llvm-project/clang/lib/CodeGen/CGBuiltin.cpp

487 lines
17 KiB
C++

//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Builtin calls as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Builtins.h"
#include "clang/AST/Expr.h"
#include "clang/AST/TargetBuiltins.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Intrinsics.h"
using namespace clang;
using namespace CodeGen;
using namespace llvm;
RValue CodeGenFunction::EmitBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
switch (BuiltinID) {
default: {
if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
return EmitCallExpr(CGM.getBuiltinLibFunction(BuiltinID),
E->getCallee()->getType(), E->arg_begin(),
E->getNumArgs());
// See if we have a target specific intrinsic.
Intrinsic::ID IntrinsicID;
const char *TargetPrefix = Target.getTargetPrefix();
const char *BuiltinName = getContext().BuiltinInfo.GetName(BuiltinID);
#define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
#include "llvm/Intrinsics.gen"
#undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
if (IntrinsicID != Intrinsic::not_intrinsic) {
SmallVector<Value*, 16> Args;
Function *F = CGM.getIntrinsic(IntrinsicID);
const llvm::FunctionType *FTy = F->getFunctionType();
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
Value *ArgValue = EmitScalarExpr(E->getArg(i));
// If the intrinsic arg type is different from the builtin arg type
// we need to do a bit cast.
const llvm::Type *PTy = FTy->getParamType(i);
if (PTy != ArgValue->getType()) {
assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
"Must be able to losslessly bit cast to param");
ArgValue = Builder.CreateBitCast(ArgValue, PTy);
}
Args.push_back(ArgValue);
}
Value *V = Builder.CreateCall(F, &Args[0], &Args[0] + Args.size());
QualType BuiltinRetType = E->getType();
const llvm::Type *RetTy = llvm::Type::VoidTy;
if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType);
if (RetTy != V->getType()) {
assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
"Must be able to losslessly bit cast result type");
V = Builder.CreateBitCast(V, RetTy);
}
return RValue::get(V);
}
// See if we have a target specific builtin that needs to be lowered.
Value *V = 0;
if (strcmp(TargetPrefix, "x86") == 0)
V = EmitX86BuiltinExpr(BuiltinID, E);
else if (strcmp(TargetPrefix, "ppc") == 0)
V = EmitPPCBuiltinExpr(BuiltinID, E);
if (V)
return RValue::get(V);
WarnUnsupported(E, "builtin function");
// Unknown builtin, for now just dump it out and return undef.
if (hasAggregateLLVMType(E->getType()))
return RValue::getAggregate(CreateTempAlloca(ConvertType(E->getType())));
return RValue::get(UndefValue::get(ConvertType(E->getType())));
}
case Builtin::BI__builtin___CFStringMakeConstantString: {
const Expr *Arg = E->getArg(0);
while (1) {
if (const ParenExpr *PE = dyn_cast<ParenExpr>(Arg))
Arg = PE->getSubExpr();
else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Arg))
Arg = CE->getSubExpr();
else
break;
}
const StringLiteral *Literal = cast<StringLiteral>(Arg);
std::string S(Literal->getStrData(), Literal->getByteLength());
return RValue::get(CGM.GetAddrOfConstantCFString(S));
}
case Builtin::BI__builtin_va_start:
case Builtin::BI__builtin_va_end: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
const llvm::Type *DestType =
llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
if (ArgValue->getType() != DestType)
ArgValue = Builder.CreateBitCast(ArgValue, DestType,
ArgValue->getNameStart());
Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_start) ?
Intrinsic::vastart : Intrinsic::vaend;
return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
}
case Builtin::BI__builtin_va_copy: {
// FIXME: This does not yet handle architectures where va_list is a struct.
Value *DstPtr = EmitScalarExpr(E->getArg(0));
Value *SrcValue = EmitScalarExpr(E->getArg(1));
Value *SrcPtr = CreateTempAlloca(SrcValue->getType(), "dst_ptr");
// FIXME: Volatile
Builder.CreateStore(SrcValue, SrcPtr, false);
const llvm::Type *Type =
llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
DstPtr = Builder.CreateBitCast(DstPtr, Type);
SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
Value *Args[] = { DstPtr, SrcPtr };
return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
&Args[0], &Args[2]));
}
case Builtin::BI__builtin_classify_type: {
APSInt Result(32);
if (!E->isBuiltinClassifyType(Result))
assert(0 && "Expr not __builtin_classify_type!");
return RValue::get(ConstantInt::get(Result));
}
case Builtin::BI__builtin_constant_p: {
APSInt Result(32);
// FIXME: Analyze the parameter and check if it is a constant.
Result = 0;
return RValue::get(ConstantInt::get(Result));
}
case Builtin::BI__builtin_abs: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::BinaryOperator *NegOp =
Builder.CreateNeg(ArgValue, (ArgValue->getName() + "neg").c_str());
Value *CmpResult =
Builder.CreateICmpSGE(ArgValue, NegOp->getOperand(0), "abscond");
Value *Result =
Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
return RValue::get(Result);
}
case Builtin::BI__builtin_ctz:
case Builtin::BI__builtin_ctzl:
case Builtin::BI__builtin_ctzll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1);
const llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, "cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_expect:
return RValue::get(EmitScalarExpr(E->getArg(0)));
case Builtin::BI__builtin_bswap32:
case Builtin::BI__builtin_bswap64: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::bswap, &ArgType, 1);
return RValue::get(Builder.CreateCall(F, ArgValue, "tmp"));
}
case Builtin::BI__builtin_inff: {
APFloat f(APFloat::IEEEsingle, APFloat::fcInfinity, false);
return RValue::get(ConstantFP::get(llvm::Type::FloatTy, f));
}
case Builtin::BI__builtin_huge_val:
case Builtin::BI__builtin_inf:
// FIXME: mapping long double onto double.
case Builtin::BI__builtin_infl: {
APFloat f(APFloat::IEEEdouble, APFloat::fcInfinity, false);
return RValue::get(ConstantFP::get(llvm::Type::DoubleTy, f));
}
case Builtin::BI__builtin_isgreater:
case Builtin::BI__builtin_isgreaterequal:
case Builtin::BI__builtin_isless:
case Builtin::BI__builtin_islessequal:
case Builtin::BI__builtin_islessgreater:
case Builtin::BI__builtin_isunordered: {
// Ordered comparisons: we know the arguments to these are matching scalar
// floating point values.
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
switch (BuiltinID) {
default: assert(0 && "Unknown ordered comparison");
case Builtin::BI__builtin_isgreater:
LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isgreaterequal:
LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isless:
LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_islessequal:
LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_islessgreater:
LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isunordered:
LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
break;
}
// ZExt bool to int type.
return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()),
"tmp"));
}
case Builtin::BI__builtin_alloca:
return RValue::get(Builder.CreateAlloca(llvm::Type::Int8Ty,
EmitScalarExpr(E->getArg(0)),
"tmp"));
}
return RValue::get(0);
}
Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
llvm::SmallVector<Value*, 4> Ops;
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
Ops.push_back(EmitScalarExpr(E->getArg(i)));
switch (BuiltinID) {
default: return 0;
case X86::BI__builtin_ia32_mulps:
return Builder.CreateMul(Ops[0], Ops[1], "mulps");
case X86::BI__builtin_ia32_pand:
return Builder.CreateAnd(Ops[0], Ops[1], "pand");
case X86::BI__builtin_ia32_por:
return Builder.CreateAnd(Ops[0], Ops[1], "por");
case X86::BI__builtin_ia32_pxor:
return Builder.CreateAnd(Ops[0], Ops[1], "pxor");
case X86::BI__builtin_ia32_pandn: {
Ops[0] = Builder.CreateNot(Ops[0], "tmp");
return Builder.CreateAnd(Ops[0], Ops[1], "pandn");
}
case X86::BI__builtin_ia32_paddb:
case X86::BI__builtin_ia32_paddd:
case X86::BI__builtin_ia32_paddq:
case X86::BI__builtin_ia32_paddw:
case X86::BI__builtin_ia32_addps:
return Builder.CreateAdd(Ops[0], Ops[1], "add");
case X86::BI__builtin_ia32_psubb:
case X86::BI__builtin_ia32_psubd:
case X86::BI__builtin_ia32_psubq:
case X86::BI__builtin_ia32_psubw:
case X86::BI__builtin_ia32_subps:
return Builder.CreateSub(Ops[0], Ops[1], "sub");
case X86::BI__builtin_ia32_divps:
return Builder.CreateFDiv(Ops[0], Ops[1], "divps");
case X86::BI__builtin_ia32_pmullw:
return Builder.CreateMul(Ops[0], Ops[1], "pmul");
case X86::BI__builtin_ia32_punpckhbw:
return EmitShuffleVector(Ops[0], Ops[1], 4, 12, 5, 13, 6, 14, 7, 15,
"punpckhbw");
case X86::BI__builtin_ia32_punpckhwd:
return EmitShuffleVector(Ops[0], Ops[1], 2, 6, 3, 7, "punpckhwd");
case X86::BI__builtin_ia32_punpckhdq:
return EmitShuffleVector(Ops[0], Ops[1], 1, 3, "punpckhdq");
case X86::BI__builtin_ia32_punpcklbw:
return EmitShuffleVector(Ops[0], Ops[1], 0, 8, 1, 9, 2, 10, 3, 11,
"punpcklbw");
case X86::BI__builtin_ia32_punpcklwd:
return EmitShuffleVector(Ops[0], Ops[1], 0, 4, 1, 5, "punpcklwd");
case X86::BI__builtin_ia32_punpckldq:
return EmitShuffleVector(Ops[0], Ops[1], 0, 2, "punpckldq");
case X86::BI__builtin_ia32_pslldi:
case X86::BI__builtin_ia32_psllqi:
case X86::BI__builtin_ia32_psllwi:
case X86::BI__builtin_ia32_psradi:
case X86::BI__builtin_ia32_psrawi:
case X86::BI__builtin_ia32_psrldi:
case X86::BI__builtin_ia32_psrlqi:
case X86::BI__builtin_ia32_psrlwi: {
Ops[1] = Builder.CreateZExt(Ops[1], llvm::Type::Int64Ty, "zext");
const llvm::Type *Ty = llvm::VectorType::get(llvm::Type::Int64Ty, 1);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty, "bitcast");
const char *name = 0;
Intrinsic::ID ID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
default: assert(0 && "Unsupported shift intrinsic!");
case X86::BI__builtin_ia32_pslldi:
name = "pslldi";
ID = Intrinsic::x86_mmx_psll_d;
break;
case X86::BI__builtin_ia32_psllqi:
name = "psllqi";
ID = Intrinsic::x86_mmx_psll_q;
break;
case X86::BI__builtin_ia32_psllwi:
name = "psllwi";
ID = Intrinsic::x86_mmx_psll_w;
break;
case X86::BI__builtin_ia32_psradi:
name = "psradi";
ID = Intrinsic::x86_mmx_psra_d;
break;
case X86::BI__builtin_ia32_psrawi:
name = "psrawi";
ID = Intrinsic::x86_mmx_psra_w;
break;
case X86::BI__builtin_ia32_psrldi:
name = "psrldi";
ID = Intrinsic::x86_mmx_psrl_d;
break;
case X86::BI__builtin_ia32_psrlqi:
name = "psrlqi";
ID = Intrinsic::x86_mmx_psrl_q;
break;
case X86::BI__builtin_ia32_psrlwi:
name = "psrlwi";
ID = Intrinsic::x86_mmx_psrl_w;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
}
case X86::BI__builtin_ia32_pshufd: {
unsigned i = cast<ConstantInt>(Ops[1])->getZExtValue();
return EmitShuffleVector(Ops[0], Ops[0],
i & 0x3, (i & 0xc) >> 2,
(i & 0x30) >> 4, (i & 0xc0) >> 6,
"pshufd");
}
case X86::BI__builtin_ia32_vec_init_v4hi:
case X86::BI__builtin_ia32_vec_init_v8qi:
case X86::BI__builtin_ia32_vec_init_v2si:
return EmitVector(&Ops[0], Ops.size());
case X86::BI__builtin_ia32_vec_ext_v2si:
return Builder.CreateExtractElement(Ops[0], Ops[1], "result");
case X86::BI__builtin_ia32_cmpordss:
case X86::BI__builtin_ia32_cmpunordss:
