forked from OSchip/llvm-project
322 lines
12 KiB
C++
322 lines
12 KiB
C++
//===-- Assembler.cpp -------------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Assembler.h"
|
|
|
|
#include "SnippetRepetitor.h"
|
|
#include "Target.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
|
|
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/Support/Alignment.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
|
|
namespace llvm {
|
|
namespace exegesis {
|
|
|
|
static constexpr const char ModuleID[] = "ExegesisInfoTest";
|
|
static constexpr const char FunctionID[] = "foo";
|
|
static const Align kFunctionAlignment(4096);
|
|
|
|
// Fills the given basic block with register setup code, and returns true if
|
|
// all registers could be setup correctly.
|
|
static bool generateSnippetSetupCode(
|
|
const ExegesisTarget &ET, const MCSubtargetInfo *const MSI,
|
|
ArrayRef<RegisterValue> RegisterInitialValues, BasicBlockFiller &BBF) {
|
|
bool IsSnippetSetupComplete = true;
|
|
for (const RegisterValue &RV : RegisterInitialValues) {
|
|
// Load a constant in the register.
|
|
const auto SetRegisterCode = ET.setRegTo(*MSI, RV.Register, RV.Value);
|
|
if (SetRegisterCode.empty())
|
|
IsSnippetSetupComplete = false;
|
|
BBF.addInstructions(SetRegisterCode);
|
|
}
|
|
return IsSnippetSetupComplete;
|
|
}
|
|
|
|
// Small utility function to add named passes.
|
|
static bool addPass(PassManagerBase &PM, StringRef PassName,
|
|
TargetPassConfig &TPC) {
|
|
const PassRegistry *PR = PassRegistry::getPassRegistry();
|
|
const PassInfo *PI = PR->getPassInfo(PassName);
|
|
if (!PI) {
|
|
errs() << " run-pass " << PassName << " is not registered.\n";
|
|
return true;
|
|
}
|
|
|
|
if (!PI->getNormalCtor()) {
|
|
errs() << " cannot create pass: " << PI->getPassName() << "\n";
|
|
return true;
|
|
}
|
|
Pass *P = PI->getNormalCtor()();
|
|
std::string Banner = std::string("After ") + std::string(P->getPassName());
|
|
PM.add(P);
|
|
TPC.printAndVerify(Banner);
|
|
|
|
return false;
|
|
}
|
|
|
|
MachineFunction &createVoidVoidPtrMachineFunction(StringRef FunctionName,
|
|
Module *Module,
|
|
MachineModuleInfo *MMI) {
|
|
Type *const ReturnType = Type::getInt32Ty(Module->getContext());
|
|
Type *const MemParamType = PointerType::get(
|
|
Type::getInt8Ty(Module->getContext()), 0 /*default address space*/);
|
|
FunctionType *FunctionType =
|
|
FunctionType::get(ReturnType, {MemParamType}, false);
|
|
Function *const F = Function::Create(
|
|
FunctionType, GlobalValue::InternalLinkage, FunctionName, Module);
|
|
// Making sure we can create a MachineFunction out of this Function even if it
|
|
// contains no IR.
