-----------Value is known to be writable -> skip: "
<< printValueInfo(v) << '\n');
continue;
}
if (auto bbArg = v.dyn_cast<BlockArgument>()) {
if (getInPlace(bbArg) == InPlaceSpec::True) {
LDBG("-----------bbArg is writable -> skip: " << printValueInfo(bbArg)
<< '\n');
continue;
}
LDBG("-----------notWritable bbArg\n");
return true;
}
if (Operation *op = v.getDefiningOp()) {
if (isa<arith::ConstantOp>(op) ||
!hasKnownBufferizationAliasingBehavior(op)) {
LDBG("-----------notWritable op\n");
return true;
}
}
}
LDBG("---->value is writable\n");
return false;
}
bool BufferizationAliasInfo::bufferizesToWritableMemory(Value v) const {
return bufferizeToWritableMemory.count(v) > 0;
}
/// Specify that the value is known to bufferize to writable memory.
void BufferizationAliasInfo::setBufferizesToWritableMemory(Value v) {
bufferizeToWritableMemory.insert(v);
}
/// Return true if the buffer to which `operand` would bufferize is equivalent
/// to some buffer write.
bool BufferizationAliasInfo::aliasesInPlaceWrite(Value value) const {
LDBG("----Start aliasesInPlaceWrite\n");
LDBG("-------for : " << printValueInfo(value) << '\n');
for (Value v : getAliases(value)) {
for (auto &use : v.getUses()) {
if (isInplaceMemoryWrite(use)) {
LDBG("-----------wants to bufferize to inPlace write: "
<< printOperationInfo(use.getOwner()) << '\n');
return true;
}
}
}
LDBG("----------->does not alias an inplace write\n");
return false;
}
/// Set the inPlace bufferization spec to true.
void BufferizationAliasInfo::bufferizeInPlace(OpResult result,
OpOperand &operand) {
setInPlaceOpResult(result, InPlaceSpec::True);
aliasInfo.unionSets(result, operand.get());
// Dump the updated alias analysis.
LLVM_DEBUG(dumpAliases());
if (bufferRelation(operand) == BufferRelation::Equivalent)
equivalentInfo.unionSets(result, operand.get());
// Dump the updated equivalence analysis.
LLVM_DEBUG(dumpEquivalences());
}
/// Set the inPlace bufferization spec to false.
void BufferizationAliasInfo::bufferizeOutOfPlace(OpResult result) {
setInPlaceOpResult(result, InPlaceSpec::False);
}
/// Starting from `value`, follow the use-def chain in reverse, always selecting
/// the aliasing OpOperands. Find and return Values for which `condition`
/// evaluates to true. OpOperands of such matching Values are not traversed any
/// further.
///
/// When reaching the end of a chain (BlockArgument or Value without aliasing
/// OpOperands), also return the last Value of that chain.
///
/// Example:
///
/// 8
/// |
/// 6* 7* +-----+----+
/// | | | |
/// 2* 3 4* 5
/// | | | |
/// +----------+----------+----------+
/// |
/// 1
///
/// In the above example, Values with a star satisfy the condition. When
/// starting the traversal from Value 1, the resulting SetVector is:
/// { 2, 7, 8, 5 }
static llvm::SetVector<Value>
findValueInReverseUseDefChain(Value value,
std::function<bool(Value)> condition) {
llvm::SetVector<Value> result, workingSet;
workingSet.insert(value);
while (!workingSet.empty()) {
Value value = workingSet.pop_back_val();
if (condition(value) || value.isa<BlockArgument>()) {
result.insert(value);
continue;
}
OpResult opResult = value.cast<OpResult>();
SmallVector<OpOperand *> opOperands = getAliasingOpOperand(opResult);
if (opOperands.empty()) {
result.insert(value);
continue;
}
for (OpOperand *o : opOperands)
workingSet.insert(o->get());
}
return result;
}
/// Find the Value of the last preceding write of a given Value.
///
/// Note: Unknown ops are handled conservatively and assumed to be writes.
/// Furthermore, BlockArguments are also assumed to be writes. There is no
/// analysis across block boundaries.
///
/// Note: To simplify the analysis, scf.if ops are considered writes. Treating
/// a non-writing op as a writing op may introduce unnecessary out-of-place
/// bufferizations, but is always safe from a correctness point of view.
static Value findLastPrecedingWrite(Value value) {
SetVector<Value> result =
findValueInReverseUseDefChain(value, [](Value value) {
Operation *op = value.getDefiningOp();
if (!op)
return true;
if (!hasKnownBufferizationAliasingBehavior(op))
return true;
if (isa<scf::IfOp>(op))
return true;
SmallVector<OpOperand *> opOperands =
getAliasingOpOperand(value.cast<OpResult>());
assert(opOperands.size() <= 1 &&
"op with multiple aliasing OpOperands not expected");
if (opOperands.empty())
return true;
return bufferizesToMemoryWrite(*opOperands.front());
});
assert(result.size() == 1 && "expected exactly one result");
return result.front();
}
/// Return true if `value` is originating from an ExtractSliceOp that matches
/// the given InsertSliceOp.
bool BufferizationAliasInfo::hasMatchingExtractSliceOp(
Value value, InsertSliceOp insertOp) const {
auto condition = [&](Value val) {
if (auto extractOp = val.getDefiningOp<ExtractSliceOp>())
if (areEquivalentExtractSliceOps(extractOp, insertOp))
return true;
return false;
};
return llvm::all_of(findValueInReverseUseDefChain(value, condition),
condition);
}
/// Return true if `a` happens before `b`, i.e., `a` or one of its ancestors
/// properly dominates `b` and `b` is not inside `a`.
static bool happensBefore(Operation *a, Operation *b,
const DominanceInfo &domInfo) {
do {
// TODO: Instead of isProperAncestor + properlyDominates, we should use
// properlyDominatesImpl(a, b, /*enclosingOpOk=*/false)
if (a->isProperAncestor(b))
return false;
if (domInfo.properlyDominates(a, b))
return true;
} while ((a = a->getParentOp()));
return false;
}
/// Given sets of uses and writes, return true if there is a RaW conflict under
/// the assumption that all given reads/writes alias the same buffer and that
/// all given writes bufferize inplace.
///
/// A conflict is: According to SSA use-def chains, a read R is supposed to read
/// the result of a write W1. But because of bufferization decisions, R actually
/// reads another write W2.
bool BufferizationAliasInfo::hasReadAfterWriteInterference(
const DenseSet<OpOperand *> &usesRead,
const DenseSet<OpOperand *> &usesWrite,
const DominanceInfo &domInfo) const {
for (OpOperand *uRead : usesRead) {
Operation *readingOp = uRead->getOwner();
// Find most recent write of uRead by following the SSA use-def chain. E.g.:
//
// %0 = "writing_op"(%t) : tensor<?x32> -> tensor<?xf32>
// %1 = "aliasing_op"(%0) : tensor<?x32> -> tensor<?xf32>
// %2 = "reading_op"(%1) : : tensor<?x32> -> not_a_tensor_type
//
// In the above example, if uRead is the OpOperand of reading_op, lastWrite
// is %0. Note that operations that create an alias but do not write (such
// as ExtractSliceOp) are skipped.
Value lastWrite = findLastPrecedingWrite(uRead->get());
// Look for conflicting memory writes. Potential conflicts are writes to an
// alias that have been decided to bufferize inplace.
for (OpOperand *uConflictingWrite : usesWrite) {
// Throughout this loop, check for multiple requirements that have to be
// met for uConflictingWrite to be an actual conflict.
Operation *conflictingWritingOp = uConflictingWrite->getOwner();
// Print some debug info.
LDBG("Found potential conflict:\n");
LDBG("READ = #" << uRead->getOperandNumber() << " of "
<< printOperationInfo(readingOp) << "\n");
LDBG("CONFLICTING WRITE = #"
<< uConflictingWrite->getOperandNumber() << " of "
<< printOperationInfo(conflictingWritingOp) << "\n");
// No conflict if the readingOp dominates conflictingWritingOp, i.e., the
// write is not visible when reading.
if (happensBefore(readingOp, conflictingWritingOp, domInfo))
continue;
// No conflict if the reading use equals the use of the conflicting write.
// A use cannot conflict with itself. Note: Just being the same op is not
// enough. It has to be the same use.
if (uConflictingWrite == uRead)
continue;
if (scf::insideMutuallyExclusiveBranches(readingOp, conflictingWritingOp))
continue;
LDBG("WRITE = #" << printValueInfo(lastWrite) << "\n");
// No conflict if the conflicting write happens before the last
// write.
if (Operation *writingOp = lastWrite.getDefiningOp()) {
if (happensBefore(conflictingWritingOp, writingOp, domInfo))
// conflictingWritingOp happens before writingOp. No conflict.
continue;
// No conflict if conflictingWritingOp is contained in writingOp.
if (writingOp->isProperAncestor(conflictingWritingOp))
continue;
} else {
auto bbArg = lastWrite.cast<BlockArgument>();
Block *block = bbArg.getOwner();
if (!block->findAncestorOpInBlock(*conflictingWritingOp))
// conflictingWritingOp happens outside of the block. No
// conflict.
continue;
}
// No conflict if the conflicting write and the last write are the same
// use.
if (getAliasingOpResult(*uConflictingWrite) == lastWrite)
continue;
// Special rules for matching ExtractSliceOp/InsertSliceOp pairs. If
// uRead is an InsertSliceOp...
if (auto insertSliceOp = dyn_cast<InsertSliceOp>(readingOp)) {
// As an example, consider the following IR.
//
// %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace= [true] }
// %1 = linalg.fill %cst, %0 {inplace= [true] }
// %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1]
// {inplace= [true] }
// TODO: Use insertSliceOp.getDestOpOperand etc. when available.
if (uRead == &insertSliceOp->getOpOperand(1) /*dest*/ &&
hasMatchingExtractSliceOp(uConflictingWrite->get(), insertSliceOp))
// Case 1: The main insight is that InsertSliceOp reads only part of
// the destination tensor. The overwritten area is not read. If
// uConflictingWrite writes into exactly the memory location that is
// being read by uRead, this is not a conflict.
//
// In the above example:
// uRead = OpOperand 1 (%t) of tensor.insert_slice
// uConflictingWrite = OpOperand 1 (%0) of linalg.fill
//
// The read of %t does not conflict with the write of the FillOp
// (same aliases!) because the area that the FillOp operates on is
// exactly the one that is *not* read via %t.
continue;
if (uRead == &insertSliceOp->getOpOperand(0) /*source*/ &&
uConflictingWrite == &insertSliceOp->getOpOperand(1) /*dest*/ &&
hasMatchingExtractSliceOp(uRead->get(), insertSliceOp))
// Case 2: The read of the source tensor and the write to the dest
// tensor via an InsertSliceOp is not a conflict if the read is
// reading exactly that part of an equivalent tensor that the
// InsertSliceOp is writing.
//
// In the above example:
// uRead = OpOperand 0 (%1) of tensor.insert_slice
// uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice
continue;
}
// All requirements are met. Conflict found!
LDBG("CONFLICT CONFIRMED!\n\n");
return true;
}
}
LDBG("NOT A CONFLICT!\n\n");
return false;
}
/// Return true if bufferizing result inplace would create a conflict. A read R
/// and a write W of the same alias set is a conflict if inplace bufferization
/// of W changes the value read by R to a value different from the one that
/// would be expected by tracing back R's origin through SSA use-def chains.
/// A conflict can only be introduced by a new alias and/or an inplace
/// bufferization decision.