case X86::BI__builtin_ia32_cmpeqss:
case X86::BI__builtin_ia32_cmpltss:
case X86::BI__builtin_ia32_cmpless:
case X86::BI__builtin_ia32_cmpneqss:
case X86::BI__builtin_ia32_cmpnltss:
case X86::BI__builtin_ia32_cmpnless: {
unsigned i = 0;
const char *name = 0;
switch (BuiltinID) {
default: assert(0 && "Unknown compare builtin!");
case X86::BI__builtin_ia32_cmpeqss:
i = 0;
name = "cmpeqss";
break;
case X86::BI__builtin_ia32_cmpltss:
i = 1;
name = "cmpltss";
break;
case X86::BI__builtin_ia32_cmpless:
i = 2;
name = "cmpless";
break;
case X86::BI__builtin_ia32_cmpunordss:
i = 3;
name = "cmpunordss";
break;
case X86::BI__builtin_ia32_cmpneqss:
i = 4;
name = "cmpneqss";
break;
case X86::BI__builtin_ia32_cmpnltss:
i = 5;
name = "cmpntlss";
break;
case X86::BI__builtin_ia32_cmpnless:
i = 6;
name = "cmpnless";
break;
case X86::BI__builtin_ia32_cmpordss:
i = 7;
name = "cmpordss";
break;
}
Ops.push_back(llvm::ConstantInt::get(llvm::Type::Int8Ty, i));
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ss);
return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
}
case X86::BI__builtin_ia32_cmpordps:
case X86::BI__builtin_ia32_cmpunordps:
case X86::BI__builtin_ia32_cmpeqps:
case X86::BI__builtin_ia32_cmpltps:
case X86::BI__builtin_ia32_cmpleps:
case X86::BI__builtin_ia32_cmpneqps:
case X86::BI__builtin_ia32_cmpngtps:
case X86::BI__builtin_ia32_cmpnltps:
case X86::BI__builtin_ia32_cmpgtps:
case X86::BI__builtin_ia32_cmpgeps:
case X86::BI__builtin_ia32_cmpngeps:
case X86::BI__builtin_ia32_cmpnleps: {
unsigned i = 0;
const char *name = 0;
bool ShouldSwap = false;
switch (BuiltinID) {
default: assert(0 && "Unknown compare builtin!");
case X86::BI__builtin_ia32_cmpeqps: i = 0; name = "cmpeqps"; break;
case X86::BI__builtin_ia32_cmpltps: i = 1; name = "cmpltps"; break;
case X86::BI__builtin_ia32_cmpleps: i = 2; name = "cmpleps"; break;
case X86::BI__builtin_ia32_cmpunordps: i = 3; name = "cmpunordps"; break;
case X86::BI__builtin_ia32_cmpneqps: i = 4; name = "cmpneqps"; break;
case X86::BI__builtin_ia32_cmpnltps: i = 5; name = "cmpntlps"; break;
case X86::BI__builtin_ia32_cmpnleps: i = 6; name = "cmpnleps"; break;
case X86::BI__builtin_ia32_cmpordps: i = 7; name = "cmpordps"; break;
case X86::BI__builtin_ia32_cmpgtps:
ShouldSwap = true;
i = 1;
name = "cmpgtps";
break;
case X86::BI__builtin_ia32_cmpgeps:
i = 2;
name = "cmpgeps";
ShouldSwap = true;
break;
case X86::BI__builtin_ia32_cmpngtps:
i = 5;
name = "cmpngtps";
ShouldSwap = true;
break;
case X86::BI__builtin_ia32_cmpngeps:
i = 6;
name = "cmpngeps";
ShouldSwap = true;
break;
}
if (ShouldSwap)
std::swap(Ops[0], Ops[1]);
Ops.push_back(llvm::ConstantInt::get(llvm::Type::Int8Ty, i));
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ps);
return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
}
case X86::BI__builtin_ia32_movss:
return EmitShuffleVector(Ops[0], Ops[1], 4, 1, 2, 3, "movss");
case X86::BI__builtin_ia32_shufps:
unsigned i = cast<ConstantInt>(Ops[2])->getZExtValue();
return EmitShuffleVector(Ops[0], Ops[1],
i & 0x3, (i & 0xc) >> 2,
((i & 0x30) >> 4) + 4,
((i & 0x60) >> 6) + 4, "shufps");
}
}
Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
switch (BuiltinID) {
default: return 0;
}
}