llvm-project/clang/lib/AST/DeclCXX.cpp

2126 lines
84 KiB
C++

//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the C++ related Decl classes.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/IdentifierTable.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Decl Allocation/Deallocation Method Implementations
//===----------------------------------------------------------------------===//
void AccessSpecDecl::anchor() { }
AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(AccessSpecDecl));
return new (Mem) AccessSpecDecl(EmptyShell());
}
void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
ExternalASTSource *Source = C.getExternalSource();
assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
assert(Source && "getFromExternalSource with no external source");
for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
Impl.Decls.setLazy(false);
}
CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
: UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
HasMutableFields(false), HasOnlyCMembers(true),
HasInClassInitializer(false), HasUninitializedReferenceMember(false),
NeedOverloadResolutionForMoveConstructor(false),
NeedOverloadResolutionForMoveAssignment(false),
NeedOverloadResolutionForDestructor(false),
DefaultedMoveConstructorIsDeleted(false),
DefaultedMoveAssignmentIsDeleted(false),
DefaultedDestructorIsDeleted(false),
HasTrivialSpecialMembers(SMF_All),
DeclaredNonTrivialSpecialMembers(0),
HasIrrelevantDestructor(true),
HasConstexprNonCopyMoveConstructor(false),
DefaultedDefaultConstructorIsConstexpr(true),
HasConstexprDefaultConstructor(false),
HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
ImplicitCopyConstructorHasConstParam(true),
ImplicitCopyAssignmentHasConstParam(true),
HasDeclaredCopyConstructorWithConstParam(false),
HasDeclaredCopyAssignmentWithConstParam(false),
FailedImplicitMoveConstructor(false), FailedImplicitMoveAssignment(false),
IsLambda(false), NumBases(0), NumVBases(0), Bases(), VBases(),
Definition(D), FirstFriend() {
}
CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
return Bases.get(Definition->getASTContext().getExternalSource());
}
CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
return VBases.get(Definition->getASTContext().getExternalSource());
}
CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, CXXRecordDecl *PrevDecl)
: RecordDecl(K, TK, DC, StartLoc, IdLoc, Id, PrevDecl),
DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
TemplateOrInstantiation() { }
CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
CXXRecordDecl* PrevDecl,
bool DelayTypeCreation) {
CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, StartLoc, IdLoc,
Id, PrevDecl);
R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
// FIXME: DelayTypeCreation seems like such a hack
if (!DelayTypeCreation)
C.getTypeDeclType(R, PrevDecl);
return R;
}
CXXRecordDecl *CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
TypeSourceInfo *Info, SourceLocation Loc,
bool Dependent) {
CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TTK_Class, DC, Loc, Loc,
0, 0);
R->IsBeingDefined = true;
R->DefinitionData = new (C) struct LambdaDefinitionData(R, Info, Dependent);
R->MayHaveOutOfDateDef = false;
R->setImplicit(true);
C.getTypeDeclType(R, /*PrevDecl=*/0);
return R;
}
CXXRecordDecl *
CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXRecordDecl));
CXXRecordDecl *R = new (Mem) CXXRecordDecl(CXXRecord, TTK_Struct, 0,
SourceLocation(), SourceLocation(),
0, 0);
R->MayHaveOutOfDateDef = false;
return R;
}
void
CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
unsigned NumBases) {
ASTContext &C = getASTContext();
if (!data().Bases.isOffset() && data().NumBases > 0)
C.Deallocate(data().getBases());
if (NumBases) {
// C++ [dcl.init.aggr]p1:
// An aggregate is [...] a class with [...] no base classes [...].
data().Aggregate = false;
// C++ [class]p4:
// A POD-struct is an aggregate class...
data().PlainOldData = false;
}
// The set of seen virtual base types.
llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
// The virtual bases of this class.
SmallVector<const CXXBaseSpecifier *, 8> VBases;
data().Bases = new(C) CXXBaseSpecifier [NumBases];
data().NumBases = NumBases;
for (unsigned i = 0; i < NumBases; ++i) {
data().getBases()[i] = *Bases[i];
// Keep track of inherited vbases for this base class.
const CXXBaseSpecifier *Base = Bases[i];
QualType BaseType = Base->getType();
// Skip dependent types; we can't do any checking on them now.
if (BaseType->isDependentType())
continue;
CXXRecordDecl *BaseClassDecl
= cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
// A class with a non-empty base class is not empty.
// FIXME: Standard ref?
if (!BaseClassDecl->isEmpty()) {
if (!data().Empty) {
// C++0x [class]p7:
// A standard-layout class is a class that:
// [...]
// -- either has no non-static data members in the most derived
// class and at most one base class with non-static data members,
// or has no base classes with non-static data members, and
// If this is the second non-empty base, then neither of these two
// clauses can be true.
data().IsStandardLayout = false;
}
data().Empty = false;
data().HasNoNonEmptyBases = false;
}
// C++ [class.virtual]p1:
// A class that declares or inherits a virtual function is called a
// polymorphic class.
if (BaseClassDecl->isPolymorphic())
data().Polymorphic = true;
// C++0x [class]p7:
// A standard-layout class is a class that: [...]
// -- has no non-standard-layout base classes
if (!BaseClassDecl->isStandardLayout())
data().IsStandardLayout = false;
// Record if this base is the first non-literal field or base.
if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
data().HasNonLiteralTypeFieldsOrBases = true;
// Now go through all virtual bases of this base and add them.
for (CXXRecordDecl::base_class_iterator VBase =
BaseClassDecl->vbases_begin(),
E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
// Add this base if it's not already in the list.
if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType()))) {
VBases.push_back(VBase);
// C++11 [class.copy]p8:
// The implicitly-declared copy constructor for a class X will have
// the form 'X::X(const X&)' if each [...] virtual base class B of X
// has a copy constructor whose first parameter is of type
// 'const B&' or 'const volatile B&' [...]
if (CXXRecordDecl *VBaseDecl = VBase->getType()->getAsCXXRecordDecl())
if (!VBaseDecl->hasCopyConstructorWithConstParam())
data().ImplicitCopyConstructorHasConstParam = false;
}
}
if (Base->isVirtual()) {
// Add this base if it's not already in the list.
if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
VBases.push_back(Base);
// C++0x [meta.unary.prop] is_empty:
// T is a class type, but not a union type, with ... no virtual base
// classes
data().Empty = false;
// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
// A [default constructor, copy/move constructor, or copy/move assignment
// operator for a class X] is trivial [...] if:
// -- class X has [...] no virtual base classes
data().HasTrivialSpecialMembers &= SMF_Destructor;
// C++0x [class]p7:
// A standard-layout class is a class that: [...]
// -- has [...] no virtual base classes
data().IsStandardLayout = false;
// C++11 [dcl.constexpr]p4:
// In the definition of a constexpr constructor [...]
// -- the class shall not have any virtual base classes
data().DefaultedDefaultConstructorIsConstexpr = false;
} else {
// C++ [class.ctor]p5:
// A default constructor is trivial [...] if:
// -- all the direct base classes of its class have trivial default
// constructors.
if (!BaseClassDecl->hasTrivialDefaultConstructor())
data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
// C++0x [class.copy]p13:
// A copy/move constructor for class X is trivial if [...]
// [...]
// -- the constructor selected to copy/move each direct base class
// subobject is trivial, and
if (!BaseClassDecl->hasTrivialCopyConstructor())
data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
// If the base class doesn't have a simple move constructor, we'll eagerly
// declare it and perform overload resolution to determine which function
// it actually calls. If it does have a simple move constructor, this
// check is correct.
if (!BaseClassDecl->hasTrivialMoveConstructor())
data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
// C++0x [class.copy]p27:
// A copy/move assignment operator for class X is trivial if [...]