///
/// Example:
/// %0 = tensor.extract_slice %t[...][...][1, 1] {inplace?}
/// %1 = vector.transfer_write %v1, %t {inplace} : vector<5xf32>, tensor<?xf32>
/// %e = tensor.extract_slice %1
/// %2 = vector.transfer_write %v2, %0 {inplace} : vector<6xf32>, tensor<?xf32>
/// %3 = vector.transfer_read %e, %cst : tensor<?xf32>, vector<7xf32>
///
/// In the above example, the two TransferWriteOps have already been decided to
/// bufferize inplace. Bufferizing the ExtractSliceOp inplace would create a
/// conflict because:
/// * According to SSA use-def chains, we expect to read the result of %1.
/// * However, adding an alias {%0, %t} would mean that the second
/// TransferWriteOp overwrites the first one. Therefore, the TransferReadOp
/// would no longer be reading the result of %1.
bool BufferizationAliasInfo::wouldCreateReadAfterWriteInterference(
OpOperand &operand, OpResult result, const DominanceInfo &domInfo) const {
#ifndef NDEBUG
SmallVector<OpOperand *> opOperands = getAliasingOpOperand(result);
assert(llvm::find(opOperands, &operand) != opOperands.end() &&
"operand and result do not match");
#endif // NDEBUG
// Helper function to iterate on aliases of `root` and capture the reads.
auto getAliasingReads = [&](DenseSet<OpOperand *> &res, Value root) {
for (Value alias : getAliases(root))
for (auto &use : alias.getUses())
// Read to a value that aliases root.
if (bufferizesToMemoryRead(use))
res.insert(&use);
};
// Helper function to iterate on aliases of `root` and capture the writes.
auto getAliasingInplaceWrites = [&](DenseSet<OpOperand *> &res, Value root) {
for (Value alias : getAliases(root))
for (auto &use : alias.getUses())
// Inplace write to a value that aliases root.
if (isInplaceMemoryWrite(use))
res.insert(&use);
};
// Collect reads and writes of all aliases of OpOperand and OpResult.
DenseSet<OpOperand *> usesRead, usesWrite;
getAliasingReads(usesRead, operand.get());
getAliasingReads(usesRead, result);
getAliasingInplaceWrites(usesWrite, operand.get());
getAliasingInplaceWrites(usesWrite, result);
if (bufferizesToMemoryWrite(operand))
usesWrite.insert(&operand);
return hasReadAfterWriteInterference(usesRead, usesWrite, domInfo);
}
/// Return true if bufferizing `opOperand` inplace with `opResult` would create
/// a write to a non-writable buffer.
bool BufferizationAliasInfo::wouldCreateWriteToNonWritableBuffer(
OpOperand &opOperand, OpResult opResult) const {
#ifndef NDEBUG
SmallVector<OpOperand *> opOperands = getAliasingOpOperand(opResult);
assert(llvm::find(opOperands, &opOperand) != opOperands.end() &&
"operand and result do not match");
#endif // NDEBUG
// Certain buffers are not writeable:
// 1. A function bbArg that is not inplaceable or
// 2. A constant op.
assert(!aliasesNonWritableBuffer(opResult) &&
"expected that opResult does not alias non-writable buffer");
bool nonWritable = aliasesNonWritableBuffer(opOperand.get());
if (!nonWritable)
return false;
// This is a problem only if the buffer is written to via some alias.
bool hasWrite = aliasesInPlaceWrite(opResult) ||
aliasesInPlaceWrite(opOperand.get()) ||
bufferizesToMemoryWrite(opOperand);
if (!hasWrite)
return false;
LDBG("->the corresponding buffer is not writeable\n");
return true;
}
/// Return true if the source of a `insertSliceOp` bufferizes to an
/// equivalent ExtractSliceOp that bufferizes inplace.
bool BufferizationAliasInfo::isSourceEquivalentToAMatchingInplaceExtractSliceOp(
InsertSliceOp insertSliceOp) const {
LDBG("isSourceEquivalentToAMatchingInplaceExtractSliceOp: " << *insertSliceOp
<< '\n');
auto leaderIt = equivalentInfo.findLeader(insertSliceOp.source());
for (auto mit = leaderIt, meit = equivalentInfo.member_end(); mit != meit;
++mit) {
auto extractSliceOp =
dyn_cast_or_null<ExtractSliceOp>(mit->v.getDefiningOp());
if (extractSliceOp &&
areEquivalentExtractSliceOps(extractSliceOp, insertSliceOp) &&
getInPlace(extractSliceOp.result()) == InPlaceSpec::True) {
LDBG("\tfound: " << *mit->v.getDefiningOp() << '\n');
return true;
}
}
LDBG("\tnot equivalent\n");
return false;
}
/// Apply `fun` to all the members of the equivalence class of `v`.
void BufferizationAliasInfo::applyOnEquivalenceClass(
Value v, function_ref<void(Value)> fun) const {
auto leaderIt = equivalentInfo.findLeader(v);
for (auto mit = leaderIt, meit = equivalentInfo.member_end(); mit != meit;
++mit) {
fun(mit->v);
}
}
void BufferizationAliasInfo::printAliases(raw_ostream &os) const {
os << "\n/===================== AliasInfo =====================\n";
for (auto it = aliasInfo.begin(), eit = aliasInfo.end(); it != eit; ++it) {
if (!it->isLeader())
continue;
Value leader = it->getData();
os << "|\n| -- leader: " << printValueInfo(leader, /*prefix=*/false)
<< '\n';
for (auto mit = aliasInfo.member_begin(it), meit = aliasInfo.member_end();
mit != meit; ++mit) {
Value v = static_cast<Value>(*mit);
os << "| ---- aliasing member: " << printValueInfo(v, /*prefix=*/false)
<< '\n';
}
}
os << "\n/===================== End AliasInfo =====================\n\n";
}
void BufferizationAliasInfo::printEquivalences(raw_ostream &os) const {
os << "\n/********************* Equivalent Buffers *********************\n";
for (auto it = equivalentInfo.begin(), eit = equivalentInfo.end(); it != eit;
++it) {
if (!it->isLeader())
continue;
Value leader = it->getData();
os << "|\n| -- leader: " << printValueInfo(leader, /*prefix=*/false)
<< '\n';
for (auto mit = equivalentInfo.member_begin(it),
meit = equivalentInfo.member_end();
mit != meit; ++mit) {
Value v = static_cast<Value>(*mit);
os << "| ---- equivalent member: " << printValueInfo(v, /*prefix=*/false)
<< '\n';
}
}
os << "|\n\\***************** End Equivalent Buffers *****************\n\n";
}
BufferizationAliasInfo::EquivalenceClassRangeType
BufferizationAliasInfo::getAliases(Value v) const {
DenseSet<Value> res;
auto it = aliasInfo.findValue(aliasInfo.getLeaderValue(v));
for (auto mit = aliasInfo.member_begin(it), meit = aliasInfo.member_end();
mit != meit; ++mit) {
res.insert(static_cast<Value>(*mit));
}
return BufferizationAliasInfo::EquivalenceClassRangeType(
aliasInfo.member_begin(it), aliasInfo.member_end());
}
void BufferizationAliasInfo::dumpAliases() const { printAliases(llvm::errs()); }
void BufferizationAliasInfo::dumpEquivalences() const {
printEquivalences(llvm::errs());
}
/// This is one particular type of relationship between ops on tensors that
/// reduce to an equivalence on buffers. This should be generalized and exposed
/// as interfaces on the proper types.
bool BufferizationAliasInfo::areEquivalentExtractSliceOps(
ExtractSliceOp st, InsertSliceOp sti) const {
if (!st || !sti)
return false;
if (!equivalentInfo.isEquivalent(st.source(), sti.dest()))
return false;
if (!sameOffsetsSizesAndStrides(st, sti, isEqualConstantIntOrValue))
return false;
return true;
}
//===----------------------------------------------------------------------===//
// Forward declarations.
//===----------------------------------------------------------------------===//
/// Return the op with Allocate MemoryEffect if `v` is equivalent to an such
/// an op. Return null otherwise.
static Operation *getEquivalentAlloc(Value value,
const BufferizationAliasInfo &aliasInfo);
/// Return the first argument of the enclosing FuncOp that is equivalent to `v`.
/// Return null if no such bbArg can be found.
static BlockArgument
getEquivalentEnclosingFuncBBArg(Value v,
const BufferizationAliasInfo &aliasInfo);
//===----------------------------------------------------------------------===//
// Bufferization-specific MemRefType support.
//===----------------------------------------------------------------------===//
/// Return a contiguous MemRefType (i.e. with canonical/empty layout map)
/// with the same shape as `shapedType` and specified `layout` and
/// `addressSpace`.
static MemRefType getContiguousMemRefType(ShapedType shapedType,
MemRefLayoutAttrInterface layout = {},
Attribute memorySpace = {}) {
return MemRefType::get(shapedType.getShape(), shapedType.getElementType(),
layout, memorySpace);
}
/// Return a contiguous MemRefType (i.e. with canonical/empty layout map)
/// with the same shape as `shapedType` and specified `layout` and
/// `addressSpace` or an UnrankedMemRefType otherwise.
static Type
getContiguousOrUnrankedMemRefType(Type type,
MemRefLayoutAttrInterface layout = {},
Attribute memorySpace = {}) {
if (type.isa<RankedTensorType, MemRefType>())
return getContiguousMemRefType(type.cast<ShapedType>(), layout,
memorySpace);
assert(!layout && "expected empty layout with UnrankedMemRefType");
return UnrankedMemRefType::get(getElementTypeOrSelf(type), memorySpace);
}
/// Return a MemRefType to which the `tensorType` can be bufferized in a
/// composable fashion. The layout must be the most dynamic possible and
/// canonicalize away once bufferization is finished.
static MemRefType getDynamicMemRefType(RankedTensorType tensorType,
unsigned addressSpace = 0) {
// TODO: address space decisions to connect with the actual alloc.
int64_t dynamicOffset = ShapedType::kDynamicStrideOrOffset;
SmallVector<int64_t> dynamicStrides(tensorType.getRank(),
ShapedType::kDynamicStrideOrOffset);
AffineMap stridedLayout = makeStridedLinearLayoutMap(
dynamicStrides, dynamicOffset, tensorType.getContext());
return MemRefType::get(tensorType.getShape(), tensorType.getElementType(),
stridedLayout, addressSpace);
}
/// Return the FunctionType with `argumentTypes` and `resultTypes` where each
/// tensor is replaced by the corresponding buffer type.
/// In order for all the callers to agree, this *must* bufferize to the most
/// dynamic buffer type supported.
/// A later pass across all CallOps in the module can decide whether to simplify
/// the types of to version according to some cost model.
static FunctionType getBufferizedFunctionType(MLIRContext *ctx,
TypeRange argumentTypes,
TypeRange resultTypes) {
auto rewrite = [](Type t) -> Type {
// TODO: non-zero address space.
// TODO: layout information if relevant.
if (auto rankedTensorType = t.dyn_cast<RankedTensorType>())
return getDynamicMemRefType(rankedTensorType);
if (auto tensorType = t.dyn_cast<TensorType>())
return getContiguousOrUnrankedMemRefType(tensorType);
return t;
};
auto argTypes = llvm::to_vector<4>(llvm::map_range(argumentTypes, rewrite));
auto retTypes = llvm::to_vector<4>(llvm::map_range(resultTypes, rewrite));
return FunctionType::get(ctx, argTypes, retTypes);
}
/// If an entry for `funcOp` is available in `bufferizedFunctionTypes`, return
/// it. Otherwise, construct a new entry based on `argumentTypes` and
/// `resultTypes`.
