forked from OSchip/llvm-project
1260 lines
44 KiB
C++
1260 lines
44 KiB
C++
//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/MC/MCAssembler.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/MC/MCAsmBackend.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCAsmLayout.h"
|
|
#include "llvm/MC/MCCodeEmitter.h"
|
|
#include "llvm/MC/MCCodeView.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCDwarf.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCFixup.h"
|
|
#include "llvm/MC/MCFixupKindInfo.h"
|
|
#include "llvm/MC/MCFragment.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCObjectWriter.h"
|
|
#include "llvm/MC/MCSection.h"
|
|
#include "llvm/MC/MCSectionELF.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/MCValue.h"
|
|
#include "llvm/Support/Alignment.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/EndianStream.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "assembler"
|
|
|
|
namespace {
|
|
namespace stats {
|
|
|
|
STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
|
|
STATISTIC(EmittedRelaxableFragments,
|
|
"Number of emitted assembler fragments - relaxable");
|
|
STATISTIC(EmittedDataFragments,
|
|
"Number of emitted assembler fragments - data");
|
|
STATISTIC(EmittedCompactEncodedInstFragments,
|
|
"Number of emitted assembler fragments - compact encoded inst");
|
|
STATISTIC(EmittedAlignFragments,
|
|
"Number of emitted assembler fragments - align");
|
|
STATISTIC(EmittedFillFragments,
|
|
"Number of emitted assembler fragments - fill");
|
|
STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops");
|
|
STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org");
|
|
STATISTIC(evaluateFixup, "Number of evaluated fixups");
|
|
STATISTIC(FragmentLayouts, "Number of fragment layouts");
|
|
STATISTIC(ObjectBytes, "Number of emitted object file bytes");
|
|
STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
|
|
STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
|
|
|
|
} // end namespace stats
|
|
} // end anonymous namespace
|
|
|
|
// FIXME FIXME FIXME: There are number of places in this file where we convert
|
|
// what is a 64-bit assembler value used for computation into a value in the
|
|
// object file, which may truncate it. We should detect that truncation where
|
|
// invalid and report errors back.
|
|
|
|
/* *** */
|
|
|
|
MCAssembler::MCAssembler(MCContext &Context,
|
|
std::unique_ptr<MCAsmBackend> Backend,
|
|
std::unique_ptr<MCCodeEmitter> Emitter,
|
|
std::unique_ptr<MCObjectWriter> Writer)
|
|
: Context(Context), Backend(std::move(Backend)),
|
|
Emitter(std::move(Emitter)), Writer(std::move(Writer)),
|
|
BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
|
|
IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
|
|
VersionInfo.Major = 0; // Major version == 0 for "none specified"
|
|
DarwinTargetVariantVersionInfo.Major = 0;
|
|
}
|
|
|
|
MCAssembler::~MCAssembler() = default;
|
|
|
|
void MCAssembler::reset() {
|
|
Sections.clear();
|
|
Symbols.clear();
|
|
IndirectSymbols.clear();
|
|
DataRegions.clear();
|
|
LinkerOptions.clear();
|
|
FileNames.clear();
|
|
ThumbFuncs.clear();
|
|
BundleAlignSize = 0;
|
|
RelaxAll = false;
|
|
SubsectionsViaSymbols = false;
|
|
IncrementalLinkerCompatible = false;
|
|
ELFHeaderEFlags = 0;
|
|
LOHContainer.reset();
|
|
VersionInfo.Major = 0;
|
|
VersionInfo.SDKVersion = VersionTuple();
|
|
DarwinTargetVariantVersionInfo.Major = 0;
|
|
DarwinTargetVariantVersionInfo.SDKVersion = VersionTuple();
|
|
|
|
// reset objects owned by us
|
|
if (getBackendPtr())
|
|
getBackendPtr()->reset();
|
|
if (getEmitterPtr())
|
|
getEmitterPtr()->reset();
|
|
if (getWriterPtr())
|
|
getWriterPtr()->reset();
|
|
getLOHContainer().reset();
|
|
}
|
|
|
|
bool MCAssembler::registerSection(MCSection &Section) {
|
|
if (Section.isRegistered())
|
|
return false;
|
|
Sections.push_back(&Section);
|
|
Section.setIsRegistered(true);
|
|
return true;
|
|
}
|
|
|
|
bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
|
|
if (ThumbFuncs.count(Symbol))
|
|
return true;
|
|
|
|
if (!Symbol->isVariable())
|
|
return false;
|
|
|
|
const MCExpr *Expr = Symbol->getVariableValue();
|
|
|
|
MCValue V;
|
|
if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
|
|
return false;
|
|
|
|
if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
|
|
return false;
|
|
|
|
const MCSymbolRefExpr *Ref = V.getSymA();
|
|
if (!Ref)
|
|
return false;
|
|
|
|
if (Ref->getKind() != MCSymbolRefExpr::VK_None)
|
|
return false;
|
|
|
|
const MCSymbol &Sym = Ref->getSymbol();
|
|
if (!isThumbFunc(&Sym))
|
|
return false;
|
|
|
|
ThumbFuncs.insert(Symbol); // Cache it.
|
|
return true;
|
|
}
|
|
|
|
bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
|
|
// Non-temporary labels should always be visible to the linker.
|
|
if (!Symbol.isTemporary())
|
|
return true;
|
|
|
|
if (Symbol.isUsedInReloc())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
|
|
// Linker visible symbols define atoms.
|
|
if (isSymbolLinkerVisible(S))
|
|
return &S;
|
|
|
|
// Absolute and undefined symbols have no defining atom.
|
|
if (!S.isInSection())
|
|
return nullptr;
|
|
|
|
// Non-linker visible symbols in sections which can't be atomized have no
|
|
// defining atom.
|
|
if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
|
|
*S.getFragment()->getParent()))
|
|
return nullptr;
|
|
|
|
// Otherwise, return the atom for the containing fragment.