|
|
F->setIsMaterializable(true);
|
|
return MMI->getOrCreateMachineFunction(*F);
|
|
}
|
|
|
|
BasicBlockFiller::BasicBlockFiller(MachineFunction &MF, MachineBasicBlock *MBB,
|
|
const MCInstrInfo *MCII)
|
|
: MF(MF), MBB(MBB), MCII(MCII) {}
|
|
|
|
void BasicBlockFiller::addInstruction(const MCInst &Inst, const DebugLoc &DL) {
|
|
const unsigned Opcode = Inst.getOpcode();
|
|
const MCInstrDesc &MCID = MCII->get(Opcode);
|
|
MachineInstrBuilder Builder = BuildMI(MBB, DL, MCID);
|
|
for (unsigned OpIndex = 0, E = Inst.getNumOperands(); OpIndex < E;
|
|
++OpIndex) {
|
|
const MCOperand &Op = Inst.getOperand(OpIndex);
|
|
if (Op.isReg()) {
|
|
const bool IsDef = OpIndex < MCID.getNumDefs();
|
|
unsigned Flags = 0;
|
|
const MCOperandInfo &OpInfo = MCID.operands().begin()[OpIndex];
|
|
if (IsDef && !OpInfo.isOptionalDef())
|
|
Flags |= RegState::Define;
|
|
Builder.addReg(Op.getReg(), Flags);
|
|
} else if (Op.isImm()) {
|
|
Builder.addImm(Op.getImm());
|
|
} else if (!Op.isValid()) {
|
|
llvm_unreachable("Operand is not set");
|
|
} else {
|
|
llvm_unreachable("Not yet implemented");
|
|
}
|
|
}
|
|
}
|
|
|
|
void BasicBlockFiller::addInstructions(ArrayRef<MCInst> Insts,
|
|
const DebugLoc &DL) {
|
|
for (const MCInst &Inst : Insts)
|
|
addInstruction(Inst, DL);
|
|
}
|
|
|
|
void BasicBlockFiller::addReturn(const DebugLoc &DL) {
|
|
// Insert the return code.
|
|
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
|
|
if (TII->getReturnOpcode() < TII->getNumOpcodes()) {
|
|
BuildMI(MBB, DL, TII->get(TII->getReturnOpcode()));
|
|
} else {
|
|
MachineIRBuilder MIB(MF);
|
|
MIB.setMBB(*MBB);
|
|
MF.getSubtarget().getCallLowering()->lowerReturn(MIB, nullptr, {});
|
|
}
|
|
}
|
|
|
|
FunctionFiller::FunctionFiller(MachineFunction &MF,
|
|
std::vector<unsigned> RegistersSetUp)
|
|
: MF(MF), MCII(MF.getTarget().getMCInstrInfo()), Entry(addBasicBlock()),
|
|
RegistersSetUp(std::move(RegistersSetUp)) {}
|
|
|
|
BasicBlockFiller FunctionFiller::addBasicBlock() {
|
|
MachineBasicBlock *MBB = MF.CreateMachineBasicBlock();
|
|
MF.push_back(MBB);
|
|
return BasicBlockFiller(MF, MBB, MCII);
|
|
}
|
|
|
|
ArrayRef<unsigned> FunctionFiller::getRegistersSetUp() const {
|
|
return RegistersSetUp;
|
|
}
|
|
|
|
static std::unique_ptr<Module>
|
|
createModule(const std::unique_ptr<LLVMContext> &Context, const DataLayout DL) {
|
|
auto Mod = std::make_unique<Module>(ModuleID, *Context);
|
|
Mod->setDataLayout(DL);
|
|
return Mod;
|
|
}
|
|
|
|
BitVector getFunctionReservedRegs(const TargetMachine &TM) {
|
|
std::unique_ptr<LLVMContext> Context = std::make_unique<LLVMContext>();
|
|
std::unique_ptr<Module> Module = createModule(Context, TM.createDataLayout());
|
|
// TODO: This only works for targets implementing LLVMTargetMachine.
|
|
const LLVMTargetMachine &LLVMTM = static_cast<const LLVMTargetMachine &>(TM);
|
|
std::unique_ptr<MachineModuleInfoWrapperPass> MMIWP =
|
|
std::make_unique<MachineModuleInfoWrapperPass>(&LLVMTM);
|
|
MachineFunction &MF = createVoidVoidPtrMachineFunction(
|
|
FunctionID, Module.get(), &MMIWP.get()->getMMI());
|
|
// Saving reserved registers for client.
