llvm-project/llvm/lib/Target/SystemZ
Mehdi Amini b550cb1750 [NFC] Header cleanup
Removed some unused headers, replaced some headers with forward class declarations.

Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'

Patch by Eugene Kosov <claprix@yandex.ru>

Differential Revision: http://reviews.llvm.org/D19219

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
2016-04-18 09:17:29 +00:00
..
AsmParser Move MCTargetAsmParser.h to llvm/MC/MCParser where it belongs. 2016-01-27 10:01:28 +00:00
Disassembler [SystemZ] Call tryAddingSymbolicOperand in the disassembler 2016-04-15 19:55:58 +00:00
InstPrinter Remove autoconf support 2016-01-26 21:29:08 +00:00
MCTargetDesc Remove autoconf support 2016-01-26 21:29:08 +00:00
TargetInfo Remove autoconf support 2016-01-26 21:29:08 +00:00
CMakeLists.txt
LLVMBuild.txt
README.txt [SystemZ] README: remove an implemented idea, add some new ones 2016-04-11 14:38:47 +00:00
SystemZ.h
SystemZ.td
SystemZAsmPrinter.cpp [SystemZ] Support conditional indirect sibling calls via BCR 2016-04-11 12:12:32 +00:00
SystemZAsmPrinter.h
SystemZCallingConv.cpp [SystemZ] Fix ABI for i128 argument and return types 2016-02-19 14:10:21 +00:00
SystemZCallingConv.h [SystemZ] Fix ABI for i128 argument and return types 2016-02-19 14:10:21 +00:00
SystemZCallingConv.td [SystemZ] Fix ABI for i128 argument and return types 2016-02-19 14:10:21 +00:00
SystemZConstantPoolValue.cpp Drop prelink support. 2015-11-17 00:51:23 +00:00
SystemZConstantPoolValue.h Drop prelink support. 2015-11-17 00:51:23 +00:00
SystemZElimCompare.cpp [NFC] Header cleanup 2016-04-18 09:17:29 +00:00
SystemZFrameLowering.cpp Change eliminateCallFramePseudoInstr() to return an iterator 2016-03-31 18:33:38 +00:00
SystemZFrameLowering.h Change eliminateCallFramePseudoInstr() to return an iterator 2016-03-31 18:33:38 +00:00
SystemZISelDAGToDAG.cpp SystemZ: