forked from OSchip/llvm-project
433 lines
15 KiB
C++
433 lines
15 KiB
C++
//===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Common functionality for different debug information format backends.
|
|
// LLVM currently supports DWARF and CodeView.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/DebugHandlerBase.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/CodeGen/AsmPrinter.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "dwarfdebug"
|
|
|
|
/// If true, we drop variable location ranges which exist entirely outside the
|
|
/// variable's lexical scope instruction ranges.
|
|
static cl::opt<bool> TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true));
|
|
|
|
Optional<DbgVariableLocation>
|
|
DbgVariableLocation::extractFromMachineInstruction(
|
|
const MachineInstr &Instruction) {
|
|
DbgVariableLocation Location;
|
|
// Variables calculated from multiple locations can't be represented here.
|
|
if (Instruction.getNumDebugOperands() != 1)
|
|
return None;
|
|
if (!Instruction.getDebugOperand(0).isReg())
|
|
return None;
|
|
Location.Register = Instruction.getDebugOperand(0).getReg();
|
|
Location.FragmentInfo.reset();
|
|
// We only handle expressions generated by DIExpression::appendOffset,
|
|
// which doesn't require a full stack machine.
|
|
int64_t Offset = 0;
|
|
const DIExpression *DIExpr = Instruction.getDebugExpression();
|
|
auto Op = DIExpr->expr_op_begin();
|
|
// We can handle a DBG_VALUE_LIST iff it has exactly one location operand that
|
|
// appears exactly once at the start of the expression.
|
|
if (Instruction.isDebugValueList()) {
|
|
if (Instruction.getNumDebugOperands() == 1 &&
|
|
Op->getOp() == dwarf::DW_OP_LLVM_arg)
|
|
++Op;
|
|
else
|
|
return None;
|
|
}
|
|
while (Op != DIExpr->expr_op_end()) {
|
|
switch (Op->getOp()) {
|
|
case dwarf::DW_OP_constu: {
|
|
int Value = Op->getArg(0);
|
|
++Op;
|
|
if (Op != DIExpr->expr_op_end()) {
|
|
switch (Op->getOp()) {
|
|
case dwarf::DW_OP_minus:
|
|
Offset -= Value;
|
|
break;
|
|
case dwarf::DW_OP_plus:
|
|
Offset += Value;
|
|
break;
|
|
default:
|
|
continue;
|
|
}
|
|
}
|
|
} break;
|
|
case dwarf::DW_OP_plus_uconst:
|
|
Offset += Op->getArg(0);
|
|
break;
|
|
case dwarf::DW_OP_LLVM_fragment:
|
|
Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)};
|
|
break;
|
|
case dwarf::DW_OP_deref:
|
|
Location.LoadChain.push_back(Offset);
|
|
Offset = 0;
|
|
break;
|
|
default:
|
|
return None;
|
|
}
|
|
++Op;
|
|
}
|
|
|
|
// Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE
|
|
// instruction.
|
|
// FIXME: Replace these with DIExpression.
|
|
if (Instruction.isIndirectDebugValue())
|
|
Location.LoadChain.push_back(Offset);
|
|
|
|
return Location;
|
|
}
|
|
|
|
DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
|
|
|
|
void DebugHandlerBase::beginModule(Module *M) {
|
|
if (M->debug_compile_units().empty())
|
|
Asm = nullptr;
|
|
}
|
|
|
|
// Each LexicalScope has first instruction and last instruction to mark
|
|
// beginning and end of a scope respectively. Create an inverse map that list
|
|
// scopes starts (and ends) with an instruction. One instruction may start (or
|
|
// end) multiple scopes. Ignore scopes that are not reachable.
|
|
void DebugHandlerBase::identifyScopeMarkers() {
|
|
SmallVector<LexicalScope *, 4> WorkList;
|
|
WorkList.push_back(LScopes.getCurrentFunctionScope());
|
|
while (!WorkList.empty()) {
|
|
LexicalScope *S = WorkList.pop_back_val();
|
|
|
|
const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
|
|
if (!Children.empty())
|
|
WorkList.append(Children.begin(), Children.end());
|
|
|
|
if (S->isAbstractScope())
|
|
continue;
|
|
|
|
for (const InsnRange &R : S->getRanges()) {
|
|
assert(R.first && "InsnRange does not have first instruction!");
|
|
assert(R.second && "InsnRange does not have second instruction!");
|
|
requestLabelBeforeInsn(R.first);
|
|
requestLabelAfterInsn(R.second);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return Label preceding the instruction.
|
|
MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) {
|
|
MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
|
|
assert(Label && "Didn't insert label before instruction");
|
|
return Label;
|
|
}
|
|
|
|
// Return Label immediately following the instruction.
|
|
MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) {
|
|
return LabelsAfterInsn.lookup(MI);
|
|
}
|
|
|
|
/// If this type is derived from a base type then return base type size.
|
|
uint64_t DebugHandlerBase::getBaseTypeSize(const DIType *Ty) {
|
|
assert(Ty);
|
|
const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty);
|
|
if (!DDTy)
|
|
return Ty->getSizeInBits();
|
|
|
|
unsigned Tag = DDTy->getTag();
|
|
|
|
if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef &&
|
|
Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type &&
|
|
Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type &&
|
|
Tag != dwarf::DW_TAG_immutable_type)
|
|
return DDTy->getSizeInBits();
|
|
|
|
DIType *BaseType = DDTy->getBaseType();
|
|
|
|
if (!BaseType)
|
|
return 0;
|
|
|
|
// If this is a derived type, go ahead and get the base type, unless it's a
|
|
// reference then it's just the size of the field. Pointer types have no need
|
|
// of this since they're a different type of qualification on the type.
|
|
if (BaseType->getTag() == dwarf::DW_TAG_reference_type ||
|
|
BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type)
|
|
return Ty->getSizeInBits();
|
|
|
|
return getBaseTypeSize(BaseType);
|
|
}
|
|
|
|
bool DebugHandlerBase::isUnsignedDIType(const DIType *Ty) {
|
|
if (isa<DIStringType>(Ty)) {
|
|
// Some transformations (e.g. instcombine) may decide to turn a Fortran
|
|
// character object into an integer, and later ones (e.g. SROA) may
|
|
// further inject a constant integer in a llvm.dbg.value call to track
|
|
// the object's value. Here we trust the transformations are doing the
|
|
// right thing, and treat the constant as unsigned to preserve that value
|
|
// (i.e. avoid sign extension).
|
|
return true;
|
|
}
|
|
|
|
if (auto *CTy = dyn_cast<DICompositeType>(Ty)) {
|
|
if (CTy->getTag() == dwarf::DW_TAG_enumeration_type) {
|
|
if (!(Ty = CTy->getBaseType()))
|
|
// FIXME: Enums without a fixed underlying type have unknown signedness
|
|
// here, leading to incorrectly emitted constants.
|
|
return false;
|
|
} else
|
|
// (Pieces of) aggregate types that get hacked apart by SROA may be
|
|
// represented by a constant. Encode them as unsigned bytes.
|
|
return true;
|
|
}
|
|
|
|
if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
|
|
dwarf::Tag T = (dwarf::Tag)Ty->getTag();
|
|
// Encode pointer constants as unsigned bytes. This is used at least for
|
|
// null pointer constant emission.
|
|
// FIXME: reference and rvalue_reference /probably/ shouldn't be allowed
|
|
// here, but accept them for now due to a bug in SROA producing bogus
|
|
// dbg.values.