|
|
return MF.getSubtarget().getRegisterInfo()->getReservedRegs(MF);
|
|
}
|
|
|
|
Error assembleToStream(const ExegesisTarget &ET,
|
|
std::unique_ptr<LLVMTargetMachine> TM,
|
|
ArrayRef<unsigned> LiveIns,
|
|
ArrayRef<RegisterValue> RegisterInitialValues,
|
|
const FillFunction &Fill, raw_pwrite_stream &AsmStream) {
|
|
auto Context = std::make_unique<LLVMContext>();
|
|
std::unique_ptr<Module> Module =
|
|
createModule(Context, TM->createDataLayout());
|
|
auto MMIWP = std::make_unique<MachineModuleInfoWrapperPass>(TM.get());
|
|
MachineFunction &MF = createVoidVoidPtrMachineFunction(
|
|
FunctionID, Module.get(), &MMIWP.get()->getMMI());
|
|
MF.ensureAlignment(kFunctionAlignment);
|
|
|
|
// We need to instruct the passes that we're done with SSA and virtual
|
|
// registers.
|
|
auto &Properties = MF.getProperties();
|
|
Properties.set(MachineFunctionProperties::Property::NoVRegs);
|
|
Properties.reset(MachineFunctionProperties::Property::IsSSA);
|
|
Properties.set(MachineFunctionProperties::Property::NoPHIs);
|
|
|
|
for (const unsigned Reg : LiveIns)
|
|
MF.getRegInfo().addLiveIn(Reg);
|
|
|
|
std::vector<unsigned> RegistersSetUp;
|
|
for (const auto &InitValue : RegisterInitialValues) {
|
|
RegistersSetUp.push_back(InitValue.Register);
|
|
}
|
|
FunctionFiller Sink(MF, std::move(RegistersSetUp));
|
|
auto Entry = Sink.getEntry();
|
|
for (const unsigned Reg : LiveIns)
|
|
Entry.MBB->addLiveIn(Reg);
|
|
|
|
const bool IsSnippetSetupComplete = generateSnippetSetupCode(
|
|
ET, TM->getMCSubtargetInfo(), RegisterInitialValues, Entry);
|
|
|
|
// If the snippet setup is not complete, we disable liveliness tracking. This
|
|
// means that we won't know what values are in the registers.
|
|
if (!IsSnippetSetupComplete)
|
|
Properties.reset(MachineFunctionProperties::Property::TracksLiveness);
|
|
|
|
Fill(Sink);
|
|
|
|
// prologue/epilogue pass needs the reserved registers to be frozen, this
|
|
// is usually done by the SelectionDAGISel pass.
|
|
MF.getRegInfo().freezeReservedRegs(MF);
|
|
|
|
// We create the pass manager, run the passes to populate AsmBuffer.
|
|
MCContext &MCContext = MMIWP->getMMI().getContext();
|
|
legacy::PassManager PM;
|
|
|
|
TargetLibraryInfoImpl TLII(Triple(Module->getTargetTriple()));
|
|
PM.add(new TargetLibraryInfoWrapperPass(TLII));
|
|
|
|
TargetPassConfig *TPC = TM->createPassConfig(PM);
|
|
PM.add(TPC);
|
|
PM.add(MMIWP.release());
|
|
TPC->printAndVerify("MachineFunctionGenerator::assemble");
|
|
// Add target-specific passes.
|
|
ET.addTargetSpecificPasses(PM);
|
|
TPC->printAndVerify("After ExegesisTarget::addTargetSpecificPasses");
|
|
// Adding the following passes:
|
|
// - postrapseudos: expands pseudo return instructions used on some targets.
|
|
// - machineverifier: checks that the MachineFunction is well formed.
|
|
// - prologepilog: saves and restore callee saved registers.
|
|
for (const char *PassName :
|
|
{"postrapseudos", "machineverifier", "prologepilog"})
|
|
if (addPass(PM, PassName, *TPC))
|
|
return make_error<Failure>("Unable to add a mandatory pass");
|
|
TPC->setInitialized();
|
|
|
|
// AsmPrinter is responsible for generating the assembly into AsmBuffer.
|
|
if (TM->addAsmPrinter(PM, AsmStream, nullptr, CGFT_ObjectFile, MCContext))
|
|
return make_error<Failure>("Cannot add AsmPrinter passes");
|
|
|
|
PM.run(*Module); // Run all the passes
|
|
return Error::success();
|
|
}
|
|
|
|
object::OwningBinary<object::ObjectFile>
|
|
getObjectFromBuffer(StringRef InputData) {
|
|
// Storing the generated assembly into a MemoryBuffer that owns the memory.
|
|
std::unique_ptr<MemoryBuffer> Buffer =
|
|
MemoryBuffer::getMemBufferCopy(InputData);
|
|
// Create the ObjectFile from the MemoryBuffer.
|
|
std::unique_ptr<object::ObjectFile> Obj =
|
|
cantFail(object::ObjectFile::createObjectFile(Buffer->getMemBufferRef()));
|
|
// Returning both the MemoryBuffer and the ObjectFile.
|
|
return object::OwningBinary<object::ObjectFile>(std::move(Obj),
|
|
std::move(Buffer));
|
|
}
|
|
|
|
object::OwningBinary<object::ObjectFile> getObjectFromFile(StringRef Filename) {
|
|
return cantFail(object::ObjectFile::createObjectFile(Filename));
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Implementation of this class relies on the fact that a single object with a
|
|
// single function will be loaded into memory.
|
|
class TrackingSectionMemoryManager : public SectionMemoryManager {
|
|
public:
|
|
explicit TrackingSectionMemoryManager(uintptr_t *CodeSize)
|
|
: CodeSize(CodeSize) {}
|
|
|
|
uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
|
|
unsigned SectionID,
|
|
StringRef SectionName) override {
|
|
*CodeSize = Size;
|
|
return SectionMemoryManager::allocateCodeSection(Size, Alignment, SectionID,
|
|
SectionName);
|
|
}
|
|
|
|
private:
|
|
uintptr_t *const CodeSize = nullptr;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
ExecutableFunction::ExecutableFunction(
|
|
std::unique_ptr<LLVMTargetMachine> TM,
|
|
object::OwningBinary<object::ObjectFile> &&ObjectFileHolder)
|
|
: Context(std::make_unique<LLVMContext>()) {
|
|
assert(ObjectFileHolder.getBinary() && "cannot create object file");
|
|
// Initializing the execution engine.
|
|
// We need to use the JIT EngineKind to be able to add an object file.
|
|
LLVMLinkInMCJIT();
|
|
uintptr_t CodeSize = 0;
|
|
std::string Error;
|
|
ExecEngine.reset(
|
|
EngineBuilder(createModule(Context, TM->createDataLayout()))
|
|
.setErrorStr(&Error)
|
|
.setMCPU(TM->getTargetCPU())
|
|
.setEngineKind(EngineKind::JIT)
|
|
.setMCJITMemoryManager(
|
|
std::make_unique<TrackingSectionMemoryManager>(&CodeSize))
|
|
.create(TM.release()));
|
|
if (!ExecEngine)
|
|
report_fatal_error(Error);
|
|
// Adding the generated object file containing the assembled function.
|
|
// The ExecutionEngine makes sure the object file is copied into an
|
|
// executable page.
|
|
ExecEngine->addObjectFile(std::move(ObjectFileHolder));
|
|
// Fetching function bytes.
|
|
const uint64_t FunctionAddress = ExecEngine->getFunctionAddress(FunctionID);
|
|
assert(isAligned(kFunctionAlignment, FunctionAddress) &&
|
|
"function is not properly aligned");
|
|
FunctionBytes =
|
|
StringRef(reinterpret_cast<const char *>(FunctionAddress), CodeSize);
|
|
}
|
|
|
|
} // namespace exegesis
|
|
} // namespace llvm
|