// TODO: improve the layering.
static FunctionType getOrCreateBufferizedFunctionType(
FuncOp funcOp, TypeRange argumentTypes, TypeRange resultTypes,
DenseMap<FuncOp, FunctionType> &bufferizedFunctionTypes) {
auto it = bufferizedFunctionTypes.find(funcOp);
if (it != bufferizedFunctionTypes.end())
return it->second;
auto it2 = bufferizedFunctionTypes.try_emplace(
funcOp, getBufferizedFunctionType(funcOp.getContext(), argumentTypes,
resultTypes));
LDBG("FT: " << funcOp.getType() << " -> " << it2.first->second << "\n");
return it2.first->second;
}
//===----------------------------------------------------------------------===//
// Bufferization-specific scoped alloc/dealloc insertion support.
//===----------------------------------------------------------------------===//
template <typename... Args>
Operation *getFirstParentOfType(Value v) {
Operation *parent;
if (auto bbArg = v.dyn_cast<BlockArgument>())
parent = bbArg.getOwner()->getParentOp();
else
parent = v.getDefiningOp()->getParentOp();
while (parent) {
if (isa<Args...>(parent))
return parent;
parent = parent->getParentOp();
}
return nullptr;
}
/// Create an Allocop/DeAllocOp pair, where the AllocOp is after
/// `shapedValue.getDefiningOp` (or at the top of the block in case of a
/// bbArg) and the DeallocOp is at the end of the block.
static Value createNewAllocDeallocPairForShapedValue(
OpBuilder &b, Location loc, Value shapedValue,
BufferizationAliasInfo &aliasInfo, AllocationCallbacks &allocationFns) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
assert(shapedValue.getType().isa<ShapedType>());
MemRefType memRefType = shapedValue.getType().dyn_cast<MemRefType>();
Optional<Value> allocated = allocationFns.allocationFn(b, loc, shapedValue);
// TODO: For now just assert the value is returned. Eventually need to
// error-propagate.
assert(allocated && "allocation failed");
Value casted = allocated.getValue();
MemRefType allocMemRefType = allocated->getType().cast<MemRefType>();
if (memRefType && memRefType != allocMemRefType) {
casted = b.create<memref::CastOp>(loc, memRefType, allocated.getValue());
aliasInfo.insertNewBufferEquivalence(casted, allocated.getValue());
}
allocationFns.deallocationFn(b, loc, allocated.getValue());
return casted;
}
//===----------------------------------------------------------------------===//
// Bufferization as simple BlockAndValueMapping rewrites.
//===----------------------------------------------------------------------===//
/// Return the result buffer (memref) for a given OpResult (tensor). Allocate
/// a new buffer and copy over data from the existing buffer if out-of-place
/// bufferization is necessary.
static Value getResultBuffer(OpBuilder &b, OpResult result,
const BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo,
AllocationCallbacks allocationFns,
bool skipCopy = false) {
OpBuilder::InsertionGuard guard(b);
Operation *op = result.getOwner();
SmallVector<OpOperand *> aliasingOperands = getAliasingOpOperand(result);
assert(!aliasingOperands.empty() && "could not get aliasing OpOperand");
Value operand = aliasingOperands.front()->get();
Value operandBuffer = lookup(bvm, operand);
assert(operandBuffer && "operand buffer not found");
// Make sure that all OpOperands are the same buffer. If this is not the case,
// we would have to materialize a memref value.
if (!llvm::all_of(aliasingOperands, [&](OpOperand *o) {
return lookup(bvm, o->get()) == operandBuffer;
})) {
op->emitError("result buffer is ambiguous");
return Value();
}
// If bufferizing out-of-place, allocate a new buffer.
bool needCopy =
getInPlace(result) != InPlaceSpec::True && !isa<scf::IfOp>(op);
if (needCopy) {
// Ops such as scf::IfOp can currently not bufferize out-of-place.
assert(
aliasingOperands.size() == 1 &&
"ops with multiple aliasing OpOperands cannot bufferize out-of-place");
Location loc = op->getLoc();
// Allocate the result buffer.
Value resultBuffer = createNewAllocDeallocPairForShapedValue(
b, loc, operand, aliasInfo, allocationFns);
// Do not copy the result of an InitTensorOp.
if (isInitTensorOp(operand))
skipCopy = true;
// Do not copy if the copied data is never read.
if (!isValueRead(result))
skipCopy = true;
if (!skipCopy) {
// Set insertion point now that potential alloc/dealloc are introduced.
b.setInsertionPoint(op);
b.create<CopyOp>(loc, operandBuffer, resultBuffer);
}
return resultBuffer;
}
// Bufferizing in-place. No need to allocate a new buffer.
return operandBuffer;
}
/// Helper function for LinalgOp bufferization.
/// When allocating a new buffer, analyze whether `op` wants to read form that
/// buffer. Only in that case, a copy of the result buffer may be needed.
static LogicalResult allocateBuffersForResults(
OpBuilder &b, Location loc, LinalgOp op,
SmallVectorImpl<Value> &resultBuffers, BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo, AllocationCallbacks &allocationFns) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(op);
// TODO: provide the proper interface to iterate on OpResults and get the
// matching OpOperands.
for (OpOperand *opOperand : op.getOutputOperands()) {
OpResult opResult = getInplaceableOpResult(*opOperand);
assert(opResult && "could not find correspond OpResult");
bool skipCopy = !op.payloadUsesValueFromOperand(opOperand);
Value resultBuffer =
getResultBuffer(b, opResult, bvm, aliasInfo, allocationFns, skipCopy);
if (!resultBuffer)
return failure();
resultBuffers.push_back(resultBuffer);
}
if (op->getNumResults())
map(bvm, op->getResults(), resultBuffers);
return success();
}
/// Generic conversion for any LinalgOp on tensors.
static LogicalResult bufferize(OpBuilder &b, LinalgOp op,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo,
AllocationCallbacks &allocationFns) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
// Ensure op has only tensors. Allow mixed tensor-buffer mode on a per-need
// basis.
if (!op.hasTensorSemantics())
return op->emitError() << "op does not have tensor semantics";
Location loc = op.getLoc();
SmallVector<Value> newInputBuffers;
newInputBuffers.reserve(op.getNumInputs());
for (OpOperand *opOperand : op.getInputOperands()) {
if (op.isScalar(opOperand)) {
newInputBuffers.push_back(opOperand->get());
continue;
}
newInputBuffers.push_back(lookup(bvm, opOperand->get()));
assert(newInputBuffers.back() && "missing buffer");
}
SmallVector<Value> newOutputBuffers;
// Try to allocate new buffers depending on op's inplace semantics.
if (failed(allocateBuffersForResults(b, loc, op, newOutputBuffers, bvm,
aliasInfo, allocationFns)))
return failure();
// Clone the newly bufferized op.
SmallVector<Value> newOperands = newInputBuffers;
newOperands.append(newOutputBuffers.begin(), newOutputBuffers.end());
// Set insertion point now that potential alloc/dealloc are introduced.
b.setInsertionPoint(op);
op.clone(b, loc, /*resultTypes=*/TypeRange{}, newOperands);
// Replace the results of the old op with the new output buffers.
if (op->getNumResults())
map(bvm, op->getResults(), newOutputBuffers);
// The original op will be DCE'd away later.
return success();
}
/// In a first approximation, all the function arguments of a FuncOp are marked
/// inplaceable. For now, it is the responsibility of the `callOp` bufferization
/// to allow FuncOp that are inplaceable to write inPlace.
static LogicalResult
bufferize(OpBuilder &b, CallOpInterface callOp, BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo, AllocationCallbacks &allocationFns,
DenseMap<FuncOp, FunctionType> &bufferizedFunctionTypes) {
FuncOp funcOp = getCalledFunction(callOp);
assert(isa<CallOp>(callOp.getOperation()) && funcOp &&
"expected Callop to a FuncOp");
// If nothing to do then we are done.
if (!llvm::any_of(funcOp.getType().getInputs(), isaTensor) &&
!llvm::any_of(funcOp.getType().getResults(), isaTensor))
return success();
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(callOp);
// 1. Filter return types:
// - if the callee is bodiless / external, we cannot inspect it and we
// cannot assume anything. We can just assert that it does not return a
// tensor as this would have to bufferize to "return a memref", whose
// semantics is ill-defined.
// - if the callee has a body, we perform inter-procedural equivalence
// analysis. When successful, a result folds onto an operand. When
// unsuccessful, additional work is needed to either:
// * hoist a result into an inplaceable operand or
// * devise a better representation to truly return a buffer.
SmallVector<Type> resultTypes;
SmallVector<Value> hoistedArguments;
if (funcOp.body().empty()) {
if (llvm::any_of(funcOp.getType().getResults(), isaTensor))
return callOp->emitError()
<< "cannot bufferize bodiless function that returns a tensor";
} else {
ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
assert(returnOp && "expected func with single return op");
// For each FuncOp result, keep track of which inplace argument it reuses.
for (OpOperand &returnOperand : returnOp->getOpOperands()) {
Type returnType = returnOperand.get().getType();
if (!isaTensor(returnType)) {
resultTypes.push_back(returnType);
continue;
}
// If return operand is equivalent to some bbArg, no need to return it.
Value returnVal = returnOperand.get();
if (BlockArgument bbArg =
getEquivalentEnclosingFuncBBArg(returnVal, aliasInfo)) {
Value oldRes = callOp->getResult(returnOperand.getOperandNumber());
int64_t idx = bbArg.getArgNumber();
Value buffer = lookup(bvm, callOp->getOperand(idx));
assert(buffer && "expected bufferized value");
// Add CallOp operand/result equivalence: this is interprocedural info.
aliasInfo.insertNewBufferEquivalence(oldRes, buffer);
map(bvm, oldRes, buffer);
// Add a TensorLoadOp to kill all uses of the CallOp return.
// Replace all uses of the CallOp results so we can erase the CallOp.
// This TensorLoadOp must fold/DCE away or bufferization should be
// considered failed.
Value tensorLoad =
b.create<memref::TensorLoadOp>(callOp.getLoc(), buffer);
oldRes.replaceAllUsesWith(tensorLoad);
// Add new op equivalence info.
aliasInfo.insertNewBufferEquivalence(tensorLoad, buffer);
map(bvm, tensorLoad, buffer);
continue;
}
// TODO: Need to hoist above function boundary.
if (Operation *allocOp = getEquivalentAlloc(returnVal, aliasInfo)) {
hoistedArguments.push_back(allocOp->getResult(0));
continue;
}
// Other cases legitimately need to return a tensor, this is currently not
// supported. For instance, if hoisting across function boundary has
// failed, it may be due to e.g. data-dependent sizes. In such a case, we
// would we need a better type than memref.
resultTypes.push_back(returnType);
int64_t returnIdx = returnOperand.getOperandNumber();
return returnOp->emitError()
<< "buffer result #" << returnIdx << " not produced by an alloc\n";
}
}
// 2. Compute bufferized FunctionType.
SmallVector<Type> argumentTypes{callOp->getOperandTypes()};
ValueRange hoistedArgs{hoistedArguments};
llvm::append_range(argumentTypes, hoistedArgs.getTypes());
// Get the bufferized FunctionType for funcOp or construct it if not yet
// available.
FunctionType bufferizedFuncType = getOrCreateBufferizedFunctionType(
funcOp, argumentTypes, resultTypes, bufferizedFunctionTypes);
// 3. Rewrite tensor operands as memrefs based on `bufferizedFuncType`.
SmallVector<Value> newOperands;
newOperands.reserve(callOp->getNumOperands());
for (OpOperand &opOperand : callOp->getOpOperands()) {
Value tensorOperand = opOperand.get();
// Non-tensor operands are just copied.
if (!tensorOperand.getType().isa<TensorType>()) {
newOperands.push_back(tensorOperand);
continue;
}
// Tensor operands are guaranteed to have been buferized.
int64_t idx = opOperand.getOperandNumber();
Value buffer = lookup(bvm, tensorOperand);
assert(buffer && "expected bufferized value");
// Caller / callee type mistmatch is handled with a CastOp.
auto memRefType = bufferizedFuncType.getInput(idx);
// Since we don't yet have a clear layout story, buffer_cast may
// conservatively turn tensors into more dynamic memref than necessary.