|
|
if (T == dwarf::DW_TAG_pointer_type ||
|
|
T == dwarf::DW_TAG_ptr_to_member_type ||
|
|
T == dwarf::DW_TAG_reference_type ||
|
|
T == dwarf::DW_TAG_rvalue_reference_type)
|
|
return true;
|
|
assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type ||
|
|
T == dwarf::DW_TAG_volatile_type ||
|
|
T == dwarf::DW_TAG_restrict_type || T == dwarf::DW_TAG_atomic_type ||
|
|
T == dwarf::DW_TAG_immutable_type);
|
|
assert(DTy->getBaseType() && "Expected valid base type");
|
|
return isUnsignedDIType(DTy->getBaseType());
|
|
}
|
|
|
|
auto *BTy = cast<DIBasicType>(Ty);
|
|
unsigned Encoding = BTy->getEncoding();
|
|
assert((Encoding == dwarf::DW_ATE_unsigned ||
|
|
Encoding == dwarf::DW_ATE_unsigned_char ||
|
|
Encoding == dwarf::DW_ATE_signed ||
|
|
Encoding == dwarf::DW_ATE_signed_char ||
|
|
Encoding == dwarf::DW_ATE_float || Encoding == dwarf::DW_ATE_UTF ||
|
|
Encoding == dwarf::DW_ATE_boolean ||
|
|
(Ty->getTag() == dwarf::DW_TAG_unspecified_type &&
|
|
Ty->getName() == "decltype(nullptr)")) &&
|
|
"Unsupported encoding");
|
|
return Encoding == dwarf::DW_ATE_unsigned ||
|
|
Encoding == dwarf::DW_ATE_unsigned_char ||
|
|
Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean ||
|
|
Ty->getTag() == dwarf::DW_TAG_unspecified_type;
|
|
}
|
|
|
|
static bool hasDebugInfo(const MachineModuleInfo *MMI,
|
|
const MachineFunction *MF) {
|
|
if (!MMI->hasDebugInfo())
|
|
return false;
|
|
auto *SP = MF->getFunction().getSubprogram();
|
|
if (!SP)
|
|
return false;
|
|
assert(SP->getUnit());
|
|
auto EK = SP->getUnit()->getEmissionKind();
|
|
if (EK == DICompileUnit::NoDebug)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void DebugHandlerBase::beginFunction(const MachineFunction *MF) {
|
|
PrevInstBB = nullptr;
|
|
|
|
if (!Asm || !hasDebugInfo(MMI, MF)) {
|
|
skippedNonDebugFunction();
|
|
return;
|
|
}
|
|
|
|
// Grab the lexical scopes for the function, if we don't have any of those
|
|
// then we're not going to be able to do anything.
|
|
LScopes.initialize(*MF);
|
|
if (LScopes.empty()) {
|
|
beginFunctionImpl(MF);
|
|
return;
|
|
}
|
|
|
|
// Make sure that each lexical scope will have a begin/end label.
|
|
identifyScopeMarkers();
|
|
|
|
// Calculate history for local variables.
|
|
assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
|
|
assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!");
|
|
calculateDbgEntityHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(),
|
|
DbgValues, DbgLabels);
|
|
InstOrdering.initialize(*MF);
|
|
if (TrimVarLocs)
|
|
DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering);
|
|
LLVM_DEBUG(DbgValues.dump());
|
|
|
|
// Request labels for the full history.
|
|
for (const auto &I : DbgValues) {
|
|
const auto &Entries = I.second;
|
|
if (Entries.empty())
|
|
continue;
|
|
|
|
auto IsDescribedByReg = [](const MachineInstr *MI) {
|
|
return any_of(MI->debug_operands(),
|
|
[](auto &MO) { return MO.isReg() && MO.getReg(); });
|
|
};
|
|
|
|
// The first mention of a function argument gets the CurrentFnBegin label,
|
|
// so arguments are visible when breaking at function entry.
|
|
//
|
|
// We do not change the label for values that are described by registers,
|
|
// as that could place them above their defining instructions. We should
|
|
// ideally not change the labels for constant debug values either, since
|
|
// doing that violates the ranges that are calculated in the history map.
|
|
// However, we currently do not emit debug values for constant arguments
|
|
// directly at the start of the function, so this code is still useful.
|
|
const DILocalVariable *DIVar =
|
|
Entries.front().getInstr()->getDebugVariable();
|
|
if (DIVar->isParameter() &&
|
|
getDISubprogram(DIVar->getScope())->describes(&MF->getFunction())) {
|
|
if (!IsDescribedByReg(Entries.front().getInstr()))
|
|
LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin();
|
|
if (Entries.front().getInstr()->getDebugExpression()->isFragment()) {
|
|
// Mark all non-overlapping initial fragments.
|
|
for (auto I = Entries.begin(); I != Entries.end(); ++I) {
|
|
if (!I->isDbgValue())
|
|
continue;
|
|
const DIExpression *Fragment = I->getInstr()->getDebugExpression();
|
|
if (std::any_of(Entries.begin(), I,
|
|
[&](DbgValueHistoryMap::Entry Pred) {
|
|
return Pred.isDbgValue() &&
|
|
Fragment->fragmentsOverlap(
|
|
Pred.getInstr()->getDebugExpression());
|
|
}))
|
|
break;
|
|
// The code that generates location lists for DWARF assumes that the
|
|
// entries' start labels are monotonically increasing, and since we
|
|
// don't change the label for fragments that are described by
|
|
// registers, we must bail out when encountering such a fragment.