// [...]
// -- the assignment operator selected to copy/move each direct base
// class subobject is trivial, and
if (!BaseClassDecl->hasTrivialCopyAssignment())
data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
// If the base class doesn't have a simple move assignment, we'll eagerly
// declare it and perform overload resolution to determine which function
// it actually calls. If it does have a simple move assignment, this
// check is correct.
if (!BaseClassDecl->hasTrivialMoveAssignment())
data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
// C++11 [class.ctor]p6:
// If that user-written default constructor would satisfy the
// requirements of a constexpr constructor, the implicitly-defined
// default constructor is constexpr.
if (!BaseClassDecl->hasConstexprDefaultConstructor())
data().DefaultedDefaultConstructorIsConstexpr = false;
}
// C++ [class.ctor]p3:
// A destructor is trivial if all the direct base classes of its class
// have trivial destructors.
if (!BaseClassDecl->hasTrivialDestructor())
data().HasTrivialSpecialMembers &= ~SMF_Destructor;
if (!BaseClassDecl->hasIrrelevantDestructor())
data().HasIrrelevantDestructor = false;
// C++11 [class.copy]p18:
// The implicitly-declared copy assignment oeprator for a class X will
// have the form 'X& X::operator=(const X&)' if each direct base class B
// of X has a copy assignment operator whose parameter is of type 'const
// B&', 'const volatile B&', or 'B' [...]
if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
data().ImplicitCopyAssignmentHasConstParam = false;
// C++11 [class.copy]p8:
// The implicitly-declared copy constructor for a class X will have
// the form 'X::X(const X&)' if each direct [...] base class B of X
// has a copy constructor whose first parameter is of type
// 'const B&' or 'const volatile B&' [...]
if (!BaseClassDecl->hasCopyConstructorWithConstParam())
data().ImplicitCopyConstructorHasConstParam = false;
// A class has an Objective-C object member if... or any of its bases
// has an Objective-C object member.
if (BaseClassDecl->hasObjectMember())
setHasObjectMember(true);
if (BaseClassDecl->hasVolatileMember())
setHasVolatileMember(true);
// Keep track of the presence of mutable fields.
if (BaseClassDecl->hasMutableFields())
data().HasMutableFields = true;
if (BaseClassDecl->hasUninitializedReferenceMember())
data().HasUninitializedReferenceMember = true;
addedClassSubobject(BaseClassDecl);
}
if (VBases.empty())
return;
// Create base specifier for any direct or indirect virtual bases.
data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
data().NumVBases = VBases.size();
for (int I = 0, E = VBases.size(); I != E; ++I) {
QualType Type = VBases[I]->getType();
if (!Type->isDependentType())
addedClassSubobject(Type->getAsCXXRecordDecl());
data().getVBases()[I] = *VBases[I];
}
}
void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
// C++11 [class.copy]p11:
// A defaulted copy/move constructor for a class X is defined as
// deleted if X has:
// -- a direct or virtual base class B that cannot be copied/moved [...]
// -- a non-static data member of class type M (or array thereof)
// that cannot be copied or moved [...]
if (!Subobj->hasSimpleMoveConstructor())
data().NeedOverloadResolutionForMoveConstructor = true;
// C++11 [class.copy]p23:
// A defaulted copy/move assignment operator for a class X is defined as
// deleted if X has:
// -- a direct or virtual base class B that cannot be copied/moved [...]
// -- a non-static data member of class type M (or array thereof)
// that cannot be copied or moved [...]
if (!Subobj->hasSimpleMoveAssignment())
data().NeedOverloadResolutionForMoveAssignment = true;
// C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
// A defaulted [ctor or dtor] for a class X is defined as
// deleted if X has:
// -- any direct or virtual base class [...] has a type with a destructor
// that is deleted or inaccessible from the defaulted [ctor or dtor].
// -- any non-static data member has a type with a destructor
// that is deleted or inaccessible from the defaulted [ctor or dtor].
if (!Subobj->hasSimpleDestructor()) {
data().NeedOverloadResolutionForMoveConstructor = true;
data().NeedOverloadResolutionForDestructor = true;
}
}
/// Callback function for CXXRecordDecl::forallBases that acknowledges
/// that it saw a base class.
static bool SawBase(const CXXRecordDecl *, void *) {
return true;
}
bool CXXRecordDecl::hasAnyDependentBases() const {
if (!isDependentContext())
return false;
return !forallBases(SawBase, 0);
}
bool CXXRecordDecl::isTriviallyCopyable() const {
// C++0x [class]p5:
// A trivially copyable class is a class that:
// -- has no non-trivial copy constructors,
if (hasNonTrivialCopyConstructor()) return false;
// -- has no non-trivial move constructors,
if (hasNonTrivialMoveConstructor()) return false;
// -- has no non-trivial copy assignment operators,
if (hasNonTrivialCopyAssignment()) return false;
// -- has no non-trivial move assignment operators, and
if (hasNonTrivialMoveAssignment()) return false;
// -- has a trivial destructor.
if (!hasTrivialDestructor()) return false;
return true;
}
void CXXRecordDecl::markedVirtualFunctionPure() {
// C++ [class.abstract]p2:
// A class is abstract if it has at least one pure virtual function.
data().Abstract = true;
}
void CXXRecordDecl::addedMember(Decl *D) {
if (!D->isImplicit() &&
!isa<FieldDecl>(D) &&
!isa<IndirectFieldDecl>(D) &&
(!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
cast<TagDecl>(D)->getTagKind() == TTK_Interface))
data().HasOnlyCMembers = false;
// Ignore friends and invalid declarations.
if (D->getFriendObjectKind() || D->isInvalidDecl())
return;
FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
if (FunTmpl)
D = FunTmpl->getTemplatedDecl();
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
if (Method->isVirtual()) {
// C++ [dcl.init.aggr]p1:
// An aggregate is an array or a class with [...] no virtual functions.
data().Aggregate = false;
// C++ [class]p4:
// A POD-struct is an aggregate class...
data().PlainOldData = false;
// Virtual functions make the class non-empty.
// FIXME: Standard ref?
data().Empty = false;
// C++ [class.virtual]p1:
// A class that declares or inherits a virtual function is called a
// polymorphic class.
data().Polymorphic = true;
// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
// A [default constructor, copy/move constructor, or copy/move
// assignment operator for a class X] is trivial [...] if:
// -- class X has no virtual functions [...]
data().HasTrivialSpecialMembers &= SMF_Destructor;
// C++0x [class]p7:
// A standard-layout class is a class that: [...]
// -- has no virtual functions
data().IsStandardLayout = false;
}
}
// Notify the listener if an implicit member was added after the definition
// was completed.
if (!isBeingDefined() && D->isImplicit())
if (ASTMutationListener *L = getASTMutationListener())
L->AddedCXXImplicitMember(data().Definition, D);
// The kind of special member this declaration is, if any.
unsigned SMKind = 0;
// Handle constructors.
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
if (!Constructor->isImplicit()) {
// Note that we have a user-declared constructor.
data().UserDeclaredConstructor = true;
// C++ [class]p4:
// A POD-struct is an aggregate class [...]
// Since the POD bit is meant to be C++03 POD-ness, clear it even if the
// type is technically an aggregate in C++0x since it wouldn't be in 03.
data().PlainOldData = false;
}
// Technically, "user-provided" is only defined for special member
// functions, but the intent of the standard is clearly that it should apply
// to all functions.
bool UserProvided = Constructor->isUserProvided();
if (Constructor->isDefaultConstructor()) {
SMKind |= SMF_DefaultConstructor;
if (UserProvided)
data().UserProvidedDefaultConstructor = true;
if (Constructor->isConstexpr())
data().HasConstexprDefaultConstructor = true;
}
if (!FunTmpl) {
unsigned Quals;
if (Constructor->isCopyConstructor(Quals)) {
SMKind |= SMF_CopyConstructor;
if (Quals & Qualifiers::Const)
data().HasDeclaredCopyConstructorWithConstParam = true;
} else if (Constructor->isMoveConstructor())
SMKind |= SMF_MoveConstructor;
}
// Record if we see any constexpr constructors which are neither copy
// nor move constructors.
if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
data().HasConstexprNonCopyMoveConstructor = true;
// C++ [dcl.init.aggr]p1:
// An aggregate is an array or a class with no user-declared
// constructors [...].
// C++11 [dcl.init.aggr]p1:
// An aggregate is an array or a class with no user-provided
// constructors [...].
if (getASTContext().getLangOpts().CPlusPlus11
? UserProvided : !Constructor->isImplicit())
data().Aggregate = false;
}
// Handle destructors.
if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
SMKind |= SMF_Destructor;
if (!DD->isImplicit())
data().HasIrrelevantDestructor = false;
// C++11 [class.dtor]p5:
// A destructor is trivial if [...] the destructor is not virtual.
if (DD->isVirtual())
data().HasTrivialSpecialMembers &= ~SMF_Destructor;
}
// Handle member functions.
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
if (Method->isCopyAssignmentOperator()) {
SMKind |= SMF_CopyAssignment;
const ReferenceType *ParamTy =
Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
data().HasDeclaredCopyAssignmentWithConstParam = true;
}
if (Method->isMoveAssignmentOperator())
SMKind |= SMF_MoveAssignment;
// Keep the list of conversion functions up-to-date.
if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
// FIXME: We use the 'unsafe' accessor for the access specifier here,
// because Sema may not have set it yet. That's really just a misdesign
// in Sema. However, LLDB *will* have set the access specifier correctly,
// and adds declarations after the class is technically completed,
// so completeDefinition()'s overriding of the access specifiers doesn't
// work.
AccessSpecifier AS = Conversion->getAccessUnsafe();
if (Conversion->getPrimaryTemplate()) {
// We don't record specializations.
} else {
ASTContext &Ctx = getASTContext();
ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
NamedDecl *Primary =
FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
if (Primary->getPreviousDecl())
Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
Primary, AS);
else
Conversions.addDecl(Ctx, Primary, AS);
}
}
if (SMKind) {
// If this is the first declaration of a special member, we no longer have
// an implicit trivial special member.
data().HasTrivialSpecialMembers &=
data().DeclaredSpecialMembers | ~SMKind;
if (!Method->isImplicit() && !Method->isUserProvided()) {
// This method is user-declared but not user-provided. We can't work out
// whether it's trivial yet (not until we get to the end of the class).
// We'll handle this method in finishedDefaultedOrDeletedMember.
} else if (Method->isTrivial())
data().HasTrivialSpecialMembers |= SMKind;
else
data().DeclaredNonTrivialSpecialMembers |= SMKind;
// Note when we have declared a declared special member, and suppress the
// implicit declaration of this special member.
data().DeclaredSpecialMembers |= SMKind;
if (!Method->isImplicit()) {
data().UserDeclaredSpecialMembers |= SMKind;
// C++03 [class]p4:
// A POD-struct is an aggregate class that has [...] no user-defined
// copy assignment operator and no user-defined destructor.
//
// Since the POD bit is meant to be C++03 POD-ness, and in C++03,
// aggregates could not have any constructors, clear it even for an
// explicitly defaulted or deleted constructor.
// type is technically an aggregate in C++0x since it wouldn't be in 03.
//
// Also, a user-declared move assignment operator makes a class non-POD.
// This is an extension in C++03.
data().PlainOldData = false;
}
}
return;
}
// Handle non-static data members.
if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
// C++ [class.bit]p2:
// A declaration for a bit-field that omits the identifier declares an
// unnamed bit-field. Unnamed bit-fields are not members and cannot be
// initialized.
if (Field->isUnnamedBitfield())
return;
// C++ [dcl.init.aggr]p1:
// An aggregate is an array or a class (clause 9) with [...] no
// private or protected non-static data members (clause 11).
//
// A POD must be an aggregate.
if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
data().Aggregate = false;
data().PlainOldData = false;
}
// C++0x [class]p7:
// A standard-layout class is a class that:
// [...]
// -- has the same access control for all non-static data members,
switch (D->getAccess()) {
case AS_private: data().HasPrivateFields = true; break;
case AS_protected: data().HasProtectedFields = true; break;
case AS_public: data().HasPublicFields = true; break;
case AS_none: llvm_unreachable("Invalid access specifier");
};
if ((data().HasPrivateFields + data().HasProtectedFields +
data().HasPublicFields) > 1)
data().IsStandardLayout = false;
// Keep track of the presence of mutable fields.
if (Field->isMutable())
data().HasMutableFields = true;
// C++0x [class]p9:
// A POD struct is a class that is both a trivial class and a
// standard-layout class, and has no non-static data members of type
// non-POD struct, non-POD union (or array of such types).
//
// Automatic Reference Counting: the presence of a member of Objective-C pointer type
// that does not explicitly have no lifetime makes the class a non-POD.
// However, we delay setting PlainOldData to false in this case so that
// Sema has a chance to diagnostic causes where the same class will be
// non-POD with Automatic Reference Counting but a POD without ARC.
// In this case, the class will become a non-POD class when we complete
// the definition.
ASTContext &Context = getASTContext();
QualType T = Context.getBaseElementType(Field->getType());
if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
if (!Context.getLangOpts().ObjCAutoRefCount ||
T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone)
setHasObjectMember(true);
} else if (!T.isCXX98PODType(Context))
data().PlainOldData = false;
if (T->isReferenceType()) {
if (!Field->hasInClassInitializer())
data().HasUninitializedReferenceMember = true;
// C++0x [class]p7:
// A standard-layout class is a class that:
// -- has no non-static data members of type [...] reference,
data().IsStandardLayout = false;
}
// Record if this field is the first non-literal or volatile field or base.
if (!T->isLiteralType(Context) || T.isVolatileQualified())
data().HasNonLiteralTypeFieldsOrBases = true;
if (Field->hasInClassInitializer()) {
data().HasInClassInitializer = true;
// C++11 [class]p5:
// A default constructor is trivial if [...] no non-static data member
// of its class has a brace-or-equal-initializer.
data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
// C++11 [dcl.init.aggr]p1:
// An aggregate is a [...] class with [...] no
// brace-or-equal-initializers for non-static data members.
//
// This rule was removed in C++1y.
if (!getASTContext().getLangOpts().CPlusPlus1y)
data().Aggregate = false;
// C++11 [class]p10:
// A POD struct is [...] a trivial class.
data().PlainOldData = false;
}
// C++11 [class.copy]p23:
// A defaulted copy/move assignment operator for a class X is defined
// as deleted if X has:
// -- a non-static data member of reference type
if (T->isReferenceType())
data().DefaultedMoveAssignmentIsDeleted = true;
if (const RecordType *RecordTy = T->getAs<RecordType>()) {
CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
if (FieldRec->getDefinition()) {
addedClassSubobject(FieldRec);
// C++11 [class.ctor]p5, C++11 [class.copy]p11:
// A defaulted [special member] for a class X is defined as
// deleted if:
// -- X is a union-like class that has a variant member with a
// non-trivial [corresponding special member]
if (isUnion()) {
if (FieldRec->hasNonTrivialMoveConstructor())
data().DefaultedMoveConstructorIsDeleted = true;
if (FieldRec->hasNonTrivialMoveAssignment())
data().DefaultedMoveAssignmentIsDeleted = true;
if (FieldRec->hasNonTrivialDestructor())
data().DefaultedDestructorIsDeleted = true;
}
// C++0x [class.ctor]p5:
// A default constructor is trivial [...] if:
// -- for all the non-static data members of its class that are of
// class type (or array thereof), each such class has a trivial
// default constructor.
if (!FieldRec->hasTrivialDefaultConstructor())
data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
// C++0x [class.copy]p13:
// A copy/move constructor for class X is trivial if [...]
