llvm-project/llvm/unittests/IR/InstructionsTest.cpp

1230 lines
48 KiB
C++

//===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Instructions.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/SourceMgr.h"
#include "gmock/gmock-matchers.h"
#include "gtest/gtest.h"
#include <memory>
namespace llvm {
namespace {
static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
SMDiagnostic Err;
std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
if (!Mod)
Err.print("InstructionsTests", errs());
return Mod;
}
TEST(InstructionsTest, ReturnInst) {
LLVMContext C;
// test for PR6589
const ReturnInst* r0 = ReturnInst::Create(C);
EXPECT_EQ(r0->getNumOperands(), 0U);
EXPECT_EQ(r0->op_begin(), r0->op_end());
IntegerType* Int1 = IntegerType::get(C, 1);
Constant* One = ConstantInt::get(Int1, 1, true);
const ReturnInst* r1 = ReturnInst::Create(C, One);
EXPECT_EQ(1U, r1->getNumOperands());
User::const_op_iterator b(r1->op_begin());
EXPECT_NE(r1->op_end(), b);
EXPECT_EQ(One, *b);
EXPECT_EQ(One, r1->getOperand(0));
++b;
EXPECT_EQ(r1->op_end(), b);
// clean up
delete r0;
delete r1;
}
// Test fixture that provides a module and a single function within it. Useful
// for tests that need to refer to the function in some way.
class ModuleWithFunctionTest : public testing::Test {
protected:
ModuleWithFunctionTest() : M(new Module("MyModule", Ctx)) {
FArgTypes.push_back(Type::getInt8Ty(Ctx));
FArgTypes.push_back(Type::getInt32Ty(Ctx));
FArgTypes.push_back(Type::getInt64Ty(Ctx));
FunctionType *FTy =
FunctionType::get(Type::getVoidTy(Ctx), FArgTypes, false);
F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
}
LLVMContext Ctx;
std::unique_ptr<Module> M;
SmallVector<Type *, 3> FArgTypes;
Function *F;
};
TEST_F(ModuleWithFunctionTest, CallInst) {
Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
std::unique_ptr<CallInst> Call(CallInst::Create(F, Args));
// Make sure iteration over a call's arguments works as expected.
unsigned Idx = 0;
for (Value *Arg : Call->arg_operands()) {
EXPECT_EQ(FArgTypes[Idx], Arg->getType());
EXPECT_EQ(Call->getArgOperand(Idx)->getType(), Arg->getType());
Idx++;
}
}
TEST_F(ModuleWithFunctionTest, InvokeInst) {
BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F);
BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F);
Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(F, BB1, BB2, Args));
// Make sure iteration over invoke's arguments works as expected.
unsigned Idx = 0;
for (Value *Arg : Invoke->arg_operands()) {
EXPECT_EQ(FArgTypes[Idx], Arg->getType());
EXPECT_EQ(Invoke->getArgOperand(Idx)->getType(), Arg->getType());
Idx++;
}
}
TEST(InstructionsTest, BranchInst) {
LLVMContext C;
// Make a BasicBlocks
BasicBlock* bb0 = BasicBlock::Create(C);
BasicBlock* bb1 = BasicBlock::Create(C);
// Mandatory BranchInst
const BranchInst* b0 = BranchInst::Create(bb0);
EXPECT_TRUE(b0->isUnconditional());
EXPECT_FALSE(b0->isConditional());
EXPECT_EQ(1U, b0->getNumSuccessors());
// check num operands
EXPECT_EQ(1U, b0->getNumOperands());
EXPECT_NE(b0->op_begin(), b0->op_end());
EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
IntegerType* Int1 = IntegerType::get(C, 1);
Constant* One = ConstantInt::get(Int1, 1, true);
// Conditional BranchInst
BranchInst* b1 = BranchInst::Create(bb0, bb1, One);
EXPECT_FALSE(b1->isUnconditional());
EXPECT_TRUE(b1->isConditional());
EXPECT_EQ(2U, b1->getNumSuccessors());
// check num operands
EXPECT_EQ(3U, b1->getNumOperands());
User::const_op_iterator b(b1->op_begin());
// check COND
EXPECT_NE(b, b1->op_end());
EXPECT_EQ(One, *b);
EXPECT_EQ(One, b1->getOperand(0));
EXPECT_EQ(One, b1->getCondition());
++b;
// check ELSE
EXPECT_EQ(bb1, *b);
EXPECT_EQ(bb1, b1->getOperand(1));
EXPECT_EQ(bb1, b1->getSuccessor(1));
++b;
// check THEN
EXPECT_EQ(bb0, *b);
EXPECT_EQ(bb0, b1->getOperand(2));
EXPECT_EQ(bb0, b1->getSuccessor(0));
++b;
EXPECT_EQ(b1->op_end(), b);
// clean up
delete b0;
delete b1;
delete bb0;
delete bb1;
}
TEST(InstructionsTest, CastInst) {
LLVMContext C;
Type *Int8Ty = Type::getInt8Ty(C);
Type *Int16Ty = Type::getInt16Ty(C);
Type *Int32Ty = Type::getInt32Ty(C);
Type *Int64Ty = Type::getInt64Ty(C);
Type *V8x8Ty = VectorType::get(Int8Ty, 8);
Type *V8x64Ty = VectorType::get(Int64Ty, 8);
Type *X86MMXTy = Type::getX86_MMXTy(C);
Type *HalfTy = Type::getHalfTy(C);
Type *FloatTy = Type::getFloatTy(C);
Type *DoubleTy = Type::getDoubleTy(C);
Type *V2Int32Ty = VectorType::get(Int32Ty, 2);
Type *V2Int64Ty = VectorType::get(Int64Ty, 2);
Type *V4Int16Ty = VectorType::get(Int16Ty, 4);
Type *Int32PtrTy = PointerType::get(Int32Ty, 0);
Type *Int64PtrTy = PointerType::get(Int64Ty, 0);
Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1);
Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1);
Type *V2Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 2);
Type *V2Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 2);
Type *V4Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 4);
Type *V4Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 4);
Type *V2Int64PtrTy = VectorType::get(Int64PtrTy, 2);
Type *V2Int32PtrTy = VectorType::get(Int32PtrTy, 2);
Type *V4Int32PtrTy = VectorType::get(Int32PtrTy, 4);
const Constant* c8 = Constant::getNullValue(V8x8Ty);
const Constant* c64 = Constant::getNullValue(V8x64Ty);
const Constant *v2ptr32 = Constant::getNullValue(V2Int32PtrTy);
EXPECT_TRUE(CastInst::isCastable(V8x8Ty, X86MMXTy));
EXPECT_TRUE(CastInst::isCastable(X86MMXTy, V8x8Ty));
EXPECT_FALSE(CastInst::isCastable(Int64Ty, X86MMXTy));
EXPECT_TRUE(CastInst::isCastable(V8x64Ty, V8x8Ty));
EXPECT_TRUE(CastInst::isCastable(V8x8Ty, V8x64Ty));
EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true));
EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true));
EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy));
EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy));
EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty));
EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty));
// Check address space casts are rejected since we don't know the sizes here
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty));
EXPECT_TRUE(CastInst::isCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
EXPECT_EQ(CastInst::AddrSpaceCast, CastInst::getCastOpcode(v2ptr32, true,
V2Int32PtrAS1Ty,
true));
// Test mismatched number of elements for pointers
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy));
EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy));
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty));
EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy));
EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty));
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
Constant::getNullValue(V4Int32PtrTy),
V2Int32PtrTy));
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
Constant::getNullValue(V2Int32PtrTy),
V4Int32PtrTy));
EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
Constant::getNullValue(V4Int32PtrAS1Ty),
V2Int32PtrTy));
EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
Constant::getNullValue(V2Int32PtrTy),
V4Int32PtrAS1Ty));
// Check that assertion is not hit when creating a cast with a vector of
// pointers
// First form
BasicBlock *BB = BasicBlock::Create(C);
Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy);
auto Inst1 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB);
// Second form
auto Inst2 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty);
delete Inst2;
Inst1->eraseFromParent();
delete BB;
}
TEST(InstructionsTest, VectorGep) {
LLVMContext C;
// Type Definitions
Type *I8Ty = IntegerType::get(C, 8);
Type *I32Ty = IntegerType::get(C, 32);
PointerType *Ptri8Ty = PointerType::get(I8Ty, 0);
PointerType *Ptri32Ty = PointerType::get(I32Ty, 0);
VectorType *V2xi8PTy = VectorType::get(Ptri8Ty, 2);
VectorType *V2xi32PTy = VectorType::get(Ptri32Ty, 2);
// Test different aspects of the vector-of-pointers type
// and GEPs which use this type.
ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492));
ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948));
std::vector<Constant*> ConstVa(2, Ci32a);
std::vector<Constant*> ConstVb(2, Ci32b);
Constant *C2xi32a = ConstantVector::get(ConstVa);
Constant *C2xi32b = ConstantVector::get(ConstVb);
CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy);
CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy);
ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB);
ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB);
EXPECT_NE(ICmp0, ICmp1); // suppress warning.
BasicBlock* BB0 = BasicBlock::Create(C);
// Test InsertAtEnd ICmpInst constructor.
ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB);
EXPECT_NE(ICmp0, ICmp2); // suppress warning.
GetElementPtrInst *Gep0 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32a);
GetElementPtrInst *Gep1 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32b);
GetElementPtrInst *Gep2 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32a);
GetElementPtrInst *Gep3 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32b);
CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy);
CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy);
CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy);
CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy);
Value *S0 = BTC0->stripPointerCasts();
Value *S1 = BTC1->stripPointerCasts();
Value *S2 = BTC2->stripPointerCasts();
Value *S3 = BTC3->stripPointerCasts();
EXPECT_NE(S0, Gep0);
EXPECT_NE(S1, Gep1);
EXPECT_NE(S2, Gep2);
EXPECT_NE(S3, Gep3);
int64_t Offset;
DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3"
"2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80"
":128:128-n8:16:32:64-S128");
// Make sure we don't crash
GetPointerBaseWithConstantOffset(Gep0, Offset, TD);
GetPointerBaseWithConstantOffset(Gep1, Offset, TD);
GetPointerBaseWithConstantOffset(Gep2, Offset, TD);
GetPointerBaseWithConstantOffset(Gep3, Offset, TD);
// Gep of Geps
GetElementPtrInst *GepII0 = GetElementPtrInst::Create(I32Ty, Gep0, C2xi32b);
GetElementPtrInst *GepII1 = GetElementPtrInst::Create(I32Ty, Gep1, C2xi32a);
GetElementPtrInst *GepII2 = GetElementPtrInst::Create(I32Ty, Gep2, C2xi32b);
GetElementPtrInst *GepII3 = GetElementPtrInst::Create(I32Ty, Gep3, C2xi32a);
EXPECT_EQ(GepII0->getNumIndices(), 1u);
EXPECT_EQ(GepII1->getNumIndices(), 1u);
EXPECT_EQ(GepII2->getNumIndices(), 1u);
EXPECT_EQ(GepII3->getNumIndices(), 1u);
EXPECT_FALSE(GepII0->hasAllZeroIndices());
EXPECT_FALSE(GepII1->hasAllZeroIndices());
EXPECT_FALSE(GepII2->hasAllZeroIndices());
EXPECT_FALSE(GepII3->hasAllZeroIndices());
delete GepII0;
delete GepII1;
delete GepII2;
delete GepII3;
delete BTC0;
delete BTC1;
delete BTC2;
delete BTC3;
delete Gep0;
delete Gep1;
delete Gep2;
delete Gep3;
ICmp2->eraseFromParent();
delete BB0;
delete ICmp0;
delete ICmp1;
delete PtrVecA;
delete PtrVecB;
}
TEST(InstructionsTest, FPMathOperator) {
LLVMContext Context;
IRBuilder<> Builder(Context);
MDBuilder MDHelper(Context);
Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
MDNode *MD1 = MDHelper.createFPMath(1.0);
Value *V1 = Builder.CreateFAdd(I, I, "", MD1);
EXPECT_TRUE(isa<FPMathOperator>(V1));
FPMathOperator *O1 = cast<FPMathOperator>(V1);
EXPECT_EQ(O1->getFPAccuracy(), 1.0);
V1->deleteValue();
I->deleteValue();
}
TEST(InstructionsTest, isEliminableCastPair) {
LLVMContext C;
Type* Int16Ty = Type::getInt16Ty(C);
Type* Int32Ty = Type::getInt32Ty(C);
Type* Int64Ty = Type::getInt64Ty(C);
Type* Int64PtrTy = Type::getInt64PtrTy(C);
// Source and destination pointers have same size -> bitcast.
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
CastInst::IntToPtr,
Int64PtrTy, Int64Ty, Int64PtrTy,
Int32Ty, nullptr, Int32Ty),
CastInst::BitCast);
// Source and destination have unknown sizes, but the same address space and
// the intermediate int is the maximum pointer size -> bitcast
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
CastInst::IntToPtr,
Int64PtrTy, Int64Ty, Int64PtrTy,
nullptr, nullptr, nullptr),
CastInst::BitCast);
// Source and destination have unknown sizes, but the same address space and
// the intermediate int is not the maximum pointer size -> nothing
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
CastInst::IntToPtr,
Int64PtrTy, Int32Ty, Int64PtrTy,
nullptr, nullptr, nullptr),
0U);
// Middle pointer big enough -> bitcast.
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
CastInst::PtrToInt,
Int64Ty, Int64PtrTy, Int64Ty,
nullptr, Int64Ty, nullptr),
CastInst::BitCast);
// Middle pointer too small -> fail.
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
CastInst::PtrToInt,
Int64Ty, Int64PtrTy, Int64Ty,
nullptr, Int32Ty, nullptr),
0U);
// Test that we don't eliminate bitcasts between different address spaces,
// or if we don't have available pointer size information.
DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16"
"-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64"
"-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128");
Type* Int64PtrTyAS1 = Type::getInt64PtrTy(C, 1);
Type* Int64PtrTyAS2 = Type::getInt64PtrTy(C, 2);
IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1);
IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2);
// Cannot simplify inttoptr, addrspacecast
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
CastInst::AddrSpaceCast,
Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2,
nullptr, Int16SizePtr, Int64SizePtr),
0U);
// Cannot simplify addrspacecast, ptrtoint
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast,
CastInst::PtrToInt,
Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty,
Int64SizePtr, Int16SizePtr, nullptr),
0U);
// Pass since the bitcast address spaces are the same
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
CastInst::BitCast,
Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1,
nullptr, nullptr, nullptr),
CastInst::IntToPtr);
}
TEST(InstructionsTest, CloneCall) {
LLVMContext C;
Type *Int32Ty = Type::getInt32Ty(C);
Type *ArgTys[] = {Int32Ty, Int32Ty, Int32Ty};
FunctionType *FnTy = FunctionType::get(Int32Ty, ArgTys, /*isVarArg=*/false);
Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
Value *Args[] = {
ConstantInt::get(Int32Ty, 1),
ConstantInt::get(Int32Ty, 2),
ConstantInt::get(Int32Ty, 3)
};
std::unique_ptr<CallInst> Call(
CallInst::Create(FnTy, Callee, Args, "result"));
// Test cloning the tail call kind.
CallInst::TailCallKind Kinds[] = {CallInst::TCK_None, CallInst::TCK_Tail,
CallInst::TCK_MustTail};
for (CallInst::TailCallKind TCK : Kinds) {
Call->setTailCallKind(TCK);
std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
}
Call->setTailCallKind(CallInst::TCK_None);
// Test cloning an attribute.
{
AttrBuilder AB;
AB.addAttribute(Attribute::ReadOnly);
Call->setAttributes(
AttributeList::get(C, AttributeList::FunctionIndex, AB));
std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
EXPECT_TRUE(Clone->onlyReadsMemory());
}
}
TEST(InstructionsTest, AlterCallBundles) {
LLVMContext C;
Type *Int32Ty = Type::getInt32Ty(C);
FunctionType *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false);
Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
Value *Args[] = {ConstantInt::get(Int32Ty, 42)};
OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty));
std::unique_ptr<CallInst> Call(
CallInst::Create(FnTy, Callee, Args, OldBundle, "result"));
Call->setTailCallKind(CallInst::TailCallKind::TCK_NoTail);
AttrBuilder AB;
AB.addAttribute(Attribute::Cold);
Call->setAttributes(AttributeList::get(C, AttributeList::FunctionIndex, AB));
Call->setDebugLoc(DebugLoc(MDNode::get(C, None)));
OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7));
std::unique_ptr<CallInst> Clone(CallInst::Create(Call.get(), NewBundle));
EXPECT_EQ(Call->getNumArgOperands(), Clone->getNumArgOperands());
EXPECT_EQ(Call->getArgOperand(0), Clone->getArgOperand(0));
EXPECT_EQ(Call->getCallingConv(), Clone->getCallingConv());
EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold));
EXPECT_EQ(Call->getDebugLoc(), Clone->getDebugLoc());
EXPECT_EQ(Clone->getNumOperandBundles(), 1U);
EXPECT_TRUE(Clone->getOperandBundle("after").hasValue());
}
TEST(InstructionsTest, AlterInvokeBundles) {
LLVMContext C;
Type *Int32Ty = Type::getInt32Ty(C);
FunctionType *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false);
Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
Value *Args[] = {ConstantInt::get(Int32Ty, 42)};
std::unique_ptr<BasicBlock> NormalDest(BasicBlock::Create(C));
std::unique_ptr<BasicBlock> UnwindDest(BasicBlock::Create(C));
OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty));
std::unique_ptr<InvokeInst> Invoke(
InvokeInst::Create(FnTy, Callee, NormalDest.get(), UnwindDest.get(), Args,
OldBundle, "result"));
AttrBuilder AB;
AB.addAttribute(Attribute::Cold);
Invoke->setAttributes(
AttributeList::get(C, AttributeList::FunctionIndex, AB));
Invoke->setDebugLoc(DebugLoc(MDNode::get(C, None)));
OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7));
std::unique_ptr<InvokeInst> Clone(
InvokeInst::Create(Invoke.get(), NewBundle));
EXPECT_EQ(Invoke->getNormalDest(), Clone->getNormalDest());
EXPECT_EQ(Invoke->getUnwindDest(), Clone->getUnwindDest());
EXPECT_EQ(Invoke->getNumArgOperands(), Clone->getNumArgOperands());
EXPECT_EQ(Invoke->getArgOperand(0), Clone->getArgOperand(0));
EXPECT_EQ(Invoke->getCallingConv(), Clone->getCallingConv());
EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold));
EXPECT_EQ(Invoke->getDebugLoc(), Clone->getDebugLoc());
EXPECT_EQ(Clone->getNumOperandBundles(), 1U);
EXPECT_TRUE(Clone->getOperandBundle("after").hasValue());
}
TEST_F(ModuleWithFunctionTest, DropPoisonGeneratingFlags) {
auto *OnlyBB = BasicBlock::Create(Ctx, "bb", F);
auto *Arg0 = &*F->arg_begin();
IRBuilder<NoFolder> B(Ctx);
B.SetInsertPoint(OnlyBB);
{
auto *UI =
cast<Instruction>(B.CreateUDiv(Arg0, Arg0, "", /*isExact*/ true));
ASSERT_TRUE(UI->isExact());
UI->dropPoisonGeneratingFlags();
ASSERT_FALSE(UI->isExact());
}
{
auto *ShrI =
cast<Instruction>(B.CreateLShr(Arg0, Arg0, "", /*isExact*/ true));
ASSERT_TRUE(ShrI->isExact());
ShrI->dropPoisonGeneratingFlags();
ASSERT_FALSE(ShrI->isExact());
}
{
auto *AI = cast<Instruction>(
B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ false));
ASSERT_TRUE(AI->hasNoUnsignedWrap());
AI->dropPoisonGeneratingFlags();
ASSERT_FALSE(AI->hasNoUnsignedWrap());
ASSERT_FALSE(AI->hasNoSignedWrap());
}
{
auto *SI = cast<Instruction>(
B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ false, /*HasNSW*/ true));
ASSERT_TRUE(SI->hasNoSignedWrap());
SI->dropPoisonGeneratingFlags();
ASSERT_FALSE(SI->hasNoUnsignedWrap());
ASSERT_FALSE(SI->hasNoSignedWrap());
}
{
auto *ShlI = cast<Instruction>(
B.CreateShl(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ true));
ASSERT_TRUE(ShlI->hasNoSignedWrap());
ASSERT_TRUE(ShlI->hasNoUnsignedWrap());
ShlI->dropPoisonGeneratingFlags();
ASSERT_FALSE(ShlI->hasNoUnsignedWrap());
ASSERT_FALSE(ShlI->hasNoSignedWrap());
}
{
Value *GEPBase = Constant::getNullValue(B.getInt8PtrTy());
auto *GI = cast<GetElementPtrInst>(
B.CreateInBoundsGEP(B.getInt8Ty(), GEPBase, Arg0));
ASSERT_TRUE(GI->isInBounds());
GI->dropPoisonGeneratingFlags();
ASSERT_FALSE(GI->isInBounds());
}
}
TEST(InstructionsTest, GEPIndices) {
LLVMContext Context;
IRBuilder<NoFolder> Builder(Context);
Type *ElementTy = Builder.getInt8Ty();
Type *ArrTy = ArrayType::get(ArrayType::get(ElementTy, 64), 64);
Value *Indices[] = {
Builder.getInt32(0),
Builder.getInt32(13),
Builder.getInt32(42) };
Value *V = Builder.CreateGEP(ArrTy, UndefValue::get(PointerType::getUnqual(ArrTy)),
Indices);
ASSERT_TRUE(isa<GetElementPtrInst>(V));
auto *GEPI = cast<GetElementPtrInst>(V);
ASSERT_NE(GEPI->idx_begin(), GEPI->idx_end());
ASSERT_EQ(GEPI->idx_end(), std::next(GEPI->idx_begin(), 3));
EXPECT_EQ(Indices[0], GEPI->idx_begin()[0]);
EXPECT_EQ(Indices[1], GEPI->idx_begin()[1]);
EXPECT_EQ(Indices[2], GEPI->idx_begin()[2]);
EXPECT_EQ(GEPI->idx_begin(), GEPI->indices().begin());
EXPECT_EQ(GEPI->idx_end(), GEPI->indices().end());
const auto *CGEPI = GEPI;
ASSERT_NE(CGEPI->idx_begin(), CGEPI->idx_end());
ASSERT_EQ(CGEPI->idx_end(), std::next(CGEPI->idx_begin(), 3));
EXPECT_EQ(Indices[0], CGEPI->idx_begin()[0]);
EXPECT_EQ(Indices[1], CGEPI->idx_begin()[1]);
EXPECT_EQ(Indices[2], CGEPI->idx_begin()[2]);
EXPECT_EQ(CGEPI->idx_begin(), CGEPI->indices().begin());
EXPECT_EQ(CGEPI->idx_end(), CGEPI->indices().end());
delete GEPI;
}
TEST(InstructionsTest, SwitchInst) {
LLVMContext C;
std::unique_ptr<BasicBlock> BB1, BB2, BB3;
BB1.reset(BasicBlock::Create(C));
BB2.reset(BasicBlock::Create(C));
BB3.reset(BasicBlock::Create(C));
// We create block 0 after the others so that it gets destroyed first and
// clears the uses of the other basic blocks.