|
|
return S.getFragment()->getAtom();
|
|
}
|
|
|
|
bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
|
|
const MCFixup &Fixup, const MCFragment *DF,
|
|
MCValue &Target, uint64_t &Value,
|
|
bool &WasForced) const {
|
|
++stats::evaluateFixup;
|
|
|
|
// FIXME: This code has some duplication with recordRelocation. We should
|
|
// probably merge the two into a single callback that tries to evaluate a
|
|
// fixup and records a relocation if one is needed.
|
|
|
|
// On error claim to have completely evaluated the fixup, to prevent any
|
|
// further processing from being done.
|
|
const MCExpr *Expr = Fixup.getValue();
|
|
MCContext &Ctx = getContext();
|
|
Value = 0;
|
|
WasForced = false;
|
|
if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
|
|
Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
|
|
return true;
|
|
}
|
|
if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
|
|
if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
|
|
Ctx.reportError(Fixup.getLoc(),
|
|
"unsupported subtraction of qualified symbol");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
assert(getBackendPtr() && "Expected assembler backend");
|
|
bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
|
|
MCFixupKindInfo::FKF_IsTarget;
|
|
|
|
if (IsTarget)
|
|
return getBackend().evaluateTargetFixup(*this, Layout, Fixup, DF, Target,
|
|
Value, WasForced);
|
|
|
|
unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags;
|
|
bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
|
|
MCFixupKindInfo::FKF_IsPCRel;
|
|
|
|
bool IsResolved = false;
|
|
if (IsPCRel) {
|
|
if (Target.getSymB()) {
|
|
IsResolved = false;
|
|
} else if (!Target.getSymA()) {
|
|
IsResolved = false;
|
|
} else {
|
|
const MCSymbolRefExpr *A = Target.getSymA();
|
|
const MCSymbol &SA = A->getSymbol();
|
|
if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
|
|
IsResolved = false;
|
|
} else if (auto *Writer = getWriterPtr()) {
|
|
IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) ||
|
|
Writer->isSymbolRefDifferenceFullyResolvedImpl(
|
|
*this, SA, *DF, false, true);
|
|
}
|
|
}
|
|
} else {
|
|
IsResolved = Target.isAbsolute();
|
|
}
|
|
|
|
Value = Target.getConstant();
|
|
|
|
if (const MCSymbolRefExpr *A = Target.getSymA()) {
|
|
const MCSymbol &Sym = A->getSymbol();
|
|
if (Sym.isDefined())
|
|
Value += Layout.getSymbolOffset(Sym);
|
|
}
|
|
if (const MCSymbolRefExpr *B = Target.getSymB()) {
|
|
const MCSymbol &Sym = B->getSymbol();
|
|
if (Sym.isDefined())
|
|
Value -= Layout.getSymbolOffset(Sym);
|
|
}
|
|
|
|
bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
|
|
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
|
|
assert((ShouldAlignPC ? IsPCRel : true) &&
|
|
"FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
|
|
|
|
if (IsPCRel) {
|
|
uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
|
|
|
|
// A number of ARM fixups in Thumb mode require that the effective PC
|
|
// address be determined as the 32-bit aligned version of the actual offset.
|
|
if (ShouldAlignPC) Offset &= ~0x3;
|
|
Value -= Offset;
|
|
}
|
|
|
|
// Let the backend force a relocation if needed.
|
|
if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) {
|
|
IsResolved = false;
|
|
WasForced = true;
|
|
}
|
|
|
|
return IsResolved;
|
|
}
|
|
|
|
uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
|
|
const MCFragment &F) const {
|
|
assert(getBackendPtr() && "Requires assembler backend");
|
|
switch (F.getKind()) {
|
|
case MCFragment::FT_Data:
|
|
return cast<MCDataFragment>(F).getContents().size();
|
|
case MCFragment::FT_Relaxable:
|
|
return cast<MCRelaxableFragment>(F).getContents().size();
|
|
case MCFragment::FT_CompactEncodedInst:
|
|
return cast<MCCompactEncodedInstFragment>(F).getContents().size();
|
|
case MCFragment::FT_Fill: {
|
|
auto &FF = cast<MCFillFragment>(F);
|
|
int64_t NumValues = 0;
|
|
if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) {
|
|
getContext().reportError(FF.getLoc(),
|
|
"expected assembly-time absolute expression");
|
|
return 0;
|
|
}
|
|
int64_t Size = NumValues * FF.getValueSize();
|
|
if (Size < 0) {
|
|
getContext().reportError(FF.getLoc(), "invalid number of bytes");
|
|
return 0;
|
|
}
|
|
return Size;
|
|
}
|
|
|
|
case MCFragment::FT_Nops:
|
|
return cast<MCNopsFragment>(F).getNumBytes();
|
|
|
|
case MCFragment::FT_LEB:
|
|
return cast<MCLEBFragment>(F).getContents().size();
|
|
|
|
case MCFragment::FT_BoundaryAlign:
|
|
return cast<MCBoundaryAlignFragment>(F).getSize();
|
|
|
|
case MCFragment::FT_SymbolId:
|
|
return 4;
|
|
|
|
case MCFragment::FT_Align: {
|
|
const MCAlignFragment &AF = cast<MCAlignFragment>(F);
|
|
unsigned Offset = Layout.getFragmentOffset(&AF);
|
|
unsigned Size = offsetToAlignment(Offset, Align(AF.getAlignment()));
|
|
|
|
// Insert extra Nops for code alignment if the target define
|
|
// shouldInsertExtraNopBytesForCodeAlign target hook.
|
|
if (AF.getParent()->UseCodeAlign() && AF.hasEmitNops() &&
|
|
getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
|
|
return Size;
|
|
|
|
// If we are padding with nops, force the padding to be larger than the
|
|
// minimum nop size.
