Go to file
Matt Arsenault c7cff08f79 AMDGPU: Fix assert when rewriting saddr d16 loads
moveOperands does not handle moving tied operands since it would
generally have to fixup the tied operand references. Avoid the assert
by untying and retying after the modification. These in place
modifications really aren't managable.
2021-05-14 13:24:19 -04:00
.github Removing the main to master sync GitHub workflow. 2021-01-28 12:18:25 -08:00
clang Bump googletest to 1.10.0 2021-05-14 19:16:31 +02:00
clang-tools-extra [clangd] Always default to raw pch format 2021-05-14 16:34:57 +02:00
compiler-rt [HWASan] Add aliasing flag and enable HWASan to use it. 2021-05-14 09:47:20 -07:00
debuginfo-tests [dexter] Update failing regression test 2021-04-26 16:41:35 +01:00
flang Bump googletest to 1.10.0 2021-05-14 19:16:31 +02:00
libc [libc] Enable fmaf and fma on x86_64. 2021-05-13 20:51:15 +00:00
libclc Support: Stop using F_{None,Text,Append} compatibility synonyms, NFC 2021-04-30 11:00:03 -07:00
libcxx [libc++] Improve make_string test support. 2021-05-14 17:42:17 +02:00
libcxxabi [libc++] Move handling of the target triple to the DSL 2021-05-08 11:10:53 -04:00
libunwind [libc++] Move handling of the target triple to the DSL 2021-05-08 11:10:53 -04:00
lld [ELF] Add -Bno-symbolic 2021-05-14 09:40:32 -07:00
lldb Bump googletest to 1.10.0 2021-05-14 19:16:31 +02:00
llvm AMDGPU: Fix assert when rewriting saddr d16 loads 2021-05-14 13:24:19 -04:00
mlir Fix some typos. 2021-05-14 21:34:09 +05:30
openmp [AMDGPU] Add gfx1034 target 2021-05-13 14:25:18 -04:00
parallel-libs
polly [NewPM] Hide pass manager debug logging behind -debug-pass-manager-verbose 2021-05-07 21:51:47 -07:00
pstl [pstl] Use logical operator for loop condition in tests 2021-05-13 10:11:40 -07:00
runtimes [runtimes] Add the libc project to the list of runtimes. 2021-03-23 17:33:03 +00:00
utils/arcanist [utils] Don't print username in arcanist clang format message 2021-05-14 14:33:00 +00:00
.arcconfig Add modern arc config for default "onto" branch 2021-02-22 11:58:13 -08:00
.arclint
.clang-format Revert "Title: [RISCV] Add missing part of instruction vmsge {u}. VX Review By: craig.topper Differential Revision : https://reviews.llvm.org/D100115" 2021-04-14 08:04:37 +01:00
.clang-tidy
.git-blame-ignore-revs NFC: Add whitespace-changing revisions to .git-blame-ignore-revs 2020-09-21 20:17:24 -04:00
.gitignore [NFC] Add CMakeUserPresets.json filename to .gitignore 2021-01-22 12:45:29 +01:00
CONTRIBUTING.md
README.md Fix grammar in README.md 2021-05-12 08:48:59 -07:00

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.