std::unique_ptr<BasicBlock> BB0(BasicBlock::Create(C));
auto *Int32Ty = Type::getInt32Ty(C);
SwitchInst *SI =
SwitchInst::Create(UndefValue::get(Int32Ty), BB0.get(), 3, BB0.get());
SI->addCase(ConstantInt::get(Int32Ty, 1), BB1.get());
SI->addCase(ConstantInt::get(Int32Ty, 2), BB2.get());
SI->addCase(ConstantInt::get(Int32Ty, 3), BB3.get());
auto CI = SI->case_begin();
ASSERT_NE(CI, SI->case_end());
EXPECT_EQ(1, CI->getCaseValue()->getSExtValue());
EXPECT_EQ(BB1.get(), CI->getCaseSuccessor());
EXPECT_EQ(2, (CI + 1)->getCaseValue()->getSExtValue());
EXPECT_EQ(BB2.get(), (CI + 1)->getCaseSuccessor());
EXPECT_EQ(3, (CI + 2)->getCaseValue()->getSExtValue());
EXPECT_EQ(BB3.get(), (CI + 2)->getCaseSuccessor());
EXPECT_EQ(CI + 1, std::next(CI));
EXPECT_EQ(CI + 2, std::next(CI, 2));
EXPECT_EQ(CI + 3, std::next(CI, 3));
EXPECT_EQ(SI->case_end(), CI + 3);
EXPECT_EQ(0, CI - CI);
EXPECT_EQ(1, (CI + 1) - CI);
EXPECT_EQ(2, (CI + 2) - CI);
EXPECT_EQ(3, SI->case_end() - CI);
EXPECT_EQ(3, std::distance(CI, SI->case_end()));
auto CCI = const_cast<const SwitchInst *>(SI)->case_begin();
SwitchInst::ConstCaseIt CCE = SI->case_end();
ASSERT_NE(CCI, SI->case_end());
EXPECT_EQ(1, CCI->getCaseValue()->getSExtValue());
EXPECT_EQ(BB1.get(), CCI->getCaseSuccessor());
EXPECT_EQ(2, (CCI + 1)->getCaseValue()->getSExtValue());
EXPECT_EQ(BB2.get(), (CCI + 1)->getCaseSuccessor());
EXPECT_EQ(3, (CCI + 2)->getCaseValue()->getSExtValue());
EXPECT_EQ(BB3.get(), (CCI + 2)->getCaseSuccessor());
EXPECT_EQ(CCI + 1, std::next(CCI));
EXPECT_EQ(CCI + 2, std::next(CCI, 2));
EXPECT_EQ(CCI + 3, std::next(CCI, 3));
EXPECT_EQ(CCE, CCI + 3);
EXPECT_EQ(0, CCI - CCI);
EXPECT_EQ(1, (CCI + 1) - CCI);
EXPECT_EQ(2, (CCI + 2) - CCI);
EXPECT_EQ(3, CCE - CCI);
EXPECT_EQ(3, std::distance(CCI, CCE));
// Make sure that the const iterator is compatible with a const auto ref.
const auto &Handle = *CCI;
EXPECT_EQ(1, Handle.getCaseValue()->getSExtValue());
EXPECT_EQ(BB1.get(), Handle.getCaseSuccessor());
}
TEST(InstructionsTest, SwitchInstProfUpdateWrapper) {
LLVMContext C;
std::unique_ptr<BasicBlock> BB1, BB2, BB3;
BB1.reset(BasicBlock::Create(C));
BB2.reset(BasicBlock::Create(C));
BB3.reset(BasicBlock::Create(C));
// We create block 0 after the others so that it gets destroyed first and
// clears the uses of the other basic blocks.
std::unique_ptr<BasicBlock> BB0(BasicBlock::Create(C));
auto *Int32Ty = Type::getInt32Ty(C);
SwitchInst *SI =
SwitchInst::Create(UndefValue::get(Int32Ty), BB0.get(), 4, BB0.get());
SI->addCase(ConstantInt::get(Int32Ty, 1), BB1.get());
SI->addCase(ConstantInt::get(Int32Ty, 2), BB2.get());
SI->setMetadata(LLVMContext::MD_prof,
MDBuilder(C).createBranchWeights({ 9, 1, 22 }));
{
SwitchInstProfUpdateWrapper SIW(*SI);
EXPECT_EQ(*SIW.getSuccessorWeight(0), 9u);
EXPECT_EQ(*SIW.getSuccessorWeight(1), 1u);
EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u);
SIW.setSuccessorWeight(0, 99u);
SIW.setSuccessorWeight(1, 11u);
EXPECT_EQ(*SIW.getSuccessorWeight(0), 99u);
EXPECT_EQ(*SIW.getSuccessorWeight(1), 11u);
EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u);
}
{ // Create another wrapper and check that the data persist.
SwitchInstProfUpdateWrapper SIW(*SI);
EXPECT_EQ(*SIW.getSuccessorWeight(0), 99u);
EXPECT_EQ(*SIW.getSuccessorWeight(1), 11u);
EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u);
}
}
TEST(InstructionsTest, CommuteShuffleMask) {
SmallVector<int, 16> Indices({-1, 0, 7});
ShuffleVectorInst::commuteShuffleMask(Indices, 4);
EXPECT_THAT(Indices, testing::ContainerEq(ArrayRef<int>({-1, 4, 3})));
}
TEST(InstructionsTest, ShuffleMaskQueries) {
// Create the elements for various constant vectors.
LLVMContext Ctx;
Type *Int32Ty = Type::getInt32Ty(Ctx);
Constant *CU = UndefValue::get(Int32Ty);
Constant *C0 = ConstantInt::get(Int32Ty, 0);
Constant *C1 = ConstantInt::get(Int32Ty, 1);
Constant *C2 = ConstantInt::get(Int32Ty, 2);
Constant *C3 = ConstantInt::get(Int32Ty, 3);
Constant *C4 = ConstantInt::get(Int32Ty, 4);
Constant *C5 = ConstantInt::get(Int32Ty, 5);
Constant *C6 = ConstantInt::get(Int32Ty, 6);
Constant *C7 = ConstantInt::get(Int32Ty, 7);
Constant *Identity = ConstantVector::get({C0, CU, C2, C3, C4});
EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(Identity));
EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Identity)); // identity is distinguished from select
EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Identity));
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(Identity)); // identity is always single source
EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Identity));
EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Identity));
Constant *Select = ConstantVector::get({CU, C1, C5});
EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Select));
EXPECT_TRUE(ShuffleVectorInst::isSelectMask(Select));
EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Select));
EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(Select));
EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Select));
EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Select));
Constant *Reverse = ConstantVector::get({C3, C2, C1, CU});
EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Reverse));
EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Reverse));
EXPECT_TRUE(ShuffleVectorInst::isReverseMask(Reverse));
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(Reverse)); // reverse is always single source
EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Reverse));
EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Reverse));
Constant *SingleSource = ConstantVector::get({C2, C2, C0, CU});
EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(SingleSource));
EXPECT_FALSE(ShuffleVectorInst::isSelectMask(SingleSource));
EXPECT_FALSE(ShuffleVectorInst::isReverseMask(SingleSource));
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(SingleSource));
EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(SingleSource));
EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(SingleSource));
Constant *ZeroEltSplat = ConstantVector::get({C0, C0, CU, C0});
EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(ZeroEltSplat));
EXPECT_FALSE(ShuffleVectorInst::isSelectMask(ZeroEltSplat));
EXPECT_FALSE(ShuffleVectorInst::isReverseMask(ZeroEltSplat));
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ZeroEltSplat)); // 0-splat is always single source
EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ZeroEltSplat));
EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(ZeroEltSplat));
Constant *Transpose = ConstantVector::get({C0, C4, C2, C6});
EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Transpose));
EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Transpose));
EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Transpose));
EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(Transpose));
EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Transpose));
EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(Transpose));
// More tests to make sure the logic is/stays correct...
EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(ConstantVector::get({CU, C1, CU, C3})));
EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(ConstantVector::get({C4, CU, C6, CU})));
EXPECT_TRUE(ShuffleVectorInst::isSelectMask(ConstantVector::get({C4, C1, C6, CU})));
EXPECT_TRUE(ShuffleVectorInst::isSelectMask(ConstantVector::get({CU, C1, C6, C3})));
EXPECT_TRUE(ShuffleVectorInst::isReverseMask(ConstantVector::get({C7, C6, CU, C4})));
EXPECT_TRUE(ShuffleVectorInst::isReverseMask(ConstantVector::get({C3, CU, C1, CU})));
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ConstantVector::get({C7, C5, CU, C7})));
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ConstantVector::get({C3, C0, CU, C3})));
EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ConstantVector::get({C4, CU, CU, C4})));
EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ConstantVector::get({CU, C0, CU, C0})));
EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1, C5, C3, C7})));
EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1, C3})));
// Nothing special about the values here - just re-using inputs to reduce code.
Constant *V0 = ConstantVector::get({C0, C1, C2, C3});
Constant *V1 = ConstantVector::get({C3, C2, C1, C0});
// Identity with undef elts.
ShuffleVectorInst *Id1 = new ShuffleVectorInst(V0, V1,
ConstantVector::get({C0, C1, CU, CU}));
EXPECT_TRUE(Id1->isIdentity());
EXPECT_FALSE(Id1->isIdentityWithPadding());
EXPECT_FALSE(Id1->isIdentityWithExtract());
EXPECT_FALSE(Id1->isConcat());
delete Id1;
// Result has less elements than operands.
ShuffleVectorInst *Id2 = new ShuffleVectorInst(V0, V1,
ConstantVector::get({C0, C1, C2}));
EXPECT_FALSE(Id2->isIdentity());
EXPECT_FALSE(Id2->isIdentityWithPadding());
EXPECT_TRUE(Id2->isIdentityWithExtract());
EXPECT_FALSE(Id2->isConcat());
delete Id2;
// Result has less elements than operands; choose from Op1.
ShuffleVectorInst *Id3 = new ShuffleVectorInst(V0, V1,
ConstantVector::get({C4, CU, C6}));
EXPECT_FALSE(Id3->isIdentity());
EXPECT_FALSE(Id3->isIdentityWithPadding());
EXPECT_TRUE(Id3->isIdentityWithExtract());
EXPECT_FALSE(Id3->isConcat());
delete Id3;
// Result has less elements than operands; choose from Op0 and Op1 is not identity.
ShuffleVectorInst *Id4 = new ShuffleVectorInst(V0, V1,
ConstantVector::get({C4, C1, C6}));
EXPECT_FALSE(Id4->isIdentity());
EXPECT_FALSE(Id4->isIdentityWithPadding());
EXPECT_FALSE(Id4->isIdentityWithExtract());
EXPECT_FALSE(Id4->isConcat());
delete Id4;
// Result has more elements than operands, and extra elements are undef.
ShuffleVectorInst *Id5 = new ShuffleVectorInst(V0, V1,
ConstantVector::get({CU, C1, C2, C3, CU, CU}));
EXPECT_FALSE(Id5->isIdentity());
EXPECT_TRUE(Id5->isIdentityWithPadding());
EXPECT_FALSE(Id5->isIdentityWithExtract());
EXPECT_FALSE(Id5->isConcat());
delete Id5;
// Result has more elements than operands, and extra elements are undef; choose from Op1.
ShuffleVectorInst *Id6 = new ShuffleVectorInst(V0, V1,
ConstantVector::get({C4, C5, C6, CU, CU, CU}));
EXPECT_FALSE(Id6->isIdentity());
EXPECT_TRUE(Id6->isIdentityWithPadding());
EXPECT_FALSE(Id6->isIdentityWithExtract());
EXPECT_FALSE(Id6->isConcat());
delete Id6;
// Result has more elements than operands, but extra elements are not undef.
ShuffleVectorInst *Id7 = new ShuffleVectorInst(V0, V1,
ConstantVector::get({C0, C1, C2, C3, CU, C1}));
EXPECT_FALSE(Id7->isIdentity());
EXPECT_FALSE(Id7->isIdentityWithPadding());
EXPECT_FALSE(Id7->isIdentityWithExtract());
EXPECT_FALSE(Id7->isConcat());
delete Id7;
// Result has more elements than operands; choose from Op0 and Op1 is not identity.
ShuffleVectorInst *Id8 = new ShuffleVectorInst(V0, V1,
ConstantVector::get({C4, CU, C2, C3, CU, CU}));
EXPECT_FALSE(Id8->isIdentity());
EXPECT_FALSE(Id8->isIdentityWithPadding());
EXPECT_FALSE(Id8->isIdentityWithExtract());
EXPECT_FALSE(Id8->isConcat());
delete Id8;
// Result has twice as many elements as operands; choose consecutively from Op0 and Op1 is concat.
ShuffleVectorInst *Id9 = new ShuffleVectorInst(V0, V1,
ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7}));
EXPECT_FALSE(Id9->isIdentity());
EXPECT_FALSE(Id9->isIdentityWithPadding());
EXPECT_FALSE(Id9->isIdentityWithExtract());
EXPECT_TRUE(Id9->isConcat());
delete Id9;
// Result has less than twice as many elements as operands, so not a concat.
ShuffleVectorInst *Id10 = new ShuffleVectorInst(V0, V1,
ConstantVector::get({C0, CU, C2, C3, CU, CU, C6}));
EXPECT_FALSE(Id10->isIdentity());
EXPECT_FALSE(Id10->isIdentityWithPadding());
EXPECT_FALSE(Id10->isIdentityWithExtract());
EXPECT_FALSE(Id10->isConcat());
delete Id10;
// Result has more than twice as many elements as operands, so not a concat.