|
|
if (Size > 0 && AF.hasEmitNops()) {
|
|
while (Size % getBackend().getMinimumNopSize())
|
|
Size += AF.getAlignment();
|
|
}
|
|
if (Size > AF.getMaxBytesToEmit())
|
|
return 0;
|
|
return Size;
|
|
}
|
|
|
|
case MCFragment::FT_Org: {
|
|
const MCOrgFragment &OF = cast<MCOrgFragment>(F);
|
|
MCValue Value;
|
|
if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
|
|
getContext().reportError(OF.getLoc(),
|
|
"expected assembly-time absolute expression");
|
|
return 0;
|
|
}
|
|
|
|
uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
|
|
int64_t TargetLocation = Value.getConstant();
|
|
if (const MCSymbolRefExpr *A = Value.getSymA()) {
|
|
uint64_t Val;
|
|
if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
|
|
getContext().reportError(OF.getLoc(), "expected absolute expression");
|
|
return 0;
|
|
}
|
|
TargetLocation += Val;
|
|
}
|
|
int64_t Size = TargetLocation - FragmentOffset;
|
|
if (Size < 0 || Size >= 0x40000000) {
|
|
getContext().reportError(
|
|
OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
|
|
"' (at offset '" + Twine(FragmentOffset) + "')");
|
|
return 0;
|
|
}
|
|
return Size;
|
|
}
|
|
|
|
case MCFragment::FT_Dwarf:
|
|
return cast<MCDwarfLineAddrFragment>(F).getContents().size();
|
|
case MCFragment::FT_DwarfFrame:
|
|
return cast<MCDwarfCallFrameFragment>(F).getContents().size();
|
|
case MCFragment::FT_CVInlineLines:
|
|
return cast<MCCVInlineLineTableFragment>(F).getContents().size();
|
|
case MCFragment::FT_CVDefRange:
|
|
return cast<MCCVDefRangeFragment>(F).getContents().size();
|
|
case MCFragment::FT_PseudoProbe:
|
|
return cast<MCPseudoProbeAddrFragment>(F).getContents().size();
|
|
case MCFragment::FT_Dummy:
|
|
llvm_unreachable("Should not have been added");
|
|
}
|
|
|
|
llvm_unreachable("invalid fragment kind");
|
|
}
|
|
|
|
void MCAsmLayout::layoutFragment(MCFragment *F) {
|
|
MCFragment *Prev = F->getPrevNode();
|
|
|
|
// We should never try to recompute something which is valid.
|
|
assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
|
|
// We should never try to compute the fragment layout if its predecessor
|
|
// isn't valid.
|
|
assert((!Prev || isFragmentValid(Prev)) &&
|
|
"Attempt to compute fragment before its predecessor!");
|
|
|
|
assert(!F->IsBeingLaidOut && "Already being laid out!");
|
|
F->IsBeingLaidOut = true;
|
|
|
|
++stats::FragmentLayouts;
|
|
|
|
// Compute fragment offset and size.
|
|
if (Prev)
|
|
F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
|
|
else
|
|
F->Offset = 0;
|
|
F->IsBeingLaidOut = false;
|
|
LastValidFragment[F->getParent()] = F;
|
|
|
|
// If bundling is enabled and this fragment has instructions in it, it has to
|
|
// obey the bundling restrictions. With padding, we'll have:
|
|
//
|
|
//
|
|
// BundlePadding
|
|
// |||
|
|
// -------------------------------------
|
|
// Prev |##########| F |
|
|
// -------------------------------------
|
|
// ^
|
|
// |
|
|
// F->Offset
|
|
//
|
|
// The fragment's offset will point to after the padding, and its computed
|
|
// size won't include the padding.
|
|
//
|
|
// When the -mc-relax-all flag is used, we optimize bundling by writting the
|
|
// padding directly into fragments when the instructions are emitted inside
|
|
// the streamer. When the fragment is larger than the bundle size, we need to
|
|
// ensure that it's bundle aligned. This means that if we end up with
|
|
// multiple fragments, we must emit bundle padding between fragments.
|
|
//
|
|
// ".align N" is an example of a directive that introduces multiple
|
|
// fragments. We could add a special case to handle ".align N" by emitting
|
|
// within-fragment padding (which would produce less padding when N is less
|
|
// than the bundle size), but for now we don't.
|
|
//
|
|
if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
|
|
assert(isa<MCEncodedFragment>(F) &&
|
|
"Only MCEncodedFragment implementations have instructions");
|
|
MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
|
|
uint64_t FSize = Assembler.computeFragmentSize(*this, *EF);
|
|
|
|
if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
|
|
report_fatal_error("Fragment can't be larger than a bundle size");
|
|
|
|
uint64_t RequiredBundlePadding =
|
|
computeBundlePadding(Assembler, EF, EF->Offset, FSize);
|
|
if (RequiredBundlePadding > UINT8_MAX)
|
|
report_fatal_error("Padding cannot exceed 255 bytes");
|
|
EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
|
|
EF->Offset += RequiredBundlePadding;
|
|
}
|
|
}
|
|
|
|
void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
|
|
bool New = !Symbol.isRegistered();
|
|
if (Created)
|
|
*Created = New;
|
|
if (New) {
|
|
Symbol.setIsRegistered(true);
|
|
Symbols.push_back(&Symbol);
|
|
}
|
|
}
|
|
|
|
void MCAssembler::writeFragmentPadding(raw_ostream &OS,
|
|
const MCEncodedFragment &EF,
|
|
uint64_t FSize) const {
|
|
assert(getBackendPtr() && "Expected assembler backend");
|
|
// Should NOP padding be written out before this fragment?
|
|
unsigned BundlePadding = EF.getBundlePadding();
|
|
if (BundlePadding > 0) {
|
|
assert(isBundlingEnabled() &&
|
|
"Writing bundle padding with disabled bundling");
|
|
assert(EF.hasInstructions() &&
|
|
"Writing bundle padding for a fragment without instructions");
|
|
|
|
unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
|
|
const MCSubtargetInfo *STI = EF.getSubtargetInfo();
|
|
if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
|
|
// If the padding itself crosses a bundle boundary, it must be emitted
|
|
// in 2 pieces, since even nop instructions must not cross boundaries.