// [...]
// -- for each non-static data member of X that is of class type (or
// an array thereof), the constructor selected to copy/move that
// member is trivial;
if (!FieldRec->hasTrivialCopyConstructor())
data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
// If the field doesn't have a simple move constructor, we'll eagerly
// declare the move constructor for this class and we'll decide whether
// it's trivial then.
if (!FieldRec->hasTrivialMoveConstructor())
data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
// C++0x [class.copy]p27:
// A copy/move assignment operator for class X is trivial if [...]
// [...]
// -- for each non-static data member of X that is of class type (or
// an array thereof), the assignment operator selected to
// copy/move that member is trivial;
if (!FieldRec->hasTrivialCopyAssignment())
data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
// If the field doesn't have a simple move assignment, we'll eagerly
// declare the move assignment for this class and we'll decide whether
// it's trivial then.
if (!FieldRec->hasTrivialMoveAssignment())
data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
if (!FieldRec->hasTrivialDestructor())
data().HasTrivialSpecialMembers &= ~SMF_Destructor;
if (!FieldRec->hasIrrelevantDestructor())
data().HasIrrelevantDestructor = false;
if (FieldRec->hasObjectMember())
setHasObjectMember(true);
if (FieldRec->hasVolatileMember())
setHasVolatileMember(true);
// C++0x [class]p7:
// A standard-layout class is a class that:
// -- has no non-static data members of type non-standard-layout
// class (or array of such types) [...]
if (!FieldRec->isStandardLayout())
data().IsStandardLayout = false;
// C++0x [class]p7:
// A standard-layout class is a class that:
// [...]
// -- has no base classes of the same type as the first non-static
// data member.
// We don't want to expend bits in the state of the record decl
// tracking whether this is the first non-static data member so we
// cheat a bit and use some of the existing state: the empty bit.
// Virtual bases and virtual methods make a class non-empty, but they
// also make it non-standard-layout so we needn't check here.
// A non-empty base class may leave the class standard-layout, but not
// if we have arrived here, and have at least on non-static data
// member. If IsStandardLayout remains true, then the first non-static
// data member must come through here with Empty still true, and Empty
// will subsequently be set to false below.
if (data().IsStandardLayout && data().Empty) {
for (CXXRecordDecl::base_class_const_iterator BI = bases_begin(),
BE = bases_end();
BI != BE; ++BI) {
if (Context.hasSameUnqualifiedType(BI->getType(), T)) {
data().IsStandardLayout = false;
break;
}
}
}
// Keep track of the presence of mutable fields.
if (FieldRec->hasMutableFields())
data().HasMutableFields = true;
// C++11 [class.copy]p13:
// If the implicitly-defined constructor would satisfy the
// requirements of a constexpr constructor, the implicitly-defined
// constructor is constexpr.
// C++11 [dcl.constexpr]p4:
// -- every constructor involved in initializing non-static data
// members [...] shall be a constexpr constructor
if (!Field->hasInClassInitializer() &&
!FieldRec->hasConstexprDefaultConstructor() && !isUnion())
// The standard requires any in-class initializer to be a constant
// expression. We consider this to be a defect.
data().DefaultedDefaultConstructorIsConstexpr = false;
// C++11 [class.copy]p8:
// The implicitly-declared copy constructor for a class X will have
// the form 'X::X(const X&)' if [...] for all the non-static data
// members of X that are of a class type M (or array thereof), each
// such class type has a copy constructor whose first parameter is
// of type 'const M&' or 'const volatile M&'.
if (!FieldRec->hasCopyConstructorWithConstParam())
data().ImplicitCopyConstructorHasConstParam = false;
// C++11 [class.copy]p18:
// The implicitly-declared copy assignment oeprator for a class X will
// have the form 'X& X::operator=(const X&)' if [...] for all the
// non-static data members of X that are of a class type M (or array
// thereof), each such class type has a copy assignment operator whose
// parameter is of type 'const M&', 'const volatile M&' or 'M'.
if (!FieldRec->hasCopyAssignmentWithConstParam())
data().ImplicitCopyAssignmentHasConstParam = false;
if (FieldRec->hasUninitializedReferenceMember() &&
!Field->hasInClassInitializer())
data().HasUninitializedReferenceMember = true;
}
} else {
// Base element type of field is a non-class type.
if (!T->isLiteralType(Context) ||
(!Field->hasInClassInitializer() && !isUnion()))
data().DefaultedDefaultConstructorIsConstexpr = false;
// C++11 [class.copy]p23:
// A defaulted copy/move assignment operator for a class X is defined
// as deleted if X has:
// -- a non-static data member of const non-class type (or array
// thereof)
if (T.isConstQualified())
data().DefaultedMoveAssignmentIsDeleted = true;
}
// C++0x [class]p7:
// A standard-layout class is a class that:
// [...]
// -- either has no non-static data members in the most derived
// class and at most one base class with non-static data members,
// or has no base classes with non-static data members, and
// At this point we know that we have a non-static data member, so the last
// clause holds.
if (!data().HasNoNonEmptyBases)
data().IsStandardLayout = false;
// If this is not a zero-length bit-field, then the class is not empty.
if (data().Empty) {
if (!Field->isBitField() ||
(!Field->getBitWidth()->isTypeDependent() &&
!Field->getBitWidth()->isValueDependent() &&
Field->getBitWidthValue(Context) != 0))
data().Empty = false;
}
}
// Handle using declarations of conversion functions.
if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) {
if (Shadow->getDeclName().getNameKind()
== DeclarationName::CXXConversionFunctionName) {
ASTContext &Ctx = getASTContext();
data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
}
}
}
void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
assert(!D->isImplicit() && !D->isUserProvided());
// The kind of special member this declaration is, if any.
unsigned SMKind = 0;
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
if (Constructor->isDefaultConstructor()) {
SMKind |= SMF_DefaultConstructor;
if (Constructor->isConstexpr())
data().HasConstexprDefaultConstructor = true;
}
if (Constructor->isCopyConstructor())
SMKind |= SMF_CopyConstructor;
else if (Constructor->isMoveConstructor())
SMKind |= SMF_MoveConstructor;
else if (Constructor->isConstexpr())
// We may now know that the constructor is constexpr.
data().HasConstexprNonCopyMoveConstructor = true;
} else if (isa<CXXDestructorDecl>(D))
SMKind |= SMF_Destructor;
else if (D->isCopyAssignmentOperator())
SMKind |= SMF_CopyAssignment;
else if (D->isMoveAssignmentOperator())
SMKind |= SMF_MoveAssignment;
// Update which trivial / non-trivial special members we have.