// If the memref type of the callee fails, introduce an extra memref.cast
// that will either canonicalize away or fail compilation until we can do
// something better.
if (buffer.getType() != memRefType) {
Value castBuffer =
b.create<memref::CastOp>(callOp.getLoc(), memRefType, buffer);
// Add new op equivalence info.
aliasInfo.insertNewBufferEquivalence(castBuffer, buffer);
map(bvm, tensorOperand, castBuffer);
buffer = castBuffer;
}
newOperands.push_back(buffer);
}
// 4. Create the new CallOp.
Operation *newCallOp = b.create<CallOp>(callOp.getLoc(), funcOp.sym_name(),
resultTypes, newOperands);
newCallOp->setAttrs(callOp->getAttrs());
// Delete the op at the end of bufferization.
return success();
}
/// tensor::CastOp bufferizes to memref::CastOp.
static LogicalResult bufferize(OpBuilder &b, tensor::CastOp castOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo,
AllocationCallbacks &allocationFn) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(castOp);
Value resultBuffer =
getResultBuffer(b, castOp->getResult(0), bvm, aliasInfo, allocationFn);
if (!resultBuffer)
return failure();
Type sourceType = resultBuffer.getType();
auto rankedMemRefType = sourceType.dyn_cast<MemRefType>();
auto unrankedMemRefType = sourceType.dyn_cast<UnrankedMemRefType>();
assert(rankedMemRefType || unrankedMemRefType);
Attribute memorySpace = rankedMemRefType
? rankedMemRefType.getMemorySpace()
: unrankedMemRefType.getMemorySpace();
TensorType tensorType = castOp.getResult().getType().cast<TensorType>();
MemRefLayoutAttrInterface layout =
rankedMemRefType && tensorType.isa<RankedTensorType>()
? rankedMemRefType.getLayout()
: MemRefLayoutAttrInterface();
Type memRefType = getContiguousOrUnrankedMemRefType(
castOp.getResult().getType(), layout, memorySpace);
Value res =
b.create<memref::CastOp>(castOp.getLoc(), memRefType, resultBuffer);
aliasInfo.insertNewBufferEquivalence(res, castOp.getResult());
map(bvm, castOp.getResult(), res);
return success();
}
static LogicalResult bufferize(OpBuilder &b, arith::ConstantOp constantOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
assert(constantOp.getType().dyn_cast<RankedTensorType>() &&
"not a constant ranked tensor");
auto moduleOp = constantOp->getParentOfType<ModuleOp>();
if (!moduleOp) {
return constantOp.emitError(
"cannot bufferize constants not within builtin.module op");
}
GlobalCreator globalCreator(moduleOp);
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(constantOp);
auto globalMemref = globalCreator.getGlobalFor(constantOp);
Value memref = b.create<memref::GetGlobalOp>(
constantOp.getLoc(), globalMemref.type(), globalMemref.getName());
aliasInfo.insertNewBufferEquivalence(memref, constantOp.getResult());
map(bvm, constantOp, memref);
return success();
}
/// DimOp tensor operand is modified inplace. This allows leaving dead
/// tensors behind that will get DCE'd.
static LogicalResult bufferize(OpBuilder &b, tensor::DimOp dimOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(dimOp);
if (dimOp.source().getType().isa<RankedTensorType>()) {
Value v = lookup(bvm, dimOp.source());
assert(v && "missing buffer");
dimOp.result().replaceAllUsesWith(
b.create<memref::DimOp>(dimOp.getLoc(), v, dimOp.index()));
}
return success();
}
static LogicalResult bufferize(OpBuilder &b, scf::ForOp forOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo,
AllocationCallbacks &allocationFn) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
for (OpResult opResult : forOp->getResults()) {
if (!opResult.getType().isa<TensorType>())
continue;
// TODO: Atm we bail on unranked TensorType because we don't know how to
// alloc an UnrankedMemRefType + its underlying ranked MemRefType.
assert(opResult.getType().isa<RankedTensorType>() &&
"unsupported unranked tensor");
// TODO: More general: Matching bbArg does not bufferize to a read.
Value resultBuffer =
getResultBuffer(b, opResult, bvm, aliasInfo, allocationFn);
if (!resultBuffer)
return failure();
OpOperand &opOperand = forOp.getOpOperandForResult(opResult);
BlockArgument bbArg = forOp.getRegionIterArgForOpOperand(opOperand);
aliasInfo.createAliasInfoEntry(resultBuffer);
aliasInfo.insertNewBufferEquivalence(bbArg, resultBuffer);
map(bvm, bbArg, resultBuffer);
map(bvm, opResult, resultBuffer);
}
return success();
}
static LogicalResult bufferize(OpBuilder &b, scf::IfOp ifOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
for (OpResult opResult : ifOp->getResults()) {
if (!opResult.getType().isa<TensorType>())
continue;
// TODO: Atm we bail on unranked TensorType because we don't know how to
// alloc an UnrankedMemRefType + its underlying ranked MemRefType.
assert(opResult.getType().isa<RankedTensorType>() &&
"unsupported unranked tensor");
Value resultBuffer = getResultBuffer(b, opResult, bvm, aliasInfo);
if (!resultBuffer)
return failure();
aliasInfo.createAliasInfoEntry(resultBuffer);
map(bvm, opResult, resultBuffer);
}
return success();
}
/// FuncOp always creates TensorToMemRef ops.
static LogicalResult bufferize(OpBuilder &b, FuncOp funcOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo,
AllocationCallbacks &allocationFn) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPointToStart(&funcOp.body().front());
for (auto bbArg : funcOp.getArguments()) {
auto tensorType = bbArg.getType().dyn_cast<TensorType>();
if (!tensorType)
continue;
auto rankedTensorType = tensorType.dyn_cast<RankedTensorType>();
// Cast the tensor to the most dynamic buffer possible. Further
// canonicalizations will clean up.
Type memRefType = rankedTensorType
? getDynamicMemRefType(rankedTensorType)
: getContiguousOrUnrankedMemRefType(tensorType);
Value bufferCast =
b.create<memref::BufferCastOp>(funcOp.getLoc(), memRefType, bbArg);
aliasInfo.insertNewBufferEquivalence(bufferCast, bbArg);
map(bvm, bbArg, bufferCast);
}
return success();
}
/// InitTensor always allocates (unless it was eliminated).
/// TODO: consider hoisting across function boundaries prior to bufferization.
static LogicalResult bufferize(OpBuilder &b, InitTensorOp initTensorOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo,
AllocationCallbacks &allocationFn) {
// The InitTensorOp may have been eliminated.
if (initTensorOp->getUses().empty())
return success();
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(initTensorOp);
Value alloc = createNewAllocDeallocPairForShapedValue(
b, initTensorOp->getLoc(), initTensorOp.result(), aliasInfo,
allocationFn);
map(bvm, initTensorOp.result(), alloc);
return success();
}
/// ReturnOp always creates memref::TensorLoadOp.
static LogicalResult bufferize(OpBuilder &b, ReturnOp returnOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
// Cannot insert after returnOp.
b.setInsertionPoint(returnOp);
assert(isa<FuncOp>(returnOp->getParentOp()) &&
"only support FuncOp parent for ReturnOp");
for (OpOperand &operand : returnOp->getOpOperands()) {
auto tensorType = operand.get().getType().dyn_cast<TensorType>();
if (!tensorType)
continue;
Value v = lookup(bvm, operand.get());
assert(v && "missing buffer for result");
Value returnTensor = b.create<memref::TensorLoadOp>(returnOp.getLoc(), v);
operand.set(returnTensor);
aliasInfo.insertNewBufferEquivalence(returnTensor, v);
map(bvm, returnTensor, v);
}
return success();
}
/// Bufferization for TiledLoopOp..
static LogicalResult bufferize(OpBuilder &b, TiledLoopOp tiledLoopOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo,
AllocationCallbacks &allocationFn) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
// Allocate output buffers if needed, forward output tensor args to the
// terminator.
Operation *yieldOp = tiledLoopOp.getBody()->getTerminator();
Block *body = tiledLoopOp.getBody();
// Take copies of the old input and output operands, so we can insert inplace
// easily.
auto oldInputs = llvm::to_vector<4>(tiledLoopOp.inputs());
auto oldOutputs = llvm::to_vector<4>(tiledLoopOp.outputs());
int numLoops = tiledLoopOp.getNumLoops();
int numControlOperands = tiledLoopOp.getNumControlOperands();
// Add buffers for outputs and the corresponding block arguments.
// Keep separate iterators to increment without further leaking impl. details.
// Start with outputs to avoid interference from new input buffers.
int numNewOutputBuffers = 0;
int resultIndex = 0;
int oldOutputBBArgIndex = numLoops + oldInputs.size();
int nextOutputBBArgIndex = numLoops + oldInputs.size() + oldOutputs.size();
int nextOutputOperandIndex =
numControlOperands + oldInputs.size() + oldOutputs.size();
for (Value oldOutputTensor : oldOutputs) {
if (!oldOutputTensor.getType().isa<TensorType>()) {
// Skip and increment the old bbarg index only.
++oldOutputBBArgIndex;
// Do not increment resultIndex as only tensors are returned.
// TODO: better interface to avoid leaking such impl details.
continue;
}
assert(oldOutputTensor.getType().isa<RankedTensorType>() &&
"bufferizable output must be a ranked tensor");
const OpResult &opResult = tiledLoopOp->getResult(resultIndex);
OpOperand &yieldOperand = yieldOp->getOpOperand(resultIndex);
Value resultBuffer =
getResultBuffer(b, opResult, bvm, aliasInfo, allocationFn);
if (!resultBuffer)
return failure();
// Insert mapping and aliasing info.
aliasInfo.createAliasInfoEntry(resultBuffer);
aliasInfo.insertNewBufferEquivalence(opResult, resultBuffer);
map(bvm, opResult, resultBuffer);
// Insert new operand and bbArg.
tiledLoopOp->insertOperands(nextOutputOperandIndex, resultBuffer);
BlockArgument newBufferBBArg =
body->insertArgument(nextOutputBBArgIndex, resultBuffer.getType());
BlockArgument oldTensorBBArg = body->getArgument(oldOutputBBArgIndex);
// Insert mapping and aliasing info.
aliasInfo.createAliasInfoEntry(newBufferBBArg);
aliasInfo.insertNewBufferEquivalence(oldTensorBBArg, newBufferBBArg);
map(bvm, oldTensorBBArg, newBufferBBArg);
// Set operand of `linalg.yield` to the bbArg so it just canonicalizes away
// later.
yieldOperand.set(oldTensorBBArg);
// Increment indices.
++numNewOutputBuffers;
++resultIndex;
++oldOutputBBArgIndex;
++nextOutputBBArgIndex;
++nextOutputOperandIndex;
}
// Add buffers for inputs and the corresponding block arguments.
// Keep separate iterators to increment without further leaking impl. details.
int numNewInputBuffers = 0;
int oldInputBBArgIndex = numLoops;
int nextInputBBArgIndex = numLoops + oldInputs.size();
int nextInputOperandIndex = numControlOperands + oldInputs.size();
for (Value oldInputTensor : oldInputs) {
if (!oldInputTensor.getType().isa<TensorType>()) {
// Skip and increment the old bbarg index only.