|
|
// v--------------v <- BundleAlignSize
|
|
// v---------v <- BundlePadding
|
|
// ----------------------------
|
|
// | Prev |####|####| F |
|
|
// ----------------------------
|
|
// ^-------------------^ <- TotalLength
|
|
unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
|
|
if (!getBackend().writeNopData(OS, DistanceToBoundary, STI))
|
|
report_fatal_error("unable to write NOP sequence of " +
|
|
Twine(DistanceToBoundary) + " bytes");
|
|
BundlePadding -= DistanceToBoundary;
|
|
}
|
|
if (!getBackend().writeNopData(OS, BundlePadding, STI))
|
|
report_fatal_error("unable to write NOP sequence of " +
|
|
Twine(BundlePadding) + " bytes");
|
|
}
|
|
}
|
|
|
|
/// Write the fragment \p F to the output file.
|
|
static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
|
|
const MCAsmLayout &Layout, const MCFragment &F) {
|
|
// FIXME: Embed in fragments instead?
|
|
uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
|
|
|
|
support::endianness Endian = Asm.getBackend().Endian;
|
|
|
|
if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
|
|
Asm.writeFragmentPadding(OS, *EF, FragmentSize);
|
|
|
|
// This variable (and its dummy usage) is to participate in the assert at
|
|
// the end of the function.
|
|
uint64_t Start = OS.tell();
|
|
(void) Start;
|
|
|
|
++stats::EmittedFragments;
|
|
|
|
switch (F.getKind()) {
|
|
case MCFragment::FT_Align: {
|
|
++stats::EmittedAlignFragments;
|
|
const MCAlignFragment &AF = cast<MCAlignFragment>(F);
|
|
assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
|
|
|
|
uint64_t Count = FragmentSize / AF.getValueSize();
|
|
|
|
// FIXME: This error shouldn't actually occur (the front end should emit
|
|
// multiple .align directives to enforce the semantics it wants), but is
|
|
// severe enough that we want to report it. How to handle this?
|
|
if (Count * AF.getValueSize() != FragmentSize)
|
|
report_fatal_error("undefined .align directive, value size '" +
|
|
Twine(AF.getValueSize()) +
|
|
"' is not a divisor of padding size '" +
|
|
Twine(FragmentSize) + "'");
|
|
|
|
// See if we are aligning with nops, and if so do that first to try to fill
|
|
// the Count bytes. Then if that did not fill any bytes or there are any
|
|
// bytes left to fill use the Value and ValueSize to fill the rest.
|
|
// If we are aligning with nops, ask that target to emit the right data.
|
|
if (AF.hasEmitNops()) {
|
|
if (!Asm.getBackend().writeNopData(OS, Count, AF.getSubtargetInfo()))
|
|
report_fatal_error("unable to write nop sequence of " +
|
|
Twine(Count) + " bytes");
|
|
break;
|
|
}
|
|
|
|
// Otherwise, write out in multiples of the value size.
|
|
for (uint64_t i = 0; i != Count; ++i) {
|
|
switch (AF.getValueSize()) {
|
|
default: llvm_unreachable("Invalid size!");
|
|
case 1: OS << char(AF.getValue()); break;
|
|
case 2:
|
|
support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
|
|
break;
|
|
case 4:
|
|
support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
|
|
break;
|
|
case 8:
|
|
support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case MCFragment::FT_Data:
|
|
++stats::EmittedDataFragments;
|
|
OS << cast<MCDataFragment>(F).getContents();
|
|
break;
|
|
|
|
case MCFragment::FT_Relaxable:
|
|
++stats::EmittedRelaxableFragments;
|
|
OS << cast<MCRelaxableFragment>(F).getContents();
|
|
break;
|
|
|
|
case MCFragment::FT_CompactEncodedInst:
|
|
++stats::EmittedCompactEncodedInstFragments;
|
|
OS << cast<MCCompactEncodedInstFragment>(F).getContents();
|
|
break;
|
|
|
|
case MCFragment::FT_Fill: {
|
|
++stats::EmittedFillFragments;
|
|
const MCFillFragment &FF = cast<MCFillFragment>(F);
|
|
uint64_t V = FF.getValue();
|
|
unsigned VSize = FF.getValueSize();
|
|
const unsigned MaxChunkSize = 16;
|
|
char Data[MaxChunkSize];
|
|
assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size");
|
|
// Duplicate V into Data as byte vector to reduce number of
|
|
// writes done. As such, do endian conversion here.
|
|
for (unsigned I = 0; I != VSize; ++I) {
|
|
unsigned index = Endian == support::little ? I : (VSize - I - 1);
|
|
Data[I] = uint8_t(V >> (index * 8));
|
|
}
|
|
for (unsigned I = VSize; I < MaxChunkSize; ++I)
|
|
Data[I] = Data[I - VSize];
|
|
|
|
// Set to largest multiple of VSize in Data.
|
|
const unsigned NumPerChunk = MaxChunkSize / VSize;
|
|
// Set ChunkSize to largest multiple of VSize in Data
|
|
const unsigned ChunkSize = VSize * NumPerChunk;
|
|
|
|
// Do copies by chunk.
|
|
StringRef Ref(Data, ChunkSize);
|
|
for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
|
|
OS << Ref;
|
|
|
|
// do remainder if needed.
|
|
unsigned TrailingCount = FragmentSize % ChunkSize;
|
|
if (TrailingCount)
|
|
OS.write(Data, TrailingCount);
|
|
break;
|
|
}
|
|
|
|
case MCFragment::FT_Nops: {
|
|
++stats::EmittedNopsFragments;
|
|
const MCNopsFragment &NF = cast<MCNopsFragment>(F);
|
|
|
|
int64_t NumBytes = NF.getNumBytes();
|
|
int64_t ControlledNopLength = NF.getControlledNopLength();
|
|
int64_t MaximumNopLength =
|
|
Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo());
|
|
|
|
assert(NumBytes > 0 && "Expected positive NOPs fragment size");
|
|
assert(ControlledNopLength >= 0 && "Expected non-negative NOP size");
|
|
|
|
if (ControlledNopLength > MaximumNopLength) {
|
|
Asm.getContext().reportError(NF.getLoc(),
|
|
"illegal NOP size " +
|
|
std::to_string(ControlledNopLength) +
|
|
". (expected within [0, " +
|
|
std::to_string(MaximumNopLength) + "])");
|
|
// Clamp the NOP length as reportError does not stop the execution
|
|
// immediately.
