llvm-project/llvm/lib/Target/SPIRV/SPIRVModuleAnalysis.cpp

251 lines
9.8 KiB
C++

//===- SPIRVModuleAnalysis.cpp - analysis of global instrs & regs - C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The analysis collects instructions that should be output at the module level
// and performs the global register numbering.
//
// The results of this analysis are used in AsmPrinter to rename registers
// globally and to output required instructions at the module level.
//
//===----------------------------------------------------------------------===//
#include "SPIRVModuleAnalysis.h"
#include "SPIRV.h"
#include "SPIRVGlobalRegistry.h"
#include "SPIRVSubtarget.h"
#include "SPIRVTargetMachine.h"
#include "SPIRVUtils.h"
#include "TargetInfo/SPIRVTargetInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
using namespace llvm;
#define DEBUG_TYPE "spirv-module-analysis"
char llvm::SPIRVModuleAnalysis::ID = 0;
namespace llvm {
void initializeSPIRVModuleAnalysisPass(PassRegistry &);
} // namespace llvm
INITIALIZE_PASS(SPIRVModuleAnalysis, DEBUG_TYPE, "SPIRV module analysis", true,
true)
// Retrieve an unsigned from an MDNode with a list of them as operands.
static unsigned getMetadataUInt(MDNode *MdNode, unsigned OpIndex,
unsigned DefaultVal = 0) {
if (MdNode && OpIndex < MdNode->getNumOperands()) {
const auto &Op = MdNode->getOperand(OpIndex);
return mdconst::extract<ConstantInt>(Op)->getZExtValue();
}
return DefaultVal;
}
void SPIRVModuleAnalysis::setBaseInfo(const Module &M) {
MAI.MaxID = 0;
for (int i = 0; i < SPIRV::NUM_MODULE_SECTIONS; i++)
MAI.MS[i].clear();
MAI.RegisterAliasTable.clear();
MAI.InstrsToDelete.clear();
MAI.FuncNameMap.clear();
MAI.GlobalVarList.clear();
// TODO: determine memory model and source language from the configuratoin.
MAI.Mem = SPIRV::MemoryModel::OpenCL;
MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_C;
unsigned PtrSize = ST->getPointerSize();
MAI.Addr = PtrSize == 32 ? SPIRV::AddressingModel::Physical32
: PtrSize == 64 ? SPIRV::AddressingModel::Physical64
: SPIRV::AddressingModel::Logical;
// Get the OpenCL version number from metadata.
// TODO: support other source languages.
MAI.SrcLangVersion = 0;
if (auto VerNode = M.getNamedMetadata("opencl.ocl.version")) {
// Construct version literal according to OpenCL 2.2 environment spec.
auto VersionMD = VerNode->getOperand(0);
unsigned MajorNum = getMetadataUInt(VersionMD, 0, 2);
unsigned MinorNum = getMetadataUInt(VersionMD, 1);
unsigned RevNum = getMetadataUInt(VersionMD, 2);
MAI.SrcLangVersion = 0 | (MajorNum << 16) | (MinorNum << 8) | RevNum;
}
}
// True if there is an instruction in the MS list with all the same operands as
// the given instruction has (after the given starting index).
// TODO: maybe it needs to check Opcodes too.
static bool findSameInstrInMS(const MachineInstr &A,
SPIRV::ModuleSectionType MSType,
SPIRV::ModuleAnalysisInfo &MAI,
bool UpdateRegAliases,
unsigned StartOpIndex = 0) {
for (const auto *B : MAI.MS[MSType]) {
const unsigned NumAOps = A.getNumOperands();
if (NumAOps == B->getNumOperands() && A.getNumDefs() == B->getNumDefs()) {
bool AllOpsMatch = true;
for (unsigned i = StartOpIndex; i < NumAOps && AllOpsMatch; ++i) {
if (A.getOperand(i).isReg() && B->getOperand(i).isReg()) {
Register RegA = A.getOperand(i).getReg();
Register RegB = B->getOperand(i).getReg();
AllOpsMatch = MAI.getRegisterAlias(A.getMF(), RegA) ==
MAI.getRegisterAlias(B->getMF(), RegB);
} else {
AllOpsMatch = A.getOperand(i).isIdenticalTo(B->getOperand(i));
}
}
if (AllOpsMatch) {
if (UpdateRegAliases) {
assert(A.getOperand(0).isReg() && B->getOperand(0).isReg());
Register LocalReg = A.getOperand(0).getReg();
Register GlobalReg =
MAI.getRegisterAlias(B->getMF(), B->getOperand(0).getReg());
MAI.setRegisterAlias(A.getMF(), LocalReg, GlobalReg);
}
return true;
}
}
}
return false;
}
// Look for IDs declared with Import linkage, and map the imported name string
// to the register defining that variable (which will usually be the result of
// an OpFunction). This lets us call externally imported functions using
// the correct ID registers.
void SPIRVModuleAnalysis::collectFuncNames(MachineInstr &MI,
const Function &F) {
if (MI.getOpcode() == SPIRV::OpDecorate) {
// If it's got Import linkage.
auto Dec = MI.getOperand(1).getImm();
if (Dec == static_cast<unsigned>(SPIRV::Decoration::LinkageAttributes)) {
auto Lnk = MI.getOperand(MI.getNumOperands() - 1).getImm();
if (Lnk == static_cast<unsigned>(SPIRV::LinkageType::Import)) {
// Map imported function name to function ID register.
std::string Name = getStringImm(MI, 2);
Register Target = MI.getOperand(0).getReg();
// TODO: check defs from different MFs.