ShuffleVectorInst *Id11 = new ShuffleVectorInst(V0, V1,
ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7, CU}));
EXPECT_FALSE(Id11->isIdentity());
EXPECT_FALSE(Id11->isIdentityWithPadding());
EXPECT_FALSE(Id11->isIdentityWithExtract());
EXPECT_FALSE(Id11->isConcat());
delete Id11;
// If an input is undef, it's not a concat.
// TODO: IdentityWithPadding should be true here even though the high mask values are not undef.
ShuffleVectorInst *Id12 = new ShuffleVectorInst(V0, ConstantVector::get({CU, CU, CU, CU}),
ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7}));
EXPECT_FALSE(Id12->isIdentity());
EXPECT_FALSE(Id12->isIdentityWithPadding());
EXPECT_FALSE(Id12->isIdentityWithExtract());
EXPECT_FALSE(Id12->isConcat());
delete Id12;
}
TEST(InstructionsTest, GetSplat) {
// Create the elements for various constant vectors.
LLVMContext Ctx;
Type *Int32Ty = Type::getInt32Ty(Ctx);
Constant *CU = UndefValue::get(Int32Ty);
Constant *C0 = ConstantInt::get(Int32Ty, 0);
Constant *C1 = ConstantInt::get(Int32Ty, 1);
Constant *Splat0 = ConstantVector::get({C0, C0, C0, C0});
Constant *Splat1 = ConstantVector::get({C1, C1, C1, C1 ,C1});
Constant *Splat0Undef = ConstantVector::get({C0, CU, C0, CU});
Constant *Splat1Undef = ConstantVector::get({CU, CU, C1, CU});
Constant *NotSplat = ConstantVector::get({C1, C1, C0, C1 ,C1});
Constant *NotSplatUndef = ConstantVector::get({CU, C1, CU, CU ,C0});
// Default - undefs are not allowed.
EXPECT_EQ(Splat0->getSplatValue(), C0);
EXPECT_EQ(Splat1->getSplatValue(), C1);
EXPECT_EQ(Splat0Undef->getSplatValue(), nullptr);
EXPECT_EQ(Splat1Undef->getSplatValue(), nullptr);
EXPECT_EQ(NotSplat->getSplatValue(), nullptr);
EXPECT_EQ(NotSplatUndef->getSplatValue(), nullptr);
// Disallow undefs explicitly.
EXPECT_EQ(Splat0->getSplatValue(false), C0);
EXPECT_EQ(Splat1->getSplatValue(false), C1);
EXPECT_EQ(Splat0Undef->getSplatValue(false), nullptr);
EXPECT_EQ(Splat1Undef->getSplatValue(false), nullptr);
EXPECT_EQ(NotSplat->getSplatValue(false), nullptr);
EXPECT_EQ(NotSplatUndef->getSplatValue(false), nullptr);
// Allow undefs.
EXPECT_EQ(Splat0->getSplatValue(true), C0);
EXPECT_EQ(Splat1->getSplatValue(true), C1);
EXPECT_EQ(Splat0Undef->getSplatValue(true), C0);
EXPECT_EQ(Splat1Undef->getSplatValue(true), C1);
EXPECT_EQ(NotSplat->getSplatValue(true), nullptr);
EXPECT_EQ(NotSplatUndef->getSplatValue(true), nullptr);
}
TEST(InstructionsTest, SkipDebug) {
LLVMContext C;
std::unique_ptr<Module> M = parseIR(C,
R"(
declare void @llvm.dbg.value(metadata, metadata, metadata)
define void @f() {
entry:
call void @llvm.dbg.value(metadata i32 0, metadata !11, metadata !DIExpression()), !dbg !13
ret void
}
!llvm.dbg.cu = !{!0}
!llvm.module.flags = !{!3, !4}
!0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 6.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2)
!1 = !DIFile(filename: "t2.c", directory: "foo")
!2 = !{}
!3 = !{i32 2, !"Dwarf Version", i32 4}
!4 = !{i32 2, !"Debug Info Version", i32 3}
!8 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 1, type: !9, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, retainedNodes: !2)
!9 = !DISubroutineType(types: !10)
!10 = !{null}
!11 = !DILocalVariable(name: "x", scope: !8, file: !1, line: 2, type: !12)
!12 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
!13 = !DILocation(line: 2, column: 7, scope: !8)
)");
ASSERT_TRUE(M);
Function *F = cast<Function>(M->getNamedValue("f"));
BasicBlock &BB = F->front();
// The first non-debug instruction is the terminator.
auto *Term = BB.getTerminator();
EXPECT_EQ(Term, BB.begin()->getNextNonDebugInstruction());
EXPECT_EQ(Term->getIterator(), skipDebugIntrinsics(BB.begin()));
// After the terminator, there are no non-debug instructions.