|
|
ControlledNopLength = MaximumNopLength;
|
|
}
|
|
|
|
// Use maximum value if the size of each NOP is not specified
|
|
if (!ControlledNopLength)
|
|
ControlledNopLength = MaximumNopLength;
|
|
|
|
while (NumBytes) {
|
|
uint64_t NumBytesToEmit =
|
|
(uint64_t)std::min(NumBytes, ControlledNopLength);
|
|
assert(NumBytesToEmit && "try to emit empty NOP instruction");
|
|
if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit,
|
|
NF.getSubtargetInfo())) {
|
|
report_fatal_error("unable to write nop sequence of the remaining " +
|
|
Twine(NumBytesToEmit) + " bytes");
|
|
break;
|
|
}
|
|
NumBytes -= NumBytesToEmit;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case MCFragment::FT_LEB: {
|
|
const MCLEBFragment &LF = cast<MCLEBFragment>(F);
|
|
OS << LF.getContents();
|
|
break;
|
|
}
|
|
|
|
case MCFragment::FT_BoundaryAlign: {
|
|
const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F);
|
|
if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo()))
|
|
report_fatal_error("unable to write nop sequence of " +
|
|
Twine(FragmentSize) + " bytes");
|
|
break;
|
|
}
|
|
|
|
case MCFragment::FT_SymbolId: {
|
|
const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
|
|
support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
|
|
break;
|
|
}
|
|
|
|
case MCFragment::FT_Org: {
|
|
++stats::EmittedOrgFragments;
|
|
const MCOrgFragment &OF = cast<MCOrgFragment>(F);
|
|
|
|
for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
|
|
OS << char(OF.getValue());
|
|
|
|
break;
|
|
}
|
|
|
|
case MCFragment::FT_Dwarf: {
|
|
const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
|
|
OS << OF.getContents();
|
|
break;
|
|
}
|
|
case MCFragment::FT_DwarfFrame: {
|
|
const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
|
|
OS << CF.getContents();
|
|
break;
|
|
}
|
|
case MCFragment::FT_CVInlineLines: {
|
|
const auto &OF = cast<MCCVInlineLineTableFragment>(F);
|
|
OS << OF.getContents();
|
|
break;
|
|
}
|
|
case MCFragment::FT_CVDefRange: {
|
|
const auto &DRF = cast<MCCVDefRangeFragment>(F);
|
|
OS << DRF.getContents();
|
|
break;
|
|
}
|
|
case MCFragment::FT_PseudoProbe: {
|
|
const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F);
|
|
OS << PF.getContents();
|
|
break;
|
|
}
|
|
case MCFragment::FT_Dummy:
|
|
llvm_unreachable("Should not have been added");
|
|
}
|
|
|
|
assert(OS.tell() - Start == FragmentSize &&
|
|
"The stream should advance by fragment size");
|
|
}
|
|
|
|
void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec,
|
|
const MCAsmLayout &Layout) const {
|
|
assert(getBackendPtr() && "Expected assembler backend");
|
|
|
|
// Ignore virtual sections.
|
|
if (Sec->isVirtualSection()) {
|
|
assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
|
|
|
|
// Check that contents are only things legal inside a virtual section.
|
|
for (const MCFragment &F : *Sec) {
|
|
switch (F.getKind()) {
|
|
default: llvm_unreachable("Invalid fragment in virtual section!");
|
|
case MCFragment::FT_Data: {
|
|
// Check that we aren't trying to write a non-zero contents (or fixups)
|
|
// into a virtual section. This is to support clients which use standard
|
|
// directives to fill the contents of virtual sections.
|
|
const MCDataFragment &DF = cast<MCDataFragment>(F);
|
|
if (DF.fixup_begin() != DF.fixup_end())
|
|
getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() +
|
|
" section '" + Sec->getName() +
|
|
"' cannot have fixups");
|
|
for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
|
|
if (DF.getContents()[i]) {
|
|
getContext().reportError(SMLoc(),
|
|
Sec->getVirtualSectionKind() +
|
|
" section '" + Sec->getName() +
|
|
"' cannot have non-zero initializers");
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case MCFragment::FT_Align:
|
|
// Check that we aren't trying to write a non-zero value into a virtual
|
|
// section.
|
|
assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
|
|
cast<MCAlignFragment>(F).getValue() == 0) &&
|
|
"Invalid align in virtual section!");
|
|
break;
|
|
case MCFragment::FT_Fill:
|
|
assert((cast<MCFillFragment>(F).getValue() == 0) &&
|
|
"Invalid fill in virtual section!");
|
|
break;
|
|
case MCFragment::FT_Org:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
uint64_t Start = OS.tell();
|
|
(void)Start;
|
|
|
|
for (const MCFragment &F : *Sec)
|
|
writeFragment(OS, *this, Layout, F);
|
|
|
|
assert(getContext().hadError() ||
|
|
OS.tell() - Start == Layout.getSectionAddressSize(Sec));
|
|
}
|
|
|
|
std::tuple<MCValue, uint64_t, bool>
|
|
MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
|
|
const MCFixup &Fixup) {
|
|
// Evaluate the fixup.
|
|
MCValue Target;
|
|
uint64_t FixedValue;
|
|
bool WasForced;
|
|
bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue,
|
|
WasForced);
|
|
if (!IsResolved) {
|
|
// The fixup was unresolved, we need a relocation. Inform the object
|
|
// writer of the relocation, and give it an opportunity to adjust the
|
|
// fixup value if need be.
|
|
getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
|
|
}
|
|
return std::make_tuple(Target, FixedValue, IsResolved);
|
|
}
|
|
|
|
void MCAssembler::layout(MCAsmLayout &Layout) {
|
|
assert(getBackendPtr() && "Expected assembler backend");
|
|
DEBUG_WITH_TYPE("mc-dump", {
|
|
errs() << "assembler backend - pre-layout\n--\n";
|
|
dump(); });
|
|
|
|
// Create dummy fragments and assign section ordinals.
|
|
unsigned SectionIndex = 0;
|
|
for (MCSection &Sec : *this) {
|
|
// Create dummy fragments to eliminate any empty sections, this simplifies
|
|
// layout.
|
|
if (Sec.getFragmentList().empty())
|
|
new MCDataFragment(&Sec);
|
|
|
|
Sec.setOrdinal(SectionIndex++);
|
|
}
|
|
|
|
// Assign layout order indices to sections and fragments.
|
|
for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
|
|
MCSection *Sec = Layout.getSectionOrder()[i];
|
|
Sec->setLayoutOrder(i);
|
|
|
|
unsigned FragmentIndex = 0;
|
|
for (MCFragment &Frag : *Sec)
|
|
Frag.setLayoutOrder(FragmentIndex++);
|
|
}
|
|
|
|
// Layout until everything fits.
|
|
while (layoutOnce(Layout)) {
|
|
if (getContext().hadError())
|
|
return;
|
|
// Size of fragments in one section can depend on the size of fragments in
|
|
// another. If any fragment has changed size, we have to re-layout (and
|
|
// as a result possibly further relax) all.
|
|
for (MCSection &Sec : *this)
|
|
Layout.invalidateFragmentsFrom(&*Sec.begin());
|
|
}
|
|
|
|
DEBUG_WITH_TYPE("mc-dump", {
|
|
errs() << "assembler backend - post-relaxation\n--\n";
|
|
dump(); });
|
|
|
|
// Finalize the layout, including fragment lowering.
|
|
finishLayout(Layout);
|
|
|
|
DEBUG_WITH_TYPE("mc-dump", {
|
|
errs() << "assembler backend - final-layout\n--\n";
|
|
dump(); });
|
|
|
|
// Allow the object writer a chance to perform post-layout binding (for
|
|
// example, to set the index fields in the symbol data).
|
|
getWriter().executePostLayoutBinding(*this, Layout);
|
|
|
|
// Evaluate and apply the fixups, generating relocation entries as necessary.
|
|
for (MCSection &Sec : *this) {
|
|
for (MCFragment &Frag : Sec) {
|
|
ArrayRef<MCFixup> Fixups;
|
|
MutableArrayRef<char> Contents;
|
|
const MCSubtargetInfo *STI = nullptr;
|
|
|
|
// Process MCAlignFragment and MCEncodedFragmentWithFixups here.
|
|
switch (Frag.getKind()) {
|
|
default:
|
|
continue;
|
|
case MCFragment::FT_Align: {
|
|
MCAlignFragment &AF = cast<MCAlignFragment>(Frag);
|
|
// Insert fixup type for code alignment if the target define
|
|
// shouldInsertFixupForCodeAlign target hook.
|
|
if (Sec.UseCodeAlign() && AF.hasEmitNops())
|
|
getBackend().shouldInsertFixupForCodeAlign(*this, Layout, AF);
|
|
continue;
|
|
}
|
|
case MCFragment::FT_Data: {
|
|
MCDataFragment &DF = cast<MCDataFragment>(Frag);
|
|
Fixups = DF.getFixups();
|
|
Contents = DF.getContents();
|
|
STI = DF.getSubtargetInfo();
|
|
assert(!DF.hasInstructions() || STI != nullptr);
|
|
break;
|
|
}
|
|
case MCFragment::FT_Relaxable: {
|
|
MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag);
|
|
Fixups = RF.getFixups();
|
|
Contents = RF.getContents();
|
|
STI = RF.getSubtargetInfo();
|
|
assert(!RF.hasInstructions() || STI != nullptr);
|
|
break;
|
|
}
|
|
case MCFragment::FT_CVDefRange: {
|
|
MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag);
|
|
Fixups = CF.getFixups();
|
|
Contents = CF.getContents();
|
|
break;
|
|
}
|
|
case MCFragment::FT_Dwarf: {
|
|
MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag);
|
|
Fixups = DF.getFixups();
|
|
Contents = DF.getContents();
|
|
break;
|
|
}
|
|
case MCFragment::FT_DwarfFrame: {
|
|
MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag);
|
|
Fixups = DF.getFixups();
|
|
Contents = DF.getContents();
|
|
break;
|
|
}
|
|
case MCFragment::FT_PseudoProbe: {
|
|
MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag);
|
|
Fixups = PF.getFixups();
|
|
Contents = PF.getContents();
|
|
break;
|
|
}
|
|
}
|
|
for (const MCFixup &Fixup : Fixups) {
|
|
uint64_t FixedValue;
|
|
bool IsResolved;
|
|
MCValue Target;
|
|
std::tie(Target, FixedValue, IsResolved) =
|
|
handleFixup(Layout, Frag, Fixup);
|
|
getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
|
|
IsResolved, STI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MCAssembler::Finish() {
|
|
// Create the layout object.
|
|
MCAsmLayout Layout(*this);
|
|
layout(Layout);
|
|
|
|
// Write the object file.
|
|
stats::ObjectBytes += getWriter().writeObject(*this, Layout);
|
|
}
|
|
|
|
bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
|
|
const MCRelaxableFragment *DF,
|
|
const MCAsmLayout &Layout) const {
|
|
assert(getBackendPtr() && "Expected assembler backend");
|
|
MCValue Target;
|
|
uint64_t Value;
|
|
bool WasForced;
|
|
bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced);
|
|
if (Target.getSymA() &&
|
|
Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
|
|
Fixup.getKind() == FK_Data_1)
|
|
return false;
|
|
return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
|
|
Layout, WasForced);
|
|
}
|
|
|
|
bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
|
|
const MCAsmLayout &Layout) const {
|
|
assert(getBackendPtr() && "Expected assembler backend");
|
|
// If this inst doesn't ever need relaxation, ignore it. This occurs when we
|
|
// are intentionally pushing out inst fragments, or because we relaxed a
|
|
// previous instruction to one that doesn't need relaxation.