MAI.FuncNameMap[Name] = MAI.getRegisterAlias(MI.getMF(), Target);
}
}
} else if (MI.getOpcode() == SPIRV::OpFunction) {
// Record all internal OpFunction declarations.
Register Reg = MI.defs().begin()->getReg();
Register GlobalReg = MAI.getRegisterAlias(MI.getMF(), Reg);
assert(GlobalReg.isValid());
// TODO: check that it does not conflict with existing entries.
MAI.FuncNameMap[F.getGlobalIdentifier()] = GlobalReg;
}
}
// Collect the given instruction in the specified MS. We assume global register
// numbering has already occurred by this point. We can directly compare reg
// arguments when detecting duplicates.
static void collectOtherInstr(MachineInstr &MI, SPIRV::ModuleAnalysisInfo &MAI,
SPIRV::ModuleSectionType MSType,
bool IsConstOrType = false) {
MAI.setSkipEmission(&MI);
if (findSameInstrInMS(MI, MSType, MAI, IsConstOrType, IsConstOrType ? 1 : 0))
return; // Found a duplicate, so don't add it.
// No duplicates, so add it.
MAI.MS[MSType].push_back(&MI);
}
// Some global instructions make reference to function-local ID regs, so cannot
// be correctly collected until these registers are globally numbered.
void SPIRVModuleAnalysis::processOtherInstrs(const Module &M) {
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
if ((*F).isDeclaration())
continue;
MachineFunction *MF = MMI->getMachineFunction(*F);
assert(MF);
unsigned FCounter = 0;
for (MachineBasicBlock &MBB : *MF)
for (MachineInstr &MI : MBB) {
if (MI.getOpcode() == SPIRV::OpFunction)
FCounter++;
if (MAI.getSkipEmission(&MI))
continue;
const unsigned OpCode = MI.getOpcode();
const bool IsFuncOrParm =
OpCode == SPIRV::OpFunction || OpCode == SPIRV::OpFunctionParameter;
const bool IsConstOrType =
TII->isConstantInstr(MI) || TII->isTypeDeclInstr(MI);
if (OpCode == SPIRV::OpName || OpCode == SPIRV::OpMemberName) {
collectOtherInstr(MI, MAI, SPIRV::MB_DebugNames);
} else if (OpCode == SPIRV::OpEntryPoint) {
collectOtherInstr(MI, MAI, SPIRV::MB_EntryPoints);
} else if (TII->isDecorationInstr(MI)) {
collectOtherInstr(MI, MAI, SPIRV::MB_Annotations);
collectFuncNames(MI, *F);
} else if (IsConstOrType || (FCounter > 1 && IsFuncOrParm)) {
// Now OpSpecConstant*s are not in DT,
// but they need to be collected anyway.
enum SPIRV::ModuleSectionType Type =
IsFuncOrParm ? SPIRV::MB_ExtFuncDecls : SPIRV::MB_TypeConstVars;
collectOtherInstr(MI, MAI, Type, IsConstOrType);
} else if (OpCode == SPIRV::OpFunction) {
collectFuncNames(MI, *F);
}
}
}
}
// Number registers in all functions globally from 0 onwards and store
// the result in global register alias table.
void SPIRVModuleAnalysis::numberRegistersGlobally(const Module &M) {
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
if ((*F).isDeclaration())
continue;
MachineFunction *MF = MMI->getMachineFunction(*F);
assert(MF);
for (MachineBasicBlock &MBB : *MF) {
for (MachineInstr &MI : MBB) {
for (MachineOperand &Op : MI.operands()) {
if (!Op.isReg())
continue;
Register Reg = Op.getReg();
if (MAI.hasRegisterAlias(MF, Reg))
continue;
Register NewReg = Register::index2VirtReg(MAI.getNextID());
MAI.setRegisterAlias(MF, Reg, NewReg);
}
}
}
}
}
struct SPIRV::ModuleAnalysisInfo SPIRVModuleAnalysis::MAI;
void SPIRVModuleAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.addRequired<MachineModuleInfoWrapperPass>();
}
bool SPIRVModuleAnalysis::runOnModule(Module &M) {
SPIRVTargetMachine &TM =
getAnalysis<TargetPassConfig>().getTM<SPIRVTargetMachine>();
ST = TM.getSubtargetImpl();
GR = ST->getSPIRVGlobalRegistry();
TII = ST->getInstrInfo();
MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
setBaseInfo(M);
// TODO: Process type/const/global var/func decl instructions, number their
// destination registers from 0 to N, collect Extensions and Capabilities.
// Number rest of registers from N+1 onwards.
numberRegistersGlobally(M);
// Collect OpName, OpEntryPoint, OpDecorate etc, process other instructions.
processOtherInstrs(M);
return false;
}