// addedMember will have skipped this step for this member.
if (D->isTrivial())
data().HasTrivialSpecialMembers |= SMKind;
else
data().DeclaredNonTrivialSpecialMembers |= SMKind;
}
bool CXXRecordDecl::isCLike() const {
if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
!TemplateOrInstantiation.isNull())
return false;
if (!hasDefinition())
return true;
return isPOD() && data().HasOnlyCMembers;
}
bool CXXRecordDecl::isGenericLambda() const {
return isLambda() &&
getLambdaCallOperator()->getDescribedFunctionTemplate();
}
CXXMethodDecl* CXXRecordDecl::getLambdaCallOperator() const {
if (!isLambda()) return 0;
DeclarationName Name =
getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
DeclContext::lookup_const_result Calls = lookup(Name);
assert(!Calls.empty() && "Missing lambda call operator!");
assert(Calls.size() == 1 && "More than one lambda call operator!");
NamedDecl *CallOp = Calls.front();
if (FunctionTemplateDecl *CallOpTmpl =
dyn_cast<FunctionTemplateDecl>(CallOp))
return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
return cast<CXXMethodDecl>(CallOp);
}
CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
if (!isLambda()) return 0;
DeclarationName Name =
&getASTContext().Idents.get(getLambdaStaticInvokerName());
DeclContext::lookup_const_result Invoker = lookup(Name);
if (Invoker.empty()) return 0;
assert(Invoker.size() == 1 && "More than one static invoker operator!");
NamedDecl *InvokerFun = Invoker.front();
if (FunctionTemplateDecl *InvokerTemplate =
dyn_cast<FunctionTemplateDecl>(InvokerFun))
return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
return cast<CXXMethodDecl>(InvokerFun);
}
void CXXRecordDecl::getCaptureFields(
llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
FieldDecl *&ThisCapture) const {
Captures.clear();
ThisCapture = 0;
LambdaDefinitionData &Lambda = getLambdaData();
RecordDecl::field_iterator Field = field_begin();
for (LambdaExpr::Capture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
C != CEnd; ++C, ++Field) {
if (C->capturesThis())
ThisCapture = *Field;
else if (C->capturesVariable())
Captures[C->getCapturedVar()] = *Field;
}
assert(Field == field_end());
}
TemplateParameterList *
CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
if (!isLambda()) return 0;
CXXMethodDecl *CallOp = getLambdaCallOperator();
if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
return Tmpl->getTemplateParameters();
return 0;
}
static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
QualType T;
if (isa<UsingShadowDecl>(Conv))
Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl();
if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv))
T = ConvTemp->getTemplatedDecl()->getResultType();
else
T = cast<CXXConversionDecl>(Conv)->getConversionType();
return Context.getCanonicalType(T);
}
/// Collect the visible conversions of a base class.
///
/// \param Record a base class of the class we're considering
/// \param InVirtual whether this base class is a virtual base (or a base
/// of a virtual base)
/// \param Access the access along the inheritance path to this base
/// \param ParentHiddenTypes the conversions provided by the inheritors
/// of this base
/// \param Output the set to which to add conversions from non-virtual bases
/// \param VOutput the set to which to add conversions from virtual bases
/// \param HiddenVBaseCs the set of conversions which were hidden in a
/// virtual base along some inheritance path
static void CollectVisibleConversions(ASTContext &Context,
CXXRecordDecl *Record,
bool InVirtual,
AccessSpecifier Access,
const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
ASTUnresolvedSet &Output,
UnresolvedSetImpl &VOutput,
llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
// The set of types which have conversions in this class or its
// subclasses. As an optimization, we don't copy the derived set
// unless it might change.
const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
// Collect the direct conversions and figure out which conversions
// will be hidden in the subclasses.
CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
if (ConvI != ConvE) {
HiddenTypesBuffer = ParentHiddenTypes;
HiddenTypes = &HiddenTypesBuffer;
for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
CanQualType ConvType(GetConversionType(Context, I.getDecl()));
bool Hidden = ParentHiddenTypes.count(ConvType);
if (!Hidden)
HiddenTypesBuffer.insert(ConvType);
// If this conversion is hidden and we're in a virtual base,
// remember that it's hidden along some inheritance path.
if (Hidden && InVirtual)
HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
// If this conversion isn't hidden, add it to the appropriate output.
else if (!Hidden) {
AccessSpecifier IAccess
= CXXRecordDecl::MergeAccess(Access, I.getAccess());
if (InVirtual)
VOutput.addDecl(I.getDecl(), IAccess);
else
Output.addDecl(Context, I.getDecl(), IAccess);
}
}
}
// Collect information recursively from any base classes.
for (CXXRecordDecl::base_class_iterator
I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
const RecordType *RT = I->getType()->getAs<RecordType>();
if (!RT) continue;
AccessSpecifier BaseAccess
= CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier());
bool BaseInVirtual = InVirtual || I->isVirtual();
CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
*HiddenTypes, Output, VOutput, HiddenVBaseCs);
}
}
/// Collect the visible conversions of a class.
///
/// This would be extremely straightforward if it weren't for virtual
/// bases. It might be worth special-casing that, really.
static void CollectVisibleConversions(ASTContext &Context,
CXXRecordDecl *Record,
ASTUnresolvedSet &Output) {
// The collection of all conversions in virtual bases that we've
// found. These will be added to the output as long as they don't
// appear in the hidden-conversions set.
UnresolvedSet<8> VBaseCs;
// The set of conversions in virtual bases that we've determined to
// be hidden.
llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
// The set of types hidden by classes derived from this one.
llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
// Go ahead and collect the direct conversions and add them to the
// hidden-types set.
CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
Output.append(Context, ConvI, ConvE);
for (; ConvI != ConvE; ++ConvI)
HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
// Recursively collect conversions from base classes.
for (CXXRecordDecl::base_class_iterator
I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
const RecordType *RT = I->getType()->getAs<RecordType>();
if (!RT) continue;
CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
I->isVirtual(), I->getAccessSpecifier(),
HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
}
// Add any unhidden conversions provided by virtual bases.
for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
I != E; ++I) {
if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
Output.addDecl(Context, I.getDecl(), I.getAccess());
}
}
/// getVisibleConversionFunctions - get all conversion functions visible
/// in current class; including conversion function templates.
std::pair<CXXRecordDecl::conversion_iterator,CXXRecordDecl::conversion_iterator>
CXXRecordDecl::getVisibleConversionFunctions() {
ASTContext &Ctx = getASTContext();
ASTUnresolvedSet *Set;
if (bases_begin() == bases_end()) {
// If root class, all conversions are visible.
Set = &data().Conversions.get(Ctx);
} else {
Set = &data().VisibleConversions.get(Ctx);
// If visible conversion list is not evaluated, evaluate it.
if (!data().ComputedVisibleConversions) {
CollectVisibleConversions(Ctx, this, *Set);
data().ComputedVisibleConversions = true;
}
}
return std::make_pair(Set->begin(), Set->end());
}
void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
// This operation is O(N) but extremely rare. Sema only uses it to
// remove UsingShadowDecls in a class that were followed by a direct
// declaration, e.g.:
// class A : B {
// using B::operator int;
// operator int();
// };
// This is uncommon by itself and even more uncommon in conjunction
// with sufficiently large numbers of directly-declared conversions
// that asymptotic behavior matters.
ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
if (Convs[I].getDecl() == ConvDecl) {
Convs.erase(I);
assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
&& "conversion was found multiple times in unresolved set");
return;
}
}
llvm_unreachable("conversion not found in set!");
}
CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
return 0;
}
void
CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
TemplateSpecializationKind TSK) {
assert(TemplateOrInstantiation.isNull() &&
"Previous template or instantiation?");
assert(!isa<ClassTemplateSpecializationDecl>(this));
TemplateOrInstantiation
= new (getASTContext()) MemberSpecializationInfo(RD, TSK);
}
TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
if (const ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(this))
return Spec->getSpecializationKind();
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
return MSInfo->getTemplateSpecializationKind();
return TSK_Undeclared;
}
void
CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(this)) {
Spec->setSpecializationKind(TSK);
return;
}
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
MSInfo->setTemplateSpecializationKind(TSK);
return;
}
llvm_unreachable("Not a class template or member class specialization");
}
CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
ASTContext &Context = getASTContext();
QualType ClassType = Context.getTypeDeclType(this);
DeclarationName Name
= Context.DeclarationNames.getCXXDestructorName(
Context.getCanonicalType(ClassType));
DeclContext::lookup_const_result R = lookup(Name);
if (R.empty())
return 0;
CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(R.front());
return Dtor;
}
void CXXRecordDecl::completeDefinition() {
completeDefinition(0);
}
void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
RecordDecl::completeDefinition();
if (hasObjectMember() && getASTContext().getLangOpts().ObjCAutoRefCount) {
// Objective-C Automatic Reference Counting:
// If a class has a non-static data member of Objective-C pointer
// type (or array thereof), it is a non-POD type and its
// default constructor (if any), copy constructor, move constructor,
// copy assignment operator, move assignment operator, and destructor are
// non-trivial.
struct DefinitionData &Data = data();
Data.PlainOldData = false;
Data.HasTrivialSpecialMembers = 0;
Data.HasIrrelevantDestructor = false;
}
// If the class may be abstract (but hasn't been marked as such), check for
// any pure final overriders.
if (mayBeAbstract()) {
CXXFinalOverriderMap MyFinalOverriders;
if (!FinalOverriders) {
getFinalOverriders(MyFinalOverriders);
FinalOverriders = &MyFinalOverriders;
}
bool Done = false;
for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
MEnd = FinalOverriders->end();
M != MEnd && !Done; ++M) {
for (OverridingMethods::iterator SO = M->second.begin(),
SOEnd = M->second.end();
SO != SOEnd && !Done; ++SO) {
assert(SO->second.size() > 0 &&
"All virtual functions have overridding virtual functions");
// C++ [class.abstract]p4:
// A class is abstract if it contains or inherits at least one
// pure virtual function for which the final overrider is pure
// virtual.
if (SO->second.front().Method->isPure()) {
data().Abstract = true;
Done = true;
break;
}
}
}
}
// Set access bits correctly on the directly-declared conversions.
for (conversion_iterator I = conversion_begin(), E = conversion_end();
I != E; ++I)
I.setAccess((*I)->getAccess());
}
bool CXXRecordDecl::mayBeAbstract() const {
if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
isDependentContext())
return false;
for (CXXRecordDecl::base_class_const_iterator B = bases_begin(),
BEnd = bases_end();
B != BEnd; ++B) {
CXXRecordDecl *BaseDecl
= cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
if (BaseDecl->isAbstract())
return true;
}
return false;
}
void CXXMethodDecl::anchor() { }
bool CXXMethodDecl::isStatic() const {
const CXXMethodDecl *MD = getCanonicalDecl();
if (MD->getStorageClass() == SC_Static)
return true;
OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
return isStaticOverloadedOperator(OOK);
}
static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
const CXXMethodDecl *BaseMD) {
for (CXXMethodDecl::method_iterator I = DerivedMD->begin_overridden_methods(),
E = DerivedMD->end_overridden_methods(); I != E; ++I) {
const CXXMethodDecl *MD = *I;
if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
return true;
if (recursivelyOverrides(MD, BaseMD))
return true;
}
return false;
}
CXXMethodDecl *
CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
bool MayBeBase) {
if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
return this;
// Lookup doesn't work for destructors, so handle them separately.
if (isa<CXXDestructorDecl>(this)) {
CXXMethodDecl *MD = RD->getDestructor();
if (MD) {
if (recursivelyOverrides(MD, this))
return MD;
if (MayBeBase && recursivelyOverrides(this, MD))
return MD;
}
return NULL;
}
lookup_const_result Candidates = RD->lookup(getDeclName());
for (NamedDecl * const * I = Candidates.begin(); I != Candidates.end(); ++I) {
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I);
if (!MD)
continue;
if (recursivelyOverrides(MD, this))
return MD;
if (MayBeBase && recursivelyOverrides(this, MD))
return MD;
}
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
E = RD->bases_end(); I != E; ++I) {
const RecordType *RT = I->getType()->getAs<RecordType>();
if (!RT)
continue;
const CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
if (T)
return T;
}
return NULL;
}
CXXMethodDecl *
CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
StorageClass SC, bool isInline,
bool isConstexpr, SourceLocation EndLocation) {
return new (C) CXXMethodDecl(CXXMethod, RD, StartLoc, NameInfo, T, TInfo,
SC, isInline, isConstexpr,
EndLocation);
}
CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXMethodDecl));
return new (Mem) CXXMethodDecl(CXXMethod, 0, SourceLocation(),
DeclarationNameInfo(), QualType(),
0, SC_None, false, false,
SourceLocation());
}
bool CXXMethodDecl::isUsualDeallocationFunction() const {
if (getOverloadedOperator() != OO_Delete &&
getOverloadedOperator() != OO_Array_Delete)
return false;
// C++ [basic.stc.dynamic.deallocation]p2:
// A template instance is never a usual deallocation function,
// regardless of its signature.
if (getPrimaryTemplate())
return false;
// C++ [basic.stc.dynamic.deallocation]p2:
// If a class T has a member deallocation function named operator delete
// with exactly one parameter, then that function is a usual (non-placement)
// deallocation function. [...]
if (getNumParams() == 1)
return true;
// C++ [basic.stc.dynamic.deallocation]p2:
// [...] If class T does not declare such an operator delete but does
// declare a member deallocation function named operator delete with
// exactly two parameters, the second of which has type std::size_t (18.1),
// then this function is a usual deallocation function.
ASTContext &Context = getASTContext();
if (getNumParams() != 2 ||
!Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
Context.getSizeType()))
return false;
// This function is a usual deallocation function if there are no
// single-parameter deallocation functions of the same kind.
DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
for (DeclContext::lookup_const_result::iterator I = R.begin(), E = R.end();
I != E; ++I) {
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
if (FD->getNumParams() == 1)
return false;
}
return true;
}
bool CXXMethodDecl::isCopyAssignmentOperator() const {
// C++0x [class.copy]p17:
// A user-declared copy assignment operator X::operator= is a non-static
// non-template member function of class X with exactly one parameter of
// type X, X&, const X&, volatile X& or const volatile X&.
if (/*operator=*/getOverloadedOperator() != OO_Equal ||
/*non-static*/ isStatic() ||
/*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
getNumParams() != 1)
return false;
QualType ParamType = getParamDecl(0)->getType();
if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
ParamType = Ref->getPointeeType();
ASTContext &Context = getASTContext();
QualType ClassType
= Context.getCanonicalType(Context.getTypeDeclType(getParent()));
return Context.hasSameUnqualifiedType(ClassType, ParamType);
}
bool CXXMethodDecl::isMoveAssignmentOperator() const {
// C++0x [class.copy]p19:
// A user-declared move assignment operator X::operator= is a non-static
// non-template member function of class X with exactly one parameter of type
// X&&, const X&&, volatile X&&, or const volatile X&&.
if (getOverloadedOperator() != OO_Equal || isStatic() ||
getPrimaryTemplate() || getDescribedFunctionTemplate() ||
getNumParams() != 1)
return false;
QualType ParamType = getParamDecl(0)->getType();
if (!isa<RValueReferenceType>(ParamType))
return false;
ParamType = ParamType->getPointeeType();
ASTContext &Context = getASTContext();
QualType ClassType
= Context.getCanonicalType(Context.getTypeDeclType(getParent()));
return Context.hasSameUnqualifiedType(ClassType, ParamType);
}
void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
assert(MD->isCanonicalDecl() && "Method is not canonical!");
assert(!MD->getParent()->isDependentContext() &&
"Can't add an overridden method to a class template!");
assert(MD->isVirtual() && "Method is not virtual!");
getASTContext().addOverriddenMethod(this, MD);
}
CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
if (isa<CXXConstructorDecl>(this)) return 0;
return getASTContext().overridden_methods_begin(this);
}
CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
if (isa<CXXConstructorDecl>(this)) return 0;
return getASTContext().overridden_methods_end(this);
}
unsigned CXXMethodDecl::size_overridden_methods() const {
if (isa<CXXConstructorDecl>(this)) return 0;
return getASTContext().overridden_methods_size(this);
}
QualType CXXMethodDecl::getThisType(ASTContext &C) const {
// C++ 9.3.2p1: The type of this in a member function of a class X is X*.