|
|
if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
|
|
return false;
|
|
|
|
for (const MCFixup &Fixup : F->getFixups())
|
|
if (fixupNeedsRelaxation(Fixup, F, Layout))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
|
|
MCRelaxableFragment &F) {
|
|
assert(getEmitterPtr() &&
|
|
"Expected CodeEmitter defined for relaxInstruction");
|
|
if (!fragmentNeedsRelaxation(&F, Layout))
|
|
return false;
|
|
|
|
++stats::RelaxedInstructions;
|
|
|
|
// FIXME-PERF: We could immediately lower out instructions if we can tell
|
|
// they are fully resolved, to avoid retesting on later passes.
|
|
|
|
// Relax the fragment.
|
|
|
|
MCInst Relaxed = F.getInst();
|
|
getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo());
|
|
|
|
// Encode the new instruction.
|
|
//
|
|
// FIXME-PERF: If it matters, we could let the target do this. It can
|
|
// probably do so more efficiently in many cases.
|
|
SmallVector<MCFixup, 4> Fixups;
|
|
SmallString<256> Code;
|
|
raw_svector_ostream VecOS(Code);
|
|
getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo());
|
|
|
|
// Update the fragment.
|
|
F.setInst(Relaxed);
|
|
F.getContents() = Code;
|
|
F.getFixups() = Fixups;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
|
|
uint64_t OldSize = LF.getContents().size();
|
|
int64_t Value;
|
|
bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
|
|
if (!Abs)
|
|
report_fatal_error("sleb128 and uleb128 expressions must be absolute");
|
|
SmallString<8> &Data = LF.getContents();
|
|
Data.clear();
|
|
raw_svector_ostream OSE(Data);
|
|
// The compiler can generate EH table assembly that is impossible to assemble
|
|
// without either adding padding to an LEB fragment or adding extra padding
|
|
// to a later alignment fragment. To accommodate such tables, relaxation can
|
|
// only increase an LEB fragment size here, not decrease it. See PR35809.
|
|
if (LF.isSigned())
|
|
encodeSLEB128(Value, OSE, OldSize);
|
|
else
|
|
encodeULEB128(Value, OSE, OldSize);
|
|
return OldSize != LF.getContents().size();
|
|
}
|
|
|
|
/// Check if the branch crosses the boundary.
|
|
///
|
|
/// \param StartAddr start address of the fused/unfused branch.
|
|
/// \param Size size of the fused/unfused branch.
|
|
/// \param BoundaryAlignment alignment requirement of the branch.
|
|
/// \returns true if the branch cross the boundary.
|
|
static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
|
|
Align BoundaryAlignment) {
|
|
uint64_t EndAddr = StartAddr + Size;
|
|
return (StartAddr >> Log2(BoundaryAlignment)) !=
|
|
((EndAddr - 1) >> Log2(BoundaryAlignment));
|
|
}
|
|
|
|
/// Check if the branch is against the boundary.
|
|
///
|
|
/// \param StartAddr start address of the fused/unfused branch.
|
|
/// \param Size size of the fused/unfused branch.
|
|
/// \param BoundaryAlignment alignment requirement of the branch.
|
|
/// \returns true if the branch is against the boundary.
|
|
static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
|
|
Align BoundaryAlignment) {
|
|
uint64_t EndAddr = StartAddr + Size;
|
|
return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
|
|
}
|
|
|
|
/// Check if the branch needs padding.
|
|
///
|
|
/// \param StartAddr start address of the fused/unfused branch.
|
|
/// \param Size size of the fused/unfused branch.
|
|
/// \param BoundaryAlignment alignment requirement of the branch.
|
|
/// \returns true if the branch needs padding.
|
|
static bool needPadding(uint64_t StartAddr, uint64_t Size,
|
|
Align BoundaryAlignment) {
|
|
return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
|
|
isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
|
|
}
|
|
|
|
bool MCAssembler::relaxBoundaryAlign(MCAsmLayout &Layout,
|
|
MCBoundaryAlignFragment &BF) {
|
|
// BoundaryAlignFragment that doesn't need to align any fragment should not be
|
|
// relaxed.
|
|
if (!BF.getLastFragment())
|
|
return false;
|
|
|
|
uint64_t AlignedOffset = Layout.getFragmentOffset(&BF);
|
|
uint64_t AlignedSize = 0;
|
|
for (const MCFragment *F = BF.getLastFragment(); F != &BF;
|
|
F = F->getPrevNode())
|
|
AlignedSize += computeFragmentSize(Layout, *F);
|
|
|
|
Align BoundaryAlignment = BF.getAlignment();
|
|
uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
|
|
? offsetToAlignment(AlignedOffset, BoundaryAlignment)
|
|
: 0U;
|
|
if (NewSize == BF.getSize())
|
|
return false;
|
|
BF.setSize(NewSize);
|
|
Layout.invalidateFragmentsFrom(&BF);
|
|
return true;
|
|
}
|
|
|
|
bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
|
|
MCDwarfLineAddrFragment &DF) {
|
|
|
|
bool WasRelaxed;
|
|
if (getBackend().relaxDwarfLineAddr(DF, Layout, WasRelaxed))
|
|
return WasRelaxed;
|
|
|
|
MCContext &Context = Layout.getAssembler().getContext();
|
|
uint64_t OldSize = DF.getContents().size();
|
|
int64_t AddrDelta;
|
|
bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
|
|
assert(Abs && "We created a line delta with an invalid expression");
|
|
(void)Abs;
|
|
int64_t LineDelta;
|
|
LineDelta = DF.getLineDelta();
|
|
SmallVectorImpl<char> &Data = DF.getContents();
|
|
Data.clear();
|
|
raw_svector_ostream OSE(Data);