++oldInputBBArgIndex;
continue;
}
Value inputBuffer = lookup(bvm, oldInputTensor);
assert(inputBuffer && " missing buffer for operand");
// Insert new operand and bbArg.
tiledLoopOp->insertOperands(nextInputOperandIndex, inputBuffer);
BlockArgument newBufferBBArg =
body->insertArgument(nextInputBBArgIndex, inputBuffer.getType());
BlockArgument oldTensorBBArg = body->getArgument(oldInputBBArgIndex);
// Insert mapping and aliasing info.
aliasInfo.createAliasInfoEntry(newBufferBBArg);
aliasInfo.insertNewBufferEquivalence(oldTensorBBArg, newBufferBBArg);
map(bvm, oldTensorBBArg, newBufferBBArg);
// Increment indices.
++numNewInputBuffers;
++oldInputBBArgIndex;
++nextInputBBArgIndex;
++nextInputOperandIndex;
}
// Update segment sizes.
// TODO: Helper method to avoid leaking impl details.
tiledLoopOp->setAttr(
TiledLoopOp::getOperandSegmentSizeAttr(),
b.getI32VectorAttr(
{numLoops, numLoops, numLoops,
static_cast<int>(oldInputs.size()) + numNewInputBuffers,
static_cast<int>(oldOutputs.size()) + numNewOutputBuffers}));
return success();
}
/// Bufferize ExtractSliceOp to subview with optional alloc + copy depending on
/// whether or not it is marked inplaceable.
/// Note that `getInplaceableOpResult` on a ExtractSliceOp always returns null.
/// As consequence a ExtractSliceOp always alloc + copy when taken in
/// isolation.
static LogicalResult bufferize(OpBuilder &b, ExtractSliceOp extractSliceOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo,
AllocationCallbacks &allocationFn) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
LDBG("bufferize: " << *extractSliceOp << '\n');
Location loc = extractSliceOp.getLoc();
// Bail if source was not bufferized.
Value srcMemref = lookup(bvm, extractSliceOp.source());
if (!srcMemref)
return failure();
auto srcMemrefType = srcMemref.getType().cast<MemRefType>();
auto dstTensorType =
extractSliceOp.result().getType().cast<RankedTensorType>();
// If not inplaceable, alloc.
Value alloc;
auto inPlace = getInPlace(extractSliceOp->getResult(0));
if (inPlace != InPlaceSpec::True)
alloc = createNewAllocDeallocPairForShapedValue(
b, loc, extractSliceOp.result(), aliasInfo, allocationFn);
// Set insertion point now that potential alloc/dealloc are introduced.
b.setInsertionPoint(extractSliceOp);
// Bufferize to subview.
auto subviewMemRefType =
memref::SubViewOp::inferRankReducedResultType(
dstTensorType.getRank(), srcMemrefType,
extractSliceOp.getMixedOffsets(), extractSliceOp.getMixedSizes(),
extractSliceOp.getMixedStrides())
.cast<MemRefType>();
Value subView = b.create<memref::SubViewOp>(
loc, subviewMemRefType, srcMemref, extractSliceOp.getMixedOffsets(),
extractSliceOp.getMixedSizes(), extractSliceOp.getMixedStrides());
// Insert new alias.
aliasInfo.insertNewBufferAlias(subView, srcMemref);
/// If not inplaceable, copy.
if (alloc) {
// Do not copy if the copied data is never read.
if (isValueRead(extractSliceOp.result()))
b.create<CopyOp>(extractSliceOp.getLoc(), subView, alloc);
subView = alloc;
}
map(bvm, extractSliceOp.result(), subView);
return success();
}
static LogicalResult bufferize(OpBuilder &b, InsertSliceOp insertSliceOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo,
AllocationCallbacks &allocationFn) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(insertSliceOp);
LDBG("bufferize: " << *insertSliceOp << '\n');
Location loc = insertSliceOp.getLoc();
// Since insert_slice arise from tiling and introducing loops, this
// case is generally a deal breaker. When used with loops, this ends up
// cloning the whole tensor on every single iteration and is a symptom
// of a catastrophically bad scheduling decision.
// TODO: be very loud about it or even consider failing the pass.
// Alloc a copy for `insertSliceOp.dest()`, it will become the result
// buffer.
Value dstMemref = getResultBuffer(b, insertSliceOp->getResult(0), bvm,
aliasInfo, allocationFn);
if (!dstMemref)
return failure();
auto dstMemrefType = dstMemref.getType().cast<MemRefType>();
Value srcMemref = lookup(bvm, insertSliceOp.source());
if (!srcMemref)
return failure();
auto subviewMemRefType =
memref::SubViewOp::inferRankReducedResultType(
insertSliceOp.getSourceType().getRank(), dstMemrefType,
insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
insertSliceOp.getMixedStrides())
.cast<MemRefType>();
// A copy of the source buffer is needed if either:
// - The producer of `source` is not inplace. This is the case where a
// slice is computed out of place into the inplace full tensor.
// - The result is not inplace. This is the case where the whole tensor is
// cloned and the clone needs to be updated.
auto inPlace = getInPlace(insertSliceOp->getResult(0));
// TODO: Is this necessary?
if (!aliasInfo.isSourceEquivalentToAMatchingInplaceExtractSliceOp(
insertSliceOp) ||
inPlace != InPlaceSpec::True) {
LDBG("insert_slice needs extra source copy: " << insertSliceOp.source()
<< " -> copy\n");
// Take a subview of the dst.
Value subView = b.create<memref::SubViewOp>(
loc, subviewMemRefType, dstMemref, insertSliceOp.getMixedOffsets(),
insertSliceOp.getMixedSizes(), insertSliceOp.getMixedStrides());
// Insert new alias.
aliasInfo.insertNewBufferAlias(subView, dstMemref);
b.create<CopyOp>(insertSliceOp.getLoc(), srcMemref, subView);
}
map(bvm, insertSliceOp.result(), dstMemref);
return success();
}
static LogicalResult bufferize(OpBuilder &b, VectorTransferOpInterface op,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo,
AllocationCallbacks &allocationFn) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(op);
if (op.getShapedType().isa<MemRefType>())
return failure();
/// transfer_read from buffer always reads from the bufferized
/// op.source().
if (auto readOp = dyn_cast<vector::TransferReadOp>(op.getOperation())) {
Value v = lookup(bvm, op.source());
assert(v && "missing buffer");
readOp.sourceMutable().assign(v);
return success();
}
// Create a new transfer_write on buffer that doesn't have a return value.
// Leave the previous transfer_write to dead code as it still has uses at
// this point.
auto writeOp = cast<vector::TransferWriteOp>(op.getOperation());
Value resultBuffer =
getResultBuffer(b, op->getResult(0), bvm, aliasInfo, allocationFn);
if (!resultBuffer)
return failure();
b.create<vector::TransferWriteOp>(
op.getLoc(), writeOp.vector(), resultBuffer, writeOp.indices(),
writeOp.permutation_map(),
writeOp.in_bounds() ? *writeOp.in_bounds() : ArrayAttr());
map(bvm, op->getResult(0), resultBuffer);
return success();
}
static LogicalResult bufferize(OpBuilder &b, scf::YieldOp yieldOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
// Cannot create IR past a yieldOp.
b.setInsertionPoint(yieldOp);
if (auto execOp = dyn_cast<scf::ExecuteRegionOp>(yieldOp->getParentOp())) {
if (execOp->getNumResults() != 0)
return execOp->emitError(
"expected result-less scf.execute_region containing op");
return success();
}
if (auto ifOp = dyn_cast<scf::IfOp>(yieldOp->getParentOp()))
return success();
scf::ForOp forOp = dyn_cast<scf::ForOp>(yieldOp->getParentOp());
if (!forOp)
return yieldOp->emitError("expected scf::ForOp parent for scf::YieldOp");
for (OpOperand &operand : yieldOp->getOpOperands()) {
auto tensorType = operand.get().getType().dyn_cast<TensorType>();
if (!tensorType)
continue;
OpOperand &forOperand = forOp.getOpOperandForResult(
forOp->getResult(operand.getOperandNumber()));
auto bbArg = forOp.getRegionIterArgForOpOperand(forOperand);
Value yieldedBuffer = lookup(bvm, operand.get());
Value bbArgBuffer = lookup(bvm, bbArg);
if (!aliasInfo.areEquivalentBufferizedValues(yieldedBuffer, bbArgBuffer)) {
// TODO: this could get resolved with copies but it can also turn into
// swaps so we need to be careful about order of copies.
return yieldOp->emitError()
<< "Yield operand #" << operand.getOperandNumber()
<< " does not bufferize to an equivalent buffer to the matching"
<< " enclosing scf::for operand";
}
// Buffers are equivalent so the work is already done and we just yield the
// bbArg so that it later canonicalizes away.
operand.set(bbArg);
}
return success();
}
/// Bufferization for linalg::YieldOp either does not involve tensors or just
/// results in later canonicalization. In either case it does nothing.
static LogicalResult bufferize(OpBuilder &b, linalg::YieldOp yieldOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
// Cannot create IR past a yieldOp.
b.setInsertionPoint(yieldOp);
// No tensors -> success.
if (!llvm::any_of(yieldOp.getOperandTypes(), isaTensor))
return success();
// linalg::YieldOp nested under TiledLoop must just canonicalize.
if (yieldOp->getParentOfType<TiledLoopOp>())
return success();
llvm_unreachable("unexpected yieldOp");
}
/// Bufferization for tensor::ExtractOp just translate to memref.load, it only
/// reads the tensor.
static LogicalResult bufferize(OpBuilder &b, tensor::ExtractOp extractOp,
BlockAndValueMapping &bvm,
BufferizationAliasInfo &aliasInfo) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(extractOp);
Location loc = extractOp.getLoc();
Value srcMemref = lookup(bvm, extractOp.tensor());
Value l = b.create<memref::LoadOp>(loc, srcMemref, extractOp.indices());
extractOp.replaceAllUsesWith(l);
return success();
}
//===----------------------------------------------------------------------===//
// Bufferization analyses.
//===----------------------------------------------------------------------===//
/// Determine if `operand` can be bufferized in-place with `result`. If so, set
/// InPlaceSpec::True on the result. Otherwise, set InPlaceSpec::False on the
/// result.
static LogicalResult
bufferizableInPlaceAnalysisImpl(OpOperand &operand, OpResult result,
BufferizationAliasInfo &aliasInfo,
const DominanceInfo &domInfo) {
#ifndef NDEBUG
SmallVector<OpOperand *> opOperands = getAliasingOpOperand(result);
assert(llvm::find(opOperands, &operand) != opOperands.end() &&
"operand and result do not match");
#endif // NDEBUG
int64_t resultNumber = result.getResultNumber();
(void)resultNumber;
LDBG('\n');
LDBG("Inplace analysis for <- #" << resultNumber << " -> #"
<< operand.getOperandNumber() << " in "
<< printValueInfo(result) << '\n');
bool foundInterference =
aliasInfo.wouldCreateWriteToNonWritableBuffer(operand, result) ||
aliasInfo.wouldCreateReadAfterWriteInterference(operand, result, domInfo);
if (foundInterference)
aliasInfo.bufferizeOutOfPlace(result);
else
aliasInfo.bufferizeInPlace(result, operand);
LDBG("Done inplace analysis for result #" << resultNumber << '\n');
return success();
}
///
/// Rationale for bufferizing `%1 = tensor.extract_slice %0[...]` inplace.
/// ===========================================================
///
/// When bufferized out of place, a ExtractSlice lowers to alloc + copy. This
/// cannot change the flow of information for either the source or the
/// result buffers.
///
/// When bufferized inplace, a ExtractSliceOp does not by itself create any read
/// or write from memory. Instead, it has the effect of merging the alias sets
/// of the source and the result buffers.
///
/// An analysis is required to ensure inplace bufferization would not result in
/// RaW dependence violations.
static LogicalResult
bufferizableInPlaceAnalysis(ExtractSliceOp extractSliceOp,
BufferizationAliasInfo &aliasInfo,
const DominanceInfo &domInfo) {
return bufferizableInPlaceAnalysisImpl(extractSliceOp->getOpOperand(0),
extractSliceOp->getOpResult(0),
aliasInfo, domInfo);
}
/// Determine if `operand` can be bufferized in-place with one of the op's
/// results. If so, set InPlaceSpec::True on the result. Otherwise, set
/// InPlaceSpec::False on the result.
static LogicalResult
bufferizableInPlaceAnalysis(OpOperand &operand,
BufferizationAliasInfo &aliasInfo,
const DominanceInfo &domInfo) {
OpResult result = getInplaceableOpResult(operand);
if (!result)
return success();
return bufferizableInPlaceAnalysisImpl(operand, result, aliasInfo, domInfo);
}
/// Analyze the `ops` to determine which OpResults are inplaceable. Walk ops in
/// reverse and bufferize ops greedily. This is a good starter heuristic.
/// ExtractSliceOps are interleaved with other ops in traversal order.
LogicalResult mlir::linalg::inPlaceAnalysis(SmallVector<Operation *> &ops,
BufferizationAliasInfo &aliasInfo,
const DominanceInfo &domInfo) {
// Walk ops in reverse for better interference analysis.
for (Operation *op : reverse(ops)) {
for (OpOperand &opOperand : op->getOpOperands())
if (failed(bufferizableInPlaceAnalysis(opOperand, aliasInfo, domInfo)))
return failure();
// Special logic to analyze ExtractSliceOp.
// Note that ExtractSliceOp analysis needs to be interleaved with other ops
// to properly capture aliases.
// Walk ExtractSliceOps in reverse for better clobbering analysis behavior:
// it is easier to detect clobbers of smaller slices before larger ones.
if (auto extractSliceOp = dyn_cast<ExtractSliceOp>(op))
if (failed(
bufferizableInPlaceAnalysis(extractSliceOp, aliasInfo, domInfo)))
return failure();
}
return success();
}
/// Analyze the `funcOp` body to determine which OpResults are inplaceable.
static LogicalResult
inPlaceAnalysisFuncOpBody(FuncOp funcOp, BufferizationAliasInfo &aliasInfo,
const DominanceInfo &domInfo) {
LLVM_DEBUG(llvm::dbgs() << "\n\n");
LDBG("Begin InPlaceAnalysisFuncOpInternals:\n" << funcOp << '\n');
assert(funcOp && funcOp->getNumRegions() > 0 && !funcOp.body().empty() &&
"expected a funcOp definition with a body");
// Collect ops so we can build our own reverse traversal.
SmallVector<Operation *> ops;
funcOp.walk([&](Operation *op) {
// No tensors => no buffers.
if (none_of(op->getOperandTypes(), isaTensor) &&
none_of(op->getResultTypes(), isaTensor))
return;
ops.push_back(op);
});
// Set the function arguments marked with inplaceable to be known as
// bufferizing to a writeable memory.
for (BlockArgument bbArg : funcOp.getArguments()) {
BoolAttr inplaceAttr = funcOp.getArgAttrOfType<BoolAttr>(
bbArg.getArgNumber(), LinalgDialect::kInplaceableAttrName);
if (inplaceAttr && inplaceAttr.getValue())
aliasInfo.setBufferizesToWritableMemory(bbArg);
}
LogicalResult res = inPlaceAnalysis(ops, aliasInfo, domInfo);
LDBG("End InPlaceAnalysisFuncOpInternals:\n" << funcOp << '\n');
return res;
}
//===----------------------------------------------------------------------===//
// Bufferization entry-point for functions.
//===----------------------------------------------------------------------===//
/// Compute the type of the `memref` to use for allocating the buffer for
/// `shapedValue`. Also returns (by reference in `dynShape`), the value for the
/// dynamic dimensions in the returned `memref` type. The function also sets the
/// insertion point of the builder `b` to the position where the allocation is
/// to be inserted.
static MemRefType getAllocationTypeAndShape(OpBuilder &b, Location loc,
Value shapedValue,
SmallVectorImpl<Value> &dynShape) {
MemRefType allocMemRefType =
getContiguousMemRefType(shapedValue.getType().cast<ShapedType>());
if (auto bbArg = shapedValue.dyn_cast<BlockArgument>()) {
b.setInsertionPointToStart(bbArg.getOwner());
loc = bbArg.getOwner()->getParentOp()->getLoc();
} else {
b.setInsertionPoint(shapedValue.getDefiningOp());
loc = shapedValue.getDefiningOp()->getLoc();
}
// Compute the dynamic part of the shape.
bool foundDynamicShapes = false;
if (auto rankedOp = dyn_cast_or_null<ReifyRankedShapedTypeOpInterface>(
shapedValue.getDefiningOp())) {
ReifiedRankedShapedTypeDims resultDims;
if (succeeded(rankedOp.reifyResultShapes(b, resultDims))) {
foundDynamicShapes = true;
OpResult resultValue = shapedValue.dyn_cast<OpResult>();
auto &shape = resultDims[resultValue.getResultNumber()];
for (auto dim : enumerate(allocMemRefType.getShape()))
if (dim.value() == ShapedType::kDynamicSize)
dynShape.push_back(shape[dim.index()]);
}
}
if (!foundDynamicShapes) {
for (auto dim : enumerate(allocMemRefType.getShape()))
if (dim.value() == ShapedType::kDynamicSize)
dynShape.push_back(createOrFoldDimOp(b, loc, shapedValue, dim.index()));
}
// If the buffer is statically shaped, try to hoist it to the first enclosing
// parallel region.
// TODO: this concept of parallel region and threadlocal needs interfaces.
// TODO: also hoist in the dynamic case. For now this relies on subsequent
// calls to LICM and buffer hoisting which will most likely not succeed.
// TODO: when packing, allocate a static bounding box which will enable more
// hoisting.
if (dynShape.empty()) {
Operation *parent =
getFirstParentOfType<FuncOp, TiledLoopOp, scf::ParallelOp,
AffineParallelOp>(shapedValue);
if (parent)
b.setInsertionPointToStart(&(parent->getRegion(0).front()));
}
return allocMemRefType;
}
Optional<Value> mlir::linalg::defaultAllocationFn(OpBuilder &b, Location loc,
Value shapedValue) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(b);
SmallVector<Value> dynShape;
MemRefType allocMemRefType =
getAllocationTypeAndShape(b, loc, shapedValue, dynShape);
Value allocated = b.create<memref::AllocOp>(
loc, allocMemRefType, dynShape, b.getI64IntegerAttr(kBufferAlignments));
return allocated;
}
static Optional<Value> allocationFnUsingAlloca(OpBuilder &b, Location loc,
Value shapedValue) {
OpBuilder::InsertionGuard g(b);
SmallVector<Value> dynShape;
MemRefType allocMemRefType =
getAllocationTypeAndShape(b, loc, shapedValue, dynShape);
Value allocated = b.create<memref::AllocaOp>(
loc, allocMemRefType, dynShape, b.getI64IntegerAttr(kBufferAlignments));
return allocated;
}
void mlir::linalg::defaultDeallocationFn(OpBuilder &b, Location loc,
Value allocatedBuffer) {
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(allocatedBuffer.getParentBlock()->getTerminator());
b.create<memref::DeallocOp>(loc, allocatedBuffer);
}
LogicalResult mlir::linalg::bufferizeOp(
Operation *op, BlockAndValueMapping &bvm, BufferizationAliasInfo &aliasInfo,
AllocationCallbacks allocationFns,
DenseMap<FuncOp, FunctionType> *bufferizedFunctionTypes) {
OpBuilder b(op->getContext());
return TypeSwitch<Operation *, LogicalResult>(op)
// Skip BufferCast and TensorLoad ops.
.Case<memref::BufferCastOp, memref::TensorLoadOp>(
[&](auto) { return success(); })
.Case<ExtractSliceOp, InitTensorOp, InsertSliceOp, LinalgOp, scf::ForOp,
tensor::CastOp, TiledLoopOp, VectorTransferOpInterface>(
[&](auto op) {
LDBG("Begin bufferize:\n" << op << '\n');
return bufferize(b, op, bvm, aliasInfo, allocationFns);
})
.Case<tensor::DimOp, tensor::ExtractOp, ReturnOp, linalg::YieldOp,
scf::YieldOp>([&](auto op) {
LDBG("Begin bufferize:\n" << op << '\n');
return bufferize(b, op, bvm, aliasInfo);
})
.Case<tensor::CastOp, tensor::DimOp, ExtractSliceOp, InitTensorOp,
InsertSliceOp, tensor::ExtractOp, LinalgOp, ReturnOp,
VectorTransferOpInterface, linalg::YieldOp, scf::YieldOp,
scf::IfOp>([&](auto op) {
LDBG("Begin bufferize:\n" << op << '\n');
return bufferize(b, op, bvm, aliasInfo);
})
.Case([&](CallOpInterface op) {
LDBG("Begin bufferize:\n" << op << '\n');
if (!bufferizedFunctionTypes)
llvm_unreachable(
"null bufferizedFunctionTypes when bufferizing CallOpInterface");
return bufferize(b, op, bvm, aliasInfo, allocationFns,
*bufferizedFunctionTypes);
})
.Case([&](arith::ConstantOp op) {
if (!isaTensor(op.getResult().getType()))
return success();
LDBG("Begin bufferize:\n" << op << '\n');
return bufferize(b, op, bvm, aliasInfo);
})
.Default([&](Operation *op) -> LogicalResult {
auto isaTensor = [](Type t) { return t.isa<TensorType>(); };
if (any_of(op->getOperandTypes(), isaTensor) ||
any_of(op->getResultTypes(), isaTensor))
return op->emitError() << "unsupported op with tensors";
return success();
});
}
static LogicalResult bufferizeFuncOpInternals(
FuncOp funcOp, BlockAndValueMapping &bvm, BufferizationAliasInfo &aliasInfo,
AllocationCallbacks &allocationFns,
DenseMap<FuncOp, FunctionType> &bufferizedFunctionTypes) {
LLVM_DEBUG(llvm::dbgs() << "\n\n");
LDBG("Begin BufferizeFuncOpInternals:\n" << funcOp << '\n');
OpBuilder b(funcOp->getContext());
/// Start by bufferizing `funcOp` arguments.
if (failed(bufferize(b, funcOp, bvm, aliasInfo, allocationFns)))
return failure();
// Cannot erase ops during the traversal. Do that afterwards.
SmallVector<Operation *> toErase;
// Bufferize the function body. `bufferizedOps` keeps track ops that were
// already bufferized with pre-order traversal.
DenseSet<Operation *> bufferizedOps;
auto walkFunc = [&](Operation *op) -> WalkResult {
// Collect ops that need to be bufferized before `op`.
SmallVector<Operation *> preorderBufferize;
Operation *parentOp = op->getParentOp();
// scf::ForOp and TiledLoopOp must be bufferized before their blocks
// ("pre-order") because BBargs must be mapped when bufferizing children.
while (isa_and_nonnull<scf::ForOp, TiledLoopOp>(parentOp)) {
if (bufferizedOps.contains(parentOp))
break;
bufferizedOps.insert(parentOp);
preorderBufferize.push_back(parentOp);
parentOp = parentOp->getParentOp();
}
for (Operation *op : llvm::reverse(preorderBufferize))
if (failed(bufferizeOp(op, bvm, aliasInfo, allocationFns,
&bufferizedFunctionTypes)))
return failure();
if (!bufferizedOps.contains(op) &&
failed(bufferizeOp(op, bvm, aliasInfo, allocationFns,
&bufferizedFunctionTypes)))
return failure();
// Register post-walk erasure, if necessary.
if (isa<CallOpInterface>(op))
if (llvm::any_of(op->getOperandTypes(), isaTensor) ||
llvm::any_of(op->getResultTypes(), isaTensor))
toErase.push_back(op);
return success();
};
if (funcOp.walk(walkFunc).wasInterrupted())
return failure();
LDBG("End BufferizeFuncOpInternals:\n" << funcOp << '\n');
for (Operation *op : toErase)
op->erase();
return success();
}
//===----------------------------------------------------------------------===//
// Bufferization entry-point for modules.
//===----------------------------------------------------------------------===//
/// Return the op with Allocate MemoryEffect if `v` is equivalent to such an
/// an op. Return null otherwise.
static Operation *getEquivalentAlloc(Value value,
const BufferizationAliasInfo &aliasInfo) {
Operation *res = nullptr;
aliasInfo.applyOnEquivalenceClass(value, [&](Value v) {
if (!res)
if (auto interface =
dyn_cast_or_null<MemoryEffectOpInterface>(v.getDefiningOp()))
if (auto effect =
interface.getEffectOnValue<MemoryEffects::Allocate>(v))
res = v.getDefiningOp();
});
return res;
}
/// Return the first argument of the enclosing FuncOp that is equivalent to `v`.
/// Return null if no such bbArg can be found.
static BlockArgument
getEquivalentEnclosingFuncBBArg(Value v,
const BufferizationAliasInfo &aliasInfo) {
if (!v.getType().isa<RankedTensorType>())
return nullptr;
Operation *op = v.getParentBlock()->getParentOp();
FuncOp funcOp = dyn_cast<FuncOp>(op);
if (!funcOp)
funcOp = op->getParentOfType<FuncOp>();
assert(funcOp && "expected non-null FuncOp");
for (BlockArgument bbArg : funcOp.getArguments()) {
if (!bbArg.getType().isa<RankedTensorType>())
continue;
if (aliasInfo.areEquivalentBufferizedValues(v, bbArg))
return bbArg;
}
return nullptr;
}
/// Rewrite the `funcOp` arguments analysis return values and terminator into
/// buffer form (using the canonical memref layout for now), according to the
/// inPlace-bufferizable information of the function arguments.
/// This relies on a buffer equivalence analysis of each return operand. When a
/// result buffer is equivalent to:
/// 1. a BlockArgument of `funcOp`, it can be dropped from the return values
/// and becomes inplaceable at all callers. This assumes all CallOp perform
/// the necessary work to clone operands so as to make them inplaceable.
// Reliance on this logic will need to be relaxed in thefuture.
/// 2. an op with an Alloc effect, this currently fails bufferization but is a
/// candidate for hoisting and creating a new inplace operand at all caller
/// sites.
/// 3. if such a hoisting for 2. is not possible (e.g. data-dependent that
/// prevents hoisting), this is currently unsupported and will require a
/// refcounted buffer type.
static LogicalResult bufferizeFuncOpBoundary(
FuncOp funcOp, BufferizationAliasInfo &aliasInfo,
DenseMap<FuncOp, FunctionType> &bufferizedFunctionTypes) {
LLVM_DEBUG(DBGS() << "Begin bufferizeFuncOpBoundary:\n" << funcOp << "\n");
// If nothing to do then we are done.
if (!llvm::any_of(funcOp.getType().getInputs(), isaTensor) &&
!llvm::any_of(funcOp.getType().getResults(), isaTensor))
return success();
// Get the bufferized FunctionType for funcOp or construct it if not yet
// available.
// TODO: Atm we have 3 cases:
// 1. if a function is called from within the Module, it must have bufferized
// to inplaceable tensor results.
// 2. if it is bodiless, it must have bufferized and is not allowed to have
// result tensors.
// 3. if it is not called internally, it still must bufferize to inplaceable
// tensor results and we construct it now (e.g. top-level function called
// externally).
// -> Figure out a better layering.
TypeRange resultTypes;
// Corner case: Bodiless FuncOp
// ============================
// The body of such functions is assumed opaque and we can't know the
// bufferization contract they want to enforce atm.
// As a consequence, only support functions that don't return any tensor atm.
if (funcOp.getBody().empty()) {
if (llvm::any_of(funcOp.getType().getResults(), isaTensor))
return funcOp->emitError() << "cannot bufferize bodiless function that "
<< "returns a tensor";
FunctionType bufferizedFuncType =
getOrCreateBufferizedFunctionType(funcOp, funcOp.getType().getInputs(),
TypeRange{}, bufferizedFunctionTypes);
funcOp.setType(bufferizedFuncType);
LLVM_DEBUG(DBGS() << "End bufferizeFuncOpBoundary no fun body: " << funcOp);
return success();
}
// Support only single return-terminated block in the function.
ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
assert(returnOp && "expected func with single return op");
// 1. For each FuncOp result, keep track of which inplace argument it reuses.
SmallVector<Value> returnValues;
for (OpOperand &returnOperand : returnOp->getOpOperands()) {
// If not a renturn tensor type just forward it.
if (!returnOperand.get().getType().isa<RankedTensorType>()) {
returnValues.push_back(returnOperand.get());
continue;
}
// If return operand is equivalent to some bbArg, no need to return it.
Value returnVal = returnOperand.get();
if (getEquivalentEnclosingFuncBBArg(returnVal, aliasInfo))
continue;
// TODO: Need to hoist above function boundary.
if (Operation *allocOp = getEquivalentAlloc(returnVal, aliasInfo)) {
returnValues.push_back(allocOp->getResult(0));
continue;
}
// Other cases legitimately need to return a tensor, this is currently not
// supported. For instance, if hoisting across function boundary has
// failed, it may be due to e.g. data-dependent sizes. In such a case, we
// would need a better type than memref.
int64_t returnIdx = returnOperand.getOperandNumber();
return returnOp->emitError()
<< "buffer result #" << returnIdx << " not produced by an alloc\n";
}
// 2. Rewrite the terminator without the inPlace bufferizable values.
ValueRange retValues{returnValues};
FunctionType bufferizedFuncType = getOrCreateBufferizedFunctionType(
funcOp, funcOp.getType().getInputs(), retValues.getTypes(),
bufferizedFunctionTypes);
OpBuilder b(returnOp);
b.create<ReturnOp>(returnOp.getLoc(), returnValues);
returnOp->erase();
// 3. Rewrite the bbArgs.
// Iterate on the original `numArgs` and replace them in order.
// This guarantees the argument order still matches after the rewrite.
Block &frontBlock = funcOp.body().front();
unsigned numArgs = frontBlock.getNumArguments();
for (unsigned idx = 0; idx < numArgs; ++idx) {
auto bbArg = frontBlock.getArgument(0);
auto tensorType = bbArg.getType().dyn_cast<TensorType>();
// Non-tensor types are just forwarded.
if (!tensorType) {
frontBlock.addArgument(bbArg.getType());
bbArg.replaceAllUsesWith(frontBlock.getArguments().back());
frontBlock.eraseArgument(0);
continue;
}
// Get the buffer type from the bufferized function type.
Type memrefType = bufferizedFuncType.getInput(idx);
Value memref = frontBlock.addArgument(memrefType);
OpBuilder b(funcOp->getContext());
b.setInsertionPointToStart(&frontBlock);
// Replace all uses of bbArg through a BufferCastOp by a memref::CastOp.
for (auto &use : llvm::make_early_inc_range(bbArg.getUses())) {
if (auto bufferCastOp = dyn_cast<memref::BufferCastOp>(use.getOwner())) {
auto castOp = b.create<memref::CastOp>(
funcOp.getLoc(), bufferCastOp.memref().getType(), memref);
bufferCastOp.memref().replaceAllUsesWith(castOp);
aliasInfo.insertNewBufferEquivalence(castOp.dest(),
bufferCastOp.memref());
}
}
// Replace all remaining uses by a tensor_load.
if (!bbArg.use_empty()) {
auto tensorLoadOp =
b.create<memref::TensorLoadOp>(funcOp.getLoc(), memref);
aliasInfo.insertNewBufferEquivalence(tensorLoadOp, bbArg);
bbArg.replaceAllUsesWith(tensorLoadOp);
}
frontBlock.eraseArgument(0);
// TODO: add support to erase aliasInfo entries if deemed necessary.
}
// 4. Rewrite the FuncOp type to buffer form.
funcOp.setType(bufferizedFuncType);
LLVM_DEBUG(DBGS() << "End bufferizeFuncOpBoundary:\n" << funcOp);
return success();
}
/// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by
/// callee-caller order (i.e. callees without callers first).
/// Store the map of FuncOp to all its callers in `callerMap`.
/// Return `failure()` if a cycle of calls is detected or if we are unable to
/// retrieve the called FuncOp from any CallOpInterface.
static LogicalResult
getFuncOpsOrderedByCalls(ModuleOp moduleOp,
SmallVectorImpl<FuncOp> &orderedFuncOps,
DenseMap<FuncOp, DenseSet<Operation *>> &callerMap) {
// For each FuncOp, the set of functions called by it (i.e. the union of
// symbols of all nested CallOpInterfaceOp).
DenseMap<FuncOp, DenseSet<FuncOp>> calledBy;
// For each FuncOp, the number of CallOpInterface it contains.
DenseMap<FuncOp, unsigned> numberCallOpsContainedInFuncOp;
WalkResult res = moduleOp.walk([&](FuncOp funcOp) -> WalkResult {
if (!funcOp.body().empty()) {
ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
if (!returnOp)
return funcOp->emitError()
<< "cannot bufferize a FuncOp with tensors and "
"without a unique ReturnOp";
}
numberCallOpsContainedInFuncOp[funcOp] = 0;
return funcOp.walk([&](CallOpInterface callOp) -> WalkResult {
// Only support CallOp for now.
if (!isa<CallOp>(callOp.getOperation()))
return callOp->emitError() << "expected a CallOp";
FuncOp calledFunction = getCalledFunction(callOp);
assert(calledFunction && "could not retrieved called FuncOp");
auto it = callerMap.try_emplace(calledFunction, DenseSet<Operation *>{});
it.first->getSecond().insert(callOp);
if (calledBy[calledFunction].count(funcOp) == 0) {
calledBy[calledFunction].insert(funcOp);
numberCallOpsContainedInFuncOp[funcOp]++;
}
return WalkResult::advance();
});
});
if (res.wasInterrupted())
return failure();
// Iteratively remove function operation that do not call any of the
// functions remaining in the callCounter map and add them to the worklist.
while (!numberCallOpsContainedInFuncOp.empty()) {
auto it = llvm::find_if(numberCallOpsContainedInFuncOp,
[](auto entry) { return entry.getSecond() == 0; });
if (it == numberCallOpsContainedInFuncOp.end())
return moduleOp.emitOpError(
"expected callgraph to be free of circular dependencies.");
orderedFuncOps.push_back(it->getFirst());
for (auto callee : calledBy[it->getFirst()])
numberCallOpsContainedInFuncOp[callee]--;
numberCallOpsContainedInFuncOp.erase(it);
}
return success();
}
namespace {
struct LinalgComprehensiveModuleBufferize
: public LinalgComprehensiveModuleBufferizeBase<
LinalgComprehensiveModuleBufferize> {
LinalgComprehensiveModuleBufferize() {}
LinalgComprehensiveModuleBufferize(
const LinalgComprehensiveModuleBufferize &p) {}
void runOnOperation() override;
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<linalg::LinalgDialect, memref::MemRefDialect>();
}
private:
std::unique_ptr<AllocationCallbacks> allocationFns;
};
} // end namespace
static void applyEnablingTransformations(ModuleOp moduleOp) {
RewritePatternSet patterns(moduleOp.getContext());
patterns.add<GeneralizePadTensorOpPattern>(moduleOp.getContext());
(void)applyPatternsAndFoldGreedily(moduleOp, std::move(patterns));
}
static void
foreachCaller(const DenseMap<FuncOp, DenseSet<Operation *>> &callerMap,
FuncOp callee, llvm::function_ref<void(Operation *)> doit) {
auto itCallers = callerMap.find(callee);
if (itCallers == callerMap.end())
return;
for (Operation *caller : itCallers->second)
doit(caller);
}
/// Postprocess the linalg.buffer_layout annotation across function boundaries.
/// This is a purely mechanical process that may later become part of a
/// separate pass with its own layout assignment heuristic.
static void layoutPostProcessing(ModuleOp moduleOp) {
SmallVector<FuncOp> orderedFuncOps;
DenseMap<FuncOp, DenseSet<Operation *>> callerMap;
auto res = getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap);
(void)res;
assert(succeeded(res) && "unexpected getFuncOpsOrderedByCalls failure");
for (FuncOp funcOp : orderedFuncOps) {
DenseMap<Operation *, SmallVector<Value>> operandsPerCaller;
foreachCaller(callerMap, funcOp, [&](Operation *caller) {
operandsPerCaller.try_emplace(caller, SmallVector<Value>());
});
SmallVector<Type> argumentTypes;
// Iterate on each function argument and check it it was marked with a
// desired layout.
for (auto it : llvm::enumerate(funcOp.getType().getInputs())) {
int argNumber = it.index();
Type inputType = it.value();
auto memrefType = inputType.dyn_cast<MemRefType>();
auto layoutAttr = funcOp.getArgAttrOfType<AffineMapAttr>(
argNumber, LinalgDialect::kBufferLayoutAttrName);
AffineMap desiredLayoutMap =
layoutAttr ? layoutAttr.getValue() : AffineMap();
AffineMap currentLayoutMap =
memrefType ? getStridedLinearLayoutMap(memrefType) : AffineMap();
if (!memrefType || !layoutAttr || desiredLayoutMap == currentLayoutMap) {
argumentTypes.push_back(inputType);
foreachCaller(callerMap, funcOp, [&](Operation *caller) {
operandsPerCaller.find(caller)->getSecond().push_back(
caller->getOperand(argNumber));
});
continue;
}
// Compute the buffer type with desired layout and add to input argument
// types.
MemRefType desiredMemrefType = MemRefType::get(
memrefType.getShape(), memrefType.getElementType(), desiredLayoutMap);
argumentTypes.push_back(desiredMemrefType);
// If funcOp's body is not empty, change the bbArg type and propagate.
if (!funcOp.body().empty()) {
BlockArgument bbArg = funcOp.getArgument(argNumber);
bbArg.setType(desiredMemrefType);
OpBuilder b(bbArg.getContext());
b.setInsertionPointToStart(bbArg.getOwner());
// Cast back to the original memrefType and let it canonicalize.
Value cast =
b.create<memref::CastOp>(funcOp.getLoc(), memrefType, bbArg);
bbArg.replaceAllUsesExcept(cast, cast.getDefiningOp());
}
// Cast to desired buffer type on all callers to `funcOp`.
// TODO: on the callee side, this may even have to trigger a copy to
// change the layout. For now let the memref::CastOp fail to verify in
// such cases.
auto castArg = [&](Operation *caller) {
OpBuilder b(caller);
Value newOperand = b.create<memref::CastOp>(
funcOp.getLoc(), desiredMemrefType, caller->getOperand(argNumber));
operandsPerCaller.find(caller)->getSecond().push_back(newOperand);
};
foreachCaller(callerMap, funcOp, castArg);
}
// Set operands with cast buffer on all callers to `funcOp`.
foreachCaller(callerMap, funcOp, [&](Operation *caller) {
caller->setOperands(operandsPerCaller.lookup(caller));
});
// Finally set the funcOp type to update the arguments.
auto newFuncType = FunctionType::get(moduleOp.getContext(), argumentTypes,
funcOp.getType().getResults());
funcOp.setType(newFuncType);
}
}
/// Try to eliminate InitTensorOps inside funcOp. An InitTensorOp can be
/// eliminated if it is eventually inserted into another tensor (and some other
/// conditions are met).
///
/// E.g.:
/// %0 = linalg.init_tensor
/// %1 = linalg.fill(%cst, %0) {inplace = [true]}
/// %2 = tensor.insert_slice %1 into %t[10][20][1]
///
/// InitTensorOp elimination will try to fill %t inplace instead of filling a
/// new allocation %0 and inserting it into %t. This is done by replacing the
/// InitTensorOp with:
///
/// %0 = tensor.extract_slice %t[10][20][1]
///
/// The analysis looks for matching ExtractSliceOp/InsertSliceOp pairs and lets
/// those bufferize inplace in the absence of other conflicts.
///
/// Starting from an InsertSliceOp, an InitTensorOp at the end of the insert
/// source's reverse use-def chain is eliminated if:
/// * The InsertSliceOp was decided to bufferize inplace.
/// * On the reverse use-def chain path from the InsertSliceOp to the
/// InitTensorOp, all ops were decided to bufferize inplace and the buffer
/// relation is "equivalent" (TODO: can be relaxed if needed).
/// * The reverse use-def chain has exactly one end, which is the InitTensorOp.
///
/// Note that the newly inserted ExtractSliceOp may have to bufferize
/// out-of-place due to RaW conflicts.
static LogicalResult runInitTensorElimination(FuncOp funcOp,
BufferizationAliasInfo &aliasInfo,
DominanceInfo &domInfo) {
OpBuilder b(funcOp->getContext());
WalkResult status = funcOp->walk([&](tensor::InsertSliceOp insertOp) {
// Only inplace bufferized InsertSliceOps are eligible.
if (getInPlace(insertOp->getOpResult(0)) != InPlaceSpec::True)
return WalkResult::skip();
SetVector<Value> maybeInitTensor =
findValueInReverseUseDefChain(insertOp.source(), [](Value val) {
// Continue traversal until this function returns true.
OpResult opResult = val.dyn_cast<OpResult>();
if (!opResult)
return true;
if (getInPlace(opResult) != InPlaceSpec::True)
return true;
// Only equivalent tensors are supported at the moment. E.g., when
// taking a tensor.extract_slice of an init_tensor, we can currently
// not eliminate the init_tensor.
SmallVector<OpOperand *> opOperands = getAliasingOpOperand(opResult);
if (!llvm::all_of(opOperands, [](OpOperand *operand) {
return bufferRelation(*operand) == BufferRelation::Equivalent;
}))
return true;
return false;
});
// Replace only if the InsertSliceOp source originates from exactly one
// InitTensorOp.
if (maybeInitTensor.size() != 1 ||
!maybeInitTensor.front().getDefiningOp<InitTensorOp>())
return WalkResult::skip();
Value initTensor = maybeInitTensor.front();
b.setInsertionPoint(initTensor.getDefiningOp());
auto extractOp = b.create<tensor::ExtractSliceOp>(
initTensor.getLoc(), insertOp.dest(), insertOp.getMixedOffsets(),
insertOp.getMixedSizes(), insertOp.getMixedStrides());
// Uses of the InitTensorOp are replaced here, but the op is not deleted.
// InitTensorOps without uses are ignored by the bufferization.
initTensor.replaceAllUsesWith(extractOp.result());
aliasInfo.createAliasInfoEntry(extractOp.result());
// Run analysis on the ExtractSliceOp.
if (failed(bufferizableInPlaceAnalysis(extractOp, aliasInfo, domInfo)))
return WalkResult::interrupt();
// Advance to the next operation.
return WalkResult::advance();
});
return failure(status.wasInterrupted());
}
void LinalgComprehensiveModuleBufferize::runOnOperation() {
if (!allocationFns) {
// The allocation functions to use needs to be set here. The flag for the
// pass and flag for the use of alloca map to LLVM command line
// options. These being static global objects have no set order in which
// they are defined. So ideally this should be in the constructor, but the
// constructor might be called before the flag is initialized using the
// command line option. So this is set up at the start of the pass.
if (useAlloca) {
AllocationCallbacks allocaAllocationFns = {
allocationFnUsingAlloca, [](OpBuilder &b, Location loc, Value v) {}};
allocationFns =
std::make_unique<AllocationCallbacks>(std::move(allocaAllocationFns));
} else {
allocationFns = std::make_unique<AllocationCallbacks>();
}
}
ModuleOp moduleOp = getOperation();
applyEnablingTransformations(moduleOp);
SmallVector<FuncOp> orderedFuncOps;
DenseMap<FuncOp, DenseSet<Operation *>> callerMap;
DenseMap<FuncOp, FunctionType> bufferizedFunctionTypes;
if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap)))
return signalPassFailure();
DominanceInfo domInfo(moduleOp);
BufferizationAliasInfo aliasInfo(moduleOp);
// Interestingly, all function args that are not visible outside of a module
// can be fully bufferized inplace by guaranteeing the CallOp is bufferized
// inplace. Therefore, we just bufferize funcOp as if none of its results were
// inplaceable, detect which operands are cloned internally and decide what to
// do at call sites.
for (FuncOp funcOp : orderedFuncOps) {
// No body => no analysis.
if (funcOp.body().empty())
continue;
// In a first approximation:
// =========================
// If the function is called, we can allocate on the caller side which lets
// us force inplace arguments at function boundaries.
// TODO: do not rely on this behavior.
if (callerMap.find(funcOp) != callerMap.end())
for (BlockArgument bbArg : funcOp.getArguments())
if (bbArg.getType().isa<TensorType>())
setInPlaceFuncArgument(bbArg);
// If the analysis fails, just return.
if (failed(inPlaceAnalysisFuncOpBody(funcOp, aliasInfo, domInfo))) {
signalPassFailure();
return;
}
// Try to eliminate InitTensorOps to avoid new allocations during the
// bufferization phase.
if (failed(runInitTensorElimination(funcOp, aliasInfo, domInfo))) {
signalPassFailure();
return;
}
// Bufferization phase.
if (!testAnalysisOnly) {
BlockAndValueMapping tensorToBufferMap;
if (failed(bufferizeFuncOpInternals(funcOp, tensorToBufferMap, aliasInfo,
*allocationFns,
bufferizedFunctionTypes))) {
signalPassFailure();
return;
}
}
}
// Don't drop the attributes if we only want to report the analysis.
if (testAnalysisOnly)
return;
for (FuncOp funcOp : orderedFuncOps) {
// Note: It would be good to apply cleanups here but we cannot as aliasInfo
// would be invalidated.
if (failed(bufferizeFuncOpBoundary(funcOp, aliasInfo,
bufferizedFunctionTypes))) {
signalPassFailure();
return;
}
if (!allowReturnMemref &&
llvm::any_of(funcOp.getType().getResults(), [](Type t) {
return t.isa<MemRefType, UnrankedMemRefType>();
})) {
funcOp->emitError("memref return type is unsupported");
signalPassFailure();
return;
}
}
// Perform a post-processing pass of layout modification at function boundary
// according to the kBufferLayoutAttrName.
layoutPostProcessing(moduleOp);
// Post-pass cleanup of inplaceable and buffer_layout attributes.
moduleOp.walk(
[&](Operation *op) { op->removeAttr(kInPlaceResultsAttrName); });
moduleOp.walk([&](FuncOp op) {
for (BlockArgument bbArg : op.getArguments())
removeBufferizationFuncArguments(bbArg);
});
OpPassManager cleanupPipeline("builtin.module");
cleanupPipeline.addPass(createCanonicalizerPass());
cleanupPipeline.addPass(createCSEPass());
cleanupPipeline.addPass(createLoopInvariantCodeMotionPass());
(void)runPipeline(cleanupPipeline, moduleOp);
}
std::unique_ptr<Pass> mlir::createLinalgComprehensiveModuleBufferizePass() {
return std::make_unique<LinalgComprehensiveModuleBufferize>();
}