// If the member function is declared const, the type of this is const X*,
// if the member function is declared volatile, the type of this is
// volatile X*, and if the member function is declared const volatile,
// the type of this is const volatile X*.
assert(isInstance() && "No 'this' for static methods!");
QualType ClassTy = C.getTypeDeclType(getParent());
ClassTy = C.getQualifiedType(ClassTy,
Qualifiers::fromCVRMask(getTypeQualifiers()));
return C.getPointerType(ClassTy);
}
bool CXXMethodDecl::hasInlineBody() const {
// If this function is a template instantiation, look at the template from
// which it was instantiated.
const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
if (!CheckFn)
CheckFn = this;
const FunctionDecl *fn;
return CheckFn->hasBody(fn) && !fn->isOutOfLine();
}
bool CXXMethodDecl::isLambdaStaticInvoker() const {
const CXXRecordDecl *P = getParent();
if (P->isLambda()) {
if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) {
if (StaticInvoker == this) return true;
if (P->isGenericLambda() && this->isFunctionTemplateSpecialization())
return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl();
}
}
return false;
}
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
TypeSourceInfo *TInfo, bool IsVirtual,
SourceLocation L, Expr *Init,
SourceLocation R,
SourceLocation EllipsisLoc)
: Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
IsWritten(false), SourceOrderOrNumArrayIndices(0)
{
}
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
FieldDecl *Member,
SourceLocation MemberLoc,
SourceLocation L, Expr *Init,
SourceLocation R)
: Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
IsWritten(false), SourceOrderOrNumArrayIndices(0)
{
}
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
IndirectFieldDecl *Member,
SourceLocation MemberLoc,
SourceLocation L, Expr *Init,
SourceLocation R)
: Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
IsWritten(false), SourceOrderOrNumArrayIndices(0)
{
}
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
TypeSourceInfo *TInfo,
SourceLocation L, Expr *Init,
SourceLocation R)
: Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
IsWritten(false), SourceOrderOrNumArrayIndices(0)
{
}
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
FieldDecl *Member,
SourceLocation MemberLoc,
SourceLocation L, Expr *Init,
SourceLocation R,
VarDecl **Indices,
unsigned NumIndices)
: Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
LParenLoc(L), RParenLoc(R), IsVirtual(false),
IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
{
VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
}
CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
FieldDecl *Member,
SourceLocation MemberLoc,
SourceLocation L, Expr *Init,
SourceLocation R,
VarDecl **Indices,
unsigned NumIndices) {
void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
sizeof(VarDecl *) * NumIndices,
llvm::alignOf<CXXCtorInitializer>());
return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
Indices, NumIndices);
}
TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
if (isBaseInitializer())
return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
else
return TypeLoc();
}
const Type *CXXCtorInitializer::getBaseClass() const {
if (isBaseInitializer())
return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
else
return 0;
}
SourceLocation CXXCtorInitializer::getSourceLocation() const {
if (isAnyMemberInitializer())
return getMemberLocation();
if (isInClassMemberInitializer())
return getAnyMember()->getLocation();
if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
return SourceLocation();
}
SourceRange CXXCtorInitializer::getSourceRange() const {
if (isInClassMemberInitializer()) {
FieldDecl *D = getAnyMember();
if (Expr *I = D->getInClassInitializer())
return I->getSourceRange();
return SourceRange();
}
return SourceRange(getSourceLocation(), getRParenLoc());
}
void CXXConstructorDecl::anchor() { }
CXXConstructorDecl *
CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConstructorDecl));
return new (Mem) CXXConstructorDecl(0, SourceLocation(),DeclarationNameInfo(),
QualType(), 0, false, false, false,false);
}
CXXConstructorDecl *
CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isExplicit, bool isInline,
bool isImplicitlyDeclared, bool isConstexpr) {
assert(NameInfo.getName().getNameKind()
== DeclarationName::CXXConstructorName &&
"Name must refer to a constructor");
return new (C) CXXConstructorDecl(RD, StartLoc, NameInfo, T, TInfo,
isExplicit, isInline, isImplicitlyDeclared,
isConstexpr);
}
CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
assert(isDelegatingConstructor() && "Not a delegating constructor!");
Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
return Construct->getConstructor();
return 0;
}
bool CXXConstructorDecl::isDefaultConstructor() const {
// C++ [class.ctor]p5:
// A default constructor for a class X is a constructor of class
// X that can be called without an argument.
return (getNumParams() == 0) ||
(getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
}
bool
CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
return isCopyOrMoveConstructor(TypeQuals) &&
getParamDecl(0)->getType()->isLValueReferenceType();
}
bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
return isCopyOrMoveConstructor(TypeQuals) &&
getParamDecl(0)->getType()->isRValueReferenceType();
}
/// \brief Determine whether this is a copy or move constructor.
bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
// C++ [class.copy]p2:
// A non-template constructor for class X is a copy constructor
// if its first parameter is of type X&, const X&, volatile X& or
// const volatile X&, and either there are no other parameters
// or else all other parameters have default arguments (8.3.6).
// C++0x [class.copy]p3:
// A non-template constructor for class X is a move constructor if its
// first parameter is of type X&&, const X&&, volatile X&&, or
// const volatile X&&, and either there are no other parameters or else
// all other parameters have default arguments.
if ((getNumParams() < 1) ||
(getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
(getPrimaryTemplate() != 0) ||
(getDescribedFunctionTemplate() != 0))
return false;
const ParmVarDecl *Param = getParamDecl(0);
// Do we have a reference type?
const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
if (!ParamRefType)
return false;
// Is it a reference to our class type?
ASTContext &Context = getASTContext();
CanQualType PointeeType
= Context.getCanonicalType(ParamRefType->getPointeeType());
CanQualType ClassTy
= Context.getCanonicalType(Context.getTagDeclType(getParent()));
if (PointeeType.getUnqualifiedType() != ClassTy)
return false;
// FIXME: other qualifiers?
// We have a copy or move constructor.
TypeQuals = PointeeType.getCVRQualifiers();
return true;
}
bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
// C++ [class.conv.ctor]p1:
// A constructor declared without the function-specifier explicit
// that can be called with a single parameter specifies a
// conversion from the type of its first parameter to the type of
// its class. Such a constructor is called a converting
// constructor.
if (isExplicit() && !AllowExplicit)
return false;
return (getNumParams() == 0 &&
getType()->getAs<FunctionProtoType>()->isVariadic()) ||
(getNumParams() == 1) ||
(getNumParams() > 1 &&
(getParamDecl(1)->hasDefaultArg() ||
getParamDecl(1)->isParameterPack()));
}
bool CXXConstructorDecl::isSpecializationCopyingObject() const {
if ((getNumParams() < 1) ||
(getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
(getPrimaryTemplate() == 0) ||
(getDescribedFunctionTemplate() != 0))
return false;
const ParmVarDecl *Param = getParamDecl(0);
ASTContext &Context = getASTContext();
CanQualType ParamType = Context.getCanonicalType(Param->getType());
// Is it the same as our our class type?