|
|
DF.getFixups().clear();
|
|
|
|
MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
|
|
AddrDelta, OSE);
|
|
return OldSize != Data.size();
|
|
}
|
|
|
|
bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
|
|
MCDwarfCallFrameFragment &DF) {
|
|
bool WasRelaxed;
|
|
if (getBackend().relaxDwarfCFA(DF, Layout, WasRelaxed))
|
|
return WasRelaxed;
|
|
|
|
MCContext &Context = Layout.getAssembler().getContext();
|
|
uint64_t OldSize = DF.getContents().size();
|
|
int64_t AddrDelta;
|
|
bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
|
|
assert(Abs && "We created call frame with an invalid expression");
|
|
(void) Abs;
|
|
SmallVectorImpl<char> &Data = DF.getContents();
|
|
Data.clear();
|
|
raw_svector_ostream OSE(Data);
|
|
DF.getFixups().clear();
|
|
|
|
MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
|
|
return OldSize != Data.size();
|
|
}
|
|
|
|
bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
|
|
MCCVInlineLineTableFragment &F) {
|
|
unsigned OldSize = F.getContents().size();
|
|
getContext().getCVContext().encodeInlineLineTable(Layout, F);
|
|
return OldSize != F.getContents().size();
|
|
}
|
|
|
|
bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
|
|
MCCVDefRangeFragment &F) {
|
|
unsigned OldSize = F.getContents().size();
|
|
getContext().getCVContext().encodeDefRange(Layout, F);
|
|
return OldSize != F.getContents().size();
|
|
}
|
|
|
|
bool MCAssembler::relaxPseudoProbeAddr(MCAsmLayout &Layout,
|
|
MCPseudoProbeAddrFragment &PF) {
|
|
uint64_t OldSize = PF.getContents().size();
|
|
int64_t AddrDelta;
|
|
bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
|
|
assert(Abs && "We created a pseudo probe with an invalid expression");
|
|
(void)Abs;
|
|
SmallVectorImpl<char> &Data = PF.getContents();
|
|
Data.clear();
|
|
raw_svector_ostream OSE(Data);
|
|
PF.getFixups().clear();
|
|
|
|
// AddrDelta is a signed integer
|
|
encodeSLEB128(AddrDelta, OSE, OldSize);
|
|
return OldSize != Data.size();
|
|
}
|
|
|
|
bool MCAssembler::relaxFragment(MCAsmLayout &Layout, MCFragment &F) {
|
|
switch(F.getKind()) {
|
|
default:
|
|
return false;
|
|
case MCFragment::FT_Relaxable:
|
|
assert(!getRelaxAll() &&
|
|
"Did not expect a MCRelaxableFragment in RelaxAll mode");
|
|
return relaxInstruction(Layout, cast<MCRelaxableFragment>(F));
|
|
case MCFragment::FT_Dwarf:
|
|
return relaxDwarfLineAddr(Layout, cast<MCDwarfLineAddrFragment>(F));
|
|
case MCFragment::FT_DwarfFrame:
|
|
return relaxDwarfCallFrameFragment(Layout,
|
|
cast<MCDwarfCallFrameFragment>(F));
|
|
case MCFragment::FT_LEB:
|
|
return relaxLEB(Layout, cast<MCLEBFragment>(F));
|
|
case MCFragment::FT_BoundaryAlign:
|
|
return relaxBoundaryAlign(Layout, cast<MCBoundaryAlignFragment>(F));
|
|
case MCFragment::FT_CVInlineLines:
|
|
return relaxCVInlineLineTable(Layout, cast<MCCVInlineLineTableFragment>(F));
|
|
case MCFragment::FT_CVDefRange:
|
|
return relaxCVDefRange(Layout, cast<MCCVDefRangeFragment>(F));
|
|
case MCFragment::FT_PseudoProbe:
|
|
return relaxPseudoProbeAddr(Layout, cast<MCPseudoProbeAddrFragment>(F));
|
|
}
|
|
}
|
|
|
|
bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
|
|
// Holds the first fragment which needed relaxing during this layout. It will
|
|
// remain NULL if none were relaxed.
|
|
// When a fragment is relaxed, all the fragments following it should get
|
|
// invalidated because their offset is going to change.
|
|
MCFragment *FirstRelaxedFragment = nullptr;
|
|
|
|
// Attempt to relax all the fragments in the section.
|
|
for (MCFragment &Frag : Sec) {
|
|
// Check if this is a fragment that needs relaxation.
|
|
bool RelaxedFrag = relaxFragment(Layout, Frag);
|
|
if (RelaxedFrag && !FirstRelaxedFragment)
|
|
FirstRelaxedFragment = &Frag;
|
|
}
|
|
if (FirstRelaxedFragment) {
|
|
Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
|
|
++stats::RelaxationSteps;
|
|
|
|
bool WasRelaxed = false;
|
|
for (MCSection &Sec : *this) {
|
|
while (layoutSectionOnce(Layout, Sec))
|
|
WasRelaxed = true;
|
|
}
|
|
|
|
return WasRelaxed;
|
|
}
|
|
|
|
void MCAssembler::finishLayout(MCAsmLayout &Layout) {
|
|
assert(getBackendPtr() && "Expected assembler backend");
|
|
// The layout is done. Mark every fragment as valid.
|
|
for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
|
|
MCSection &Section = *Layout.getSectionOrder()[i];
|
|
Layout.getFragmentOffset(&*Section.getFragmentList().rbegin());
|
|
computeFragmentSize(Layout, *Section.getFragmentList().rbegin());
|
|
}
|
|
getBackend().finishLayout(*this, Layout);
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void MCAssembler::dump() const{
|
|
raw_ostream &OS = errs();
|
|
|
|
OS << "<MCAssembler\n";
|
|
OS << " Sections:[\n ";
|
|
for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
|
|
if (it != begin()) OS << ",\n ";
|
|
it->dump();
|
|
}
|
|
OS << "],\n";
|
|
OS << " Symbols:[";
|
|
|
|
for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
|
|
if (it != symbol_begin()) OS << ",\n ";
|
|
OS << "(";
|
|
it->dump();
|
|
OS << ", Index:" << it->getIndex() << ", ";
|
|
OS << ")";
|
|
}
|
|
OS << "]>\n";
|
|
}
|
|
#endif
|