|
|
if (IsDescribedByReg(I->getInstr()))
|
|
break;
|
|
LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin();
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const auto &Entry : Entries) {
|
|
if (Entry.isDbgValue())
|
|
requestLabelBeforeInsn(Entry.getInstr());
|
|
else
|
|
requestLabelAfterInsn(Entry.getInstr());
|
|
}
|
|
}
|
|
|
|
// Ensure there is a symbol before DBG_LABEL.
|
|
for (const auto &I : DbgLabels) {
|
|
const MachineInstr *MI = I.second;
|
|
requestLabelBeforeInsn(MI);
|
|
}
|
|
|
|
PrevInstLoc = DebugLoc();
|
|
PrevLabel = Asm->getFunctionBegin();
|
|
beginFunctionImpl(MF);
|
|
}
|
|
|
|
void DebugHandlerBase::beginInstruction(const MachineInstr *MI) {
|
|
if (!Asm || !MMI->hasDebugInfo())
|
|
return;
|
|
|
|
assert(CurMI == nullptr);
|
|
CurMI = MI;
|
|
|
|
// Insert labels where requested.
|
|
DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
|
|
LabelsBeforeInsn.find(MI);
|
|
|
|
// No label needed.
|
|
if (I == LabelsBeforeInsn.end())
|
|
return;
|
|
|
|
// Label already assigned.
|
|
if (I->second)
|
|
return;
|
|
|
|
if (!PrevLabel) {
|
|
PrevLabel = MMI->getContext().createTempSymbol();
|
|
Asm->OutStreamer->emitLabel(PrevLabel);
|
|
}
|
|
I->second = PrevLabel;
|
|
}
|
|
|
|
void DebugHandlerBase::endInstruction() {
|
|
if (!Asm || !MMI->hasDebugInfo())
|
|
return;
|
|
|
|
assert(CurMI != nullptr);
|
|
// Don't create a new label after DBG_VALUE and other instructions that don't
|
|
// generate code.
|
|
if (!CurMI->isMetaInstruction()) {
|
|
PrevLabel = nullptr;
|
|
PrevInstBB = CurMI->getParent();
|
|
}
|
|
|
|
DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
|
|
LabelsAfterInsn.find(CurMI);
|
|
|
|
// No label needed or label already assigned.
|
|
if (I == LabelsAfterInsn.end() || I->second) {
|
|
CurMI = nullptr;
|
|
return;
|
|
}
|
|
|
|
// We need a label after this instruction. With basic block sections, just
|
|
// use the end symbol of the section if this is the last instruction of the
|
|
// section. This reduces the need for an additional label and also helps
|
|
// merging ranges.
|
|
if (CurMI->getParent()->isEndSection() && CurMI->getNextNode() == nullptr) {
|
|
PrevLabel = CurMI->getParent()->getEndSymbol();
|
|
} else if (!PrevLabel) {
|
|
PrevLabel = MMI->getContext().createTempSymbol();
|
|
Asm->OutStreamer->emitLabel(PrevLabel);
|
|
}
|
|
I->second = PrevLabel;
|
|
CurMI = nullptr;
|
|
}
|
|
|
|
void DebugHandlerBase::endFunction(const MachineFunction *MF) {
|
|
if (Asm && hasDebugInfo(MMI, MF))
|
|
endFunctionImpl(MF);
|
|
DbgValues.clear();
|
|
DbgLabels.clear();
|
|
LabelsBeforeInsn.clear();
|
|
LabelsAfterInsn.clear();
|
|
InstOrdering.clear();
|
|
}
|
|
|
|
void DebugHandlerBase::beginBasicBlock(const MachineBasicBlock &MBB) {
|
|
if (!MBB.isBeginSection())
|
|
return;
|
|
|
|
PrevLabel = MBB.getSymbol();
|
|
}
|
|
|
|
void DebugHandlerBase::endBasicBlock(const MachineBasicBlock &MBB) {
|
|
if (!MBB.isEndSection())
|
|
return;
|
|
|
|
PrevLabel = nullptr;
|
|
}
|