CanQualType ClassTy
= Context.getCanonicalType(Context.getTagDeclType(getParent()));
if (ParamType.getUnqualifiedType() != ClassTy)
return false;
return true;
}
const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
// Hack: we store the inherited constructor in the overridden method table
method_iterator It = getASTContext().overridden_methods_begin(this);
if (It == getASTContext().overridden_methods_end(this))
return 0;
return cast<CXXConstructorDecl>(*It);
}
void
CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
// Hack: we store the inherited constructor in the overridden method table
assert(getASTContext().overridden_methods_size(this) == 0 &&
"Base ctor already set.");
getASTContext().addOverriddenMethod(this, BaseCtor);
}
void CXXDestructorDecl::anchor() { }
CXXDestructorDecl *
CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXDestructorDecl));
return new (Mem) CXXDestructorDecl(0, SourceLocation(), DeclarationNameInfo(),
QualType(), 0, false, false);
}
CXXDestructorDecl *
CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isInline, bool isImplicitlyDeclared) {
assert(NameInfo.getName().getNameKind()
== DeclarationName::CXXDestructorName &&
"Name must refer to a destructor");
return new (C) CXXDestructorDecl(RD, StartLoc, NameInfo, T, TInfo, isInline,
isImplicitlyDeclared);
}
void CXXConversionDecl::anchor() { }
CXXConversionDecl *
CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConversionDecl));
return new (Mem) CXXConversionDecl(0, SourceLocation(), DeclarationNameInfo(),
QualType(), 0, false, false, false,
SourceLocation());
}
CXXConversionDecl *
CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isInline, bool isExplicit,
bool isConstexpr, SourceLocation EndLocation) {
assert(NameInfo.getName().getNameKind()
== DeclarationName::CXXConversionFunctionName &&
"Name must refer to a conversion function");
return new (C) CXXConversionDecl(RD, StartLoc, NameInfo, T, TInfo,
isInline, isExplicit, isConstexpr,
EndLocation);
}
bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
return isImplicit() && getParent()->isLambda() &&
getConversionType()->isBlockPointerType();
}
void LinkageSpecDecl::anchor() { }
LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
DeclContext *DC,
SourceLocation ExternLoc,
SourceLocation LangLoc,
LanguageIDs Lang,
bool HasBraces) {
return new (C) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
}
LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LinkageSpecDecl));
return new (Mem) LinkageSpecDecl(0, SourceLocation(), SourceLocation(),
lang_c, false);
}
void UsingDirectiveDecl::anchor() { }
UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
SourceLocation NamespaceLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Used,
DeclContext *CommonAncestor) {
if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
Used = NS->getOriginalNamespace();
return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
IdentLoc, Used, CommonAncestor);
}
UsingDirectiveDecl *
UsingDirectiveDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDirectiveDecl));
return new (Mem) UsingDirectiveDecl(0, SourceLocation(), SourceLocation(),
NestedNameSpecifierLoc(),
SourceLocation(), 0, 0);
}
NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
if (NamespaceAliasDecl *NA =
dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
return NA->getNamespace();
return cast_or_null<NamespaceDecl>(NominatedNamespace);
}
void NamespaceDecl::anchor() { }
NamespaceDecl::NamespaceDecl(DeclContext *DC, bool Inline,
SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
NamespaceDecl *PrevDecl)
: NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
LocStart(StartLoc), RBraceLoc(), AnonOrFirstNamespaceAndInline(0, Inline)
{
setPreviousDeclaration(PrevDecl);
if (PrevDecl)
AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
}
NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
bool Inline, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
NamespaceDecl *PrevDecl) {
return new (C) NamespaceDecl(DC, Inline, StartLoc, IdLoc, Id, PrevDecl);
}
NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceDecl));
return new (Mem) NamespaceDecl(0, false, SourceLocation(), SourceLocation(),
0, 0);
}
void NamespaceAliasDecl::anchor() { }
NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingLoc,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Namespace) {
if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
Namespace = NS->getOriginalNamespace();
return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias,
QualifierLoc, IdentLoc, Namespace);
}
NamespaceAliasDecl *
NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceAliasDecl));
return new (Mem) NamespaceAliasDecl(0, SourceLocation(), SourceLocation(), 0,
NestedNameSpecifierLoc(),
SourceLocation(), 0);
}
void UsingShadowDecl::anchor() { }
UsingShadowDecl *
UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingShadowDecl));
return new (Mem) UsingShadowDecl(0, SourceLocation(), 0, 0);
}
UsingDecl *UsingShadowDecl::getUsingDecl() const {
const UsingShadowDecl *Shadow = this;
while (const UsingShadowDecl *NextShadow =
dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
Shadow = NextShadow;
return cast<UsingDecl>(Shadow->UsingOrNextShadow);
}
void UsingDecl::anchor() { }
void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
"declaration already in set");
assert(S->getUsingDecl() == this);
if (FirstUsingShadow.getPointer())
S->UsingOrNextShadow = FirstUsingShadow.getPointer();
FirstUsingShadow.setPointer(S);
}
void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
"declaration not in set");
assert(S->getUsingDecl() == this);
// Remove S from the shadow decl chain. This is O(n) but hopefully rare.
if (FirstUsingShadow.getPointer() == S) {
FirstUsingShadow.setPointer(
dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
S->UsingOrNextShadow = this;
return;
}
UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
while (Prev->UsingOrNextShadow != S)
Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
Prev->UsingOrNextShadow = S->UsingOrNextShadow;
S->UsingOrNextShadow = this;
}
UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo,
bool HasTypename) {
return new (C) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
}
UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDecl));
return new (Mem) UsingDecl(0, SourceLocation(), NestedNameSpecifierLoc(),
DeclarationNameInfo(), false);
}
SourceRange UsingDecl::getSourceRange() const {
SourceLocation Begin = isAccessDeclaration()
? getQualifierLoc().getBeginLoc() : UsingLocation;
return SourceRange(Begin, getNameInfo().getEndLoc());
}
void UnresolvedUsingValueDecl::anchor() { }
UnresolvedUsingValueDecl *
UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingLoc,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo) {
return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
QualifierLoc, NameInfo);
}
UnresolvedUsingValueDecl *
UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UnresolvedUsingValueDecl));
return new (Mem) UnresolvedUsingValueDecl(0, QualType(), SourceLocation(),
NestedNameSpecifierLoc(),
DeclarationNameInfo());
}
SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
SourceLocation Begin = isAccessDeclaration()
? getQualifierLoc().getBeginLoc() : UsingLocation;
return SourceRange(Begin, getNameInfo().getEndLoc());
}
void UnresolvedUsingTypenameDecl::anchor() { }
UnresolvedUsingTypenameDecl *
UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingLoc,
SourceLocation TypenameLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TargetNameLoc,
DeclarationName TargetName) {
return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
QualifierLoc, TargetNameLoc,
TargetName.getAsIdentifierInfo());
}
UnresolvedUsingTypenameDecl *
UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID,
sizeof(UnresolvedUsingTypenameDecl));
return new (Mem) UnresolvedUsingTypenameDecl(0, SourceLocation(),
SourceLocation(),
NestedNameSpecifierLoc(),
SourceLocation(),
0);
}
void StaticAssertDecl::anchor() { }
StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StaticAssertLoc,
Expr *AssertExpr,
StringLiteral *Message,
SourceLocation RParenLoc,
bool Failed) {
return new (C) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
RParenLoc, Failed);
}
StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(StaticAssertDecl));
return new (Mem) StaticAssertDecl(0, SourceLocation(), 0, 0,
SourceLocation(), false);
}
static const char *getAccessName(AccessSpecifier AS) {
switch (AS) {
case AS_none:
llvm_unreachable("Invalid access specifier!");
case AS_public:
return "public";
case AS_private:
return "private";
case AS_protected:
return "protected";
}
llvm_unreachable("Invalid access specifier!");
}
const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
AccessSpecifier AS) {
return DB << getAccessName(AS);
}
const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
AccessSpecifier AS) {
return DB << getAccessName(AS);
}