EXPECT_EQ(nullptr, Term->getNextNonDebugInstruction());
}
TEST(InstructionsTest, PhiMightNotBeFPMathOperator) {
LLVMContext Context;
IRBuilder<> Builder(Context);
MDBuilder MDHelper(Context);
Instruction *I = Builder.CreatePHI(Builder.getInt32Ty(), 0);
EXPECT_FALSE(isa<FPMathOperator>(I));
I->deleteValue();
Instruction *FP = Builder.CreatePHI(Builder.getDoubleTy(), 0);
EXPECT_TRUE(isa<FPMathOperator>(FP));
FP->deleteValue();
}
TEST(InstructionsTest, FPCallIsFPMathOperator) {
LLVMContext C;
Type *ITy = Type::getInt32Ty(C);
FunctionType *IFnTy = FunctionType::get(ITy, {});
Value *ICallee = Constant::getNullValue(IFnTy->getPointerTo());
std::unique_ptr<CallInst> ICall(CallInst::Create(IFnTy, ICallee, {}, ""));
EXPECT_FALSE(isa<FPMathOperator>(ICall));
Type *VITy = VectorType::get(ITy, 2);
FunctionType *VIFnTy = FunctionType::get(VITy, {});
Value *VICallee = Constant::getNullValue(VIFnTy->getPointerTo());
std::unique_ptr<CallInst> VICall(CallInst::Create(VIFnTy, VICallee, {}, ""));
EXPECT_FALSE(isa<FPMathOperator>(VICall));
Type *AITy = ArrayType::get(ITy, 2);
FunctionType *AIFnTy = FunctionType::get(AITy, {});
Value *AICallee = Constant::getNullValue(AIFnTy->getPointerTo());
std::unique_ptr<CallInst> AICall(CallInst::Create(AIFnTy, AICallee, {}, ""));
EXPECT_FALSE(isa<FPMathOperator>(AICall));
Type *FTy = Type::getFloatTy(C);
FunctionType *FFnTy = FunctionType::get(FTy, {});
Value *FCallee = Constant::getNullValue(FFnTy->getPointerTo());
std::unique_ptr<CallInst> FCall(CallInst::Create(FFnTy, FCallee, {}, ""));
EXPECT_TRUE(isa<FPMathOperator>(FCall));
Type *VFTy = VectorType::get(FTy, 2);
FunctionType *VFFnTy = FunctionType::get(VFTy, {});
Value *VFCallee = Constant::getNullValue(VFFnTy->getPointerTo());
std::unique_ptr<CallInst> VFCall(CallInst::Create(VFFnTy, VFCallee, {}, ""));
EXPECT_TRUE(isa<FPMathOperator>(VFCall));
Type *AFTy = ArrayType::get(FTy, 2);
FunctionType *AFFnTy = FunctionType::get(AFTy, {});
Value *AFCallee = Constant::getNullValue(AFFnTy->getPointerTo());
std::unique_ptr<CallInst> AFCall(CallInst::Create(AFFnTy, AFCallee, {}, ""));
EXPECT_TRUE(isa<FPMathOperator>(AFCall));
Type *AVFTy = ArrayType::get(VFTy, 2);
FunctionType *AVFFnTy = FunctionType::get(AVFTy, {});
Value *AVFCallee = Constant::getNullValue(AVFFnTy->getPointerTo());
std::unique_ptr<CallInst> AVFCall(
CallInst::Create(AVFFnTy, AVFCallee, {}, ""));
EXPECT_TRUE(isa<FPMathOperator>(AVFCall));
Type *AAVFTy = ArrayType::get(AVFTy, 2);
FunctionType *AAVFFnTy = FunctionType::get(AAVFTy, {});
Value *AAVFCallee = Constant::getNullValue(AAVFFnTy->getPointerTo());
std::unique_ptr<CallInst> AAVFCall(
CallInst::Create(AAVFFnTy, AAVFCallee, {}, ""));
EXPECT_TRUE(isa<FPMathOperator>(AAVFCall));
}
TEST(InstructionsTest, FNegInstruction) {
LLVMContext Context;
Type *FltTy = Type::getFloatTy(Context);
Constant *One = ConstantFP::get(FltTy, 1.0);
BinaryOperator *FAdd = BinaryOperator::CreateFAdd(One, One);
FAdd->setHasNoNaNs(true);
UnaryOperator *FNeg = UnaryOperator::CreateFNegFMF(One, FAdd);
EXPECT_TRUE(FNeg->hasNoNaNs());
EXPECT_FALSE(FNeg->hasNoInfs());
EXPECT_FALSE(FNeg->hasNoSignedZeros());
EXPECT_FALSE(FNeg->hasAllowReciprocal());
EXPECT_FALSE(FNeg->hasAllowContract());
EXPECT_FALSE(FNeg->hasAllowReassoc());
EXPECT_FALSE(FNeg->hasApproxFunc());
FAdd->deleteValue();
FNeg->deleteValue();
}
TEST(InstructionsTest, CallBrInstruction) {
LLVMContext Context;
std::unique_ptr<Module> M = parseIR(Context, R"(
define void @foo() {
entry:
callbr void asm sideeffect "// XXX: ${0:l}", "X"(i8* blockaddress(@foo, %branch_test.exit))
to label %land.rhs.i [label %branch_test.exit]
land.rhs.i:
br label %branch_test.exit
branch_test.exit:
%0 = phi i1 [ true, %entry ], [ false, %land.rhs.i ]
br i1 %0, label %if.end, label %if.then
if.then:
ret void
if.end:
ret void
}
)");
Function *Foo = M->getFunction("foo");
auto BBs = Foo->getBasicBlockList().begin();
CallBrInst &CBI = cast<CallBrInst>(BBs->front());
++BBs;
++BBs;
BasicBlock &BranchTestExit = *BBs;
++BBs;
BasicBlock &IfThen = *BBs;
// Test that setting the first indirect destination of callbr updates the dest
EXPECT_EQ(&BranchTestExit, CBI.getIndirectDest(0));
CBI.setIndirectDest(0, &IfThen);
EXPECT_EQ(&IfThen, CBI.getIndirectDest(0));
// Further, test that changing the indirect destination updates the arg
// operand to use the block address of the new indirect destination basic
// block. This is a critical invariant of CallBrInst.
BlockAddress *IndirectBA = BlockAddress::get(CBI.getIndirectDest(0));
BlockAddress *ArgBA = cast<BlockAddress>(CBI.getArgOperand(0));
EXPECT_EQ(IndirectBA, ArgBA)
<< "After setting the indirect destination, callbr had an indirect "
"destination of '"
<< CBI.getIndirectDest(0)->getName() << "', but a argument of '"
<< ArgBA->getBasicBlock()->getName() << "'. These should always match:\n"
<< CBI;
EXPECT_EQ(IndirectBA->getBasicBlock(), &IfThen);
EXPECT_EQ(ArgBA->getBasicBlock(), &IfThen);
}
TEST(InstructionsTest, UnaryOperator) {
LLVMContext Context;
IRBuilder<> Builder(Context);
Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
Value *F = Builder.CreateFNeg(I);
EXPECT_TRUE(isa<Value>(F));
EXPECT_TRUE(isa<Instruction>(F));
EXPECT_TRUE(isa<UnaryInstruction>(F));
EXPECT_TRUE(isa<UnaryOperator>(F));
EXPECT_FALSE(isa<BinaryOperator>(F));
F->deleteValue();
I->deleteValue();
}
} // end anonymous namespace
} // end namespace llvm