llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp

289 lines
9.0 KiB
C++

//===--------------------- InterleavedAccessPass.cpp ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Interleaved Access pass, which identifies
// interleaved memory accesses and transforms them into target specific
// intrinsics.
//
// An interleaved load reads data from memory into several vectors, with
// DE-interleaving the data on a factor. An interleaved store writes several
// vectors to memory with RE-interleaving the data on a factor.
//
// As interleaved accesses are difficult to identified in CodeGen (mainly
// because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
// IR), we identify and transform them to intrinsics in this pass so the
// intrinsics can be easily matched into target specific instructions later in
// CodeGen.
//
// E.g. An interleaved load (Factor = 2):
// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
//
// It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
// intrinsic in ARM backend.
//
// E.g. An interleaved store (Factor = 3):
// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
// store <12 x i32> %i.vec, <12 x i32>* %ptr
//
// It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
// intrinsic in ARM backend.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "interleaved-access"
static cl::opt<bool> LowerInterleavedAccesses(
"lower-interleaved-accesses",
cl::desc("Enable lowering interleaved accesses to intrinsics"),
cl::init(true), cl::Hidden);
static unsigned MaxFactor; // The maximum supported interleave factor.
namespace llvm {
static void initializeInterleavedAccessPass(PassRegistry &);
}
namespace {
class InterleavedAccess : public FunctionPass {
public:
static char ID;
InterleavedAccess(const TargetMachine *TM = nullptr)
: FunctionPass(ID), TM(TM), TLI(nullptr) {
initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
}
const char *getPassName() const override { return "Interleaved Access Pass"; }
bool runOnFunction(Function &F) override;
private:
const TargetMachine *TM;
const TargetLowering *TLI;
/// \brief Transform an interleaved load into target specific intrinsics.
bool lowerInterleavedLoad(LoadInst *LI,
SmallVector<Instruction *, 32> &DeadInsts);
/// \brief Transform an interleaved store into target specific intrinsics.
bool lowerInterleavedStore(StoreInst *SI,
SmallVector<Instruction *, 32> &DeadInsts);
};
} // end anonymous namespace.
char InterleavedAccess::ID = 0;
INITIALIZE_TM_PASS(InterleavedAccess, "interleaved-access",
"Lower interleaved memory accesses to target specific intrinsics",
false, false)
FunctionPass *llvm::createInterleavedAccessPass(const TargetMachine *TM) {
return new InterleavedAccess(TM);
}
/// \brief Check if the mask is a DE-interleave mask of the given factor
/// \p Factor like:
/// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
unsigned &Index) {
// Check all potential start indices from 0 to (Factor - 1).
for (Index = 0; Index < Factor; Index++) {
unsigned i = 0;
// Check that elements are in ascending order by Factor. Ignore undef
// elements.
for (; i < Mask.size(); i++)
if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
break;
if (i == Mask.size())
return true;
}
return false;
}
/// \brief Check if the mask is a DE-interleave mask for an interleaved load.
///
/// E.g. DE-interleave masks (Factor = 2) could be:
/// <0, 2, 4, 6> (mask of index 0 to extract even elements)
/// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
unsigned &Index) {
if (Mask.size() < 2)
return false;
// Check potential Factors.
for (Factor = 2; Factor <= MaxFactor; Factor++)
if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
return true;
return false;
}
/// \brief Check if the mask is RE-interleave mask for an interleaved store.
///
/// I.e. <0, NumSubElts, ... , NumSubElts*(Factor - 1), 1, NumSubElts + 1, ...>
///
/// E.g. The RE-interleave mask (Factor = 2) could be:
/// <0, 4, 1, 5, 2, 6, 3, 7>
static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor) {
unsigned NumElts = Mask.size();
if (NumElts < 4)
return false;
// Check potential Factors.
for (Factor = 2; Factor <= MaxFactor; Factor++) {
if (NumElts % Factor)
continue;
unsigned NumSubElts = NumElts / Factor;
if (!isPowerOf2_32(NumSubElts))
continue;
// Check whether each element matchs the RE-interleaved rule. Ignore undef
// elements.
unsigned i = 0;
for (; i < NumElts; i++)
if (Mask[i] >= 0 &&
static_cast<unsigned>(Mask[i]) !=
(i % Factor) * NumSubElts + i / Factor)
break;
// Find a RE-interleaved mask of current factor.
if (i == NumElts)
return true;
}
return false;
}
bool InterleavedAccess::lowerInterleavedLoad(
LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
if (!LI->isSimple())
return false;
SmallVector<ShuffleVectorInst *, 4> Shuffles;
// Check if all users of this load are shufflevectors.
for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI);
if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
return false;
Shuffles.push_back(SVI);
}
if (Shuffles.empty())
return false;
unsigned Factor, Index;
// Check if the first shufflevector is DE-interleave shuffle.
if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index))
return false;
// Holds the corresponding index for each DE-interleave shuffle.
SmallVector<unsigned, 4> Indices;
Indices.push_back(Index);
Type *VecTy = Shuffles[0]->getType();
// Check if other shufflevectors are also DE-interleaved of the same type
// and factor as the first shufflevector.
for (unsigned i = 1; i < Shuffles.size(); i++) {
if (Shuffles[i]->getType() != VecTy)
return false;
if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
Index))
return false;
Indices.push_back(Index);
}
DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
// Try to create target specific intrinsics to replace the load and shuffles.
if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
return false;
for (auto SVI : Shuffles)
DeadInsts.push_back(SVI);
DeadInsts.push_back(LI);
return true;
}
bool InterleavedAccess::lowerInterleavedStore(
StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
if (!SI->isSimple())
return false;
ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
if (!SVI || !SVI->hasOneUse())
return false;
// Check if the shufflevector is RE-interleave shuffle.
unsigned Factor;
if (!isReInterleaveMask(SVI->getShuffleMask(), Factor))
return false;
DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
// Try to create target specific intrinsics to replace the store and shuffle.
if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
return false;
// Already have a new target specific interleaved store. Erase the old store.
DeadInsts.push_back(SI);
DeadInsts.push_back(SVI);
return true;
}
bool InterleavedAccess::runOnFunction(Function &F) {
if (!TM || !LowerInterleavedAccesses)
return false;
DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
TLI = TM->getSubtargetImpl(F)->getTargetLowering();
MaxFactor = TLI->getMaxSupportedInterleaveFactor();
// Holds dead instructions that will be erased later.
SmallVector<Instruction *, 32> DeadInsts;
bool Changed = false;
for (auto &I : instructions(F)) {
if (LoadInst *LI = dyn_cast<LoadInst>(&I))
Changed |= lowerInterleavedLoad(LI, DeadInsts);
if (StoreInst *SI = dyn_cast<StoreInst>(&I))
Changed |= lowerInterleavedStore(SI, DeadInsts);
}
for (auto I : DeadInsts)
I->eraseFromParent();
return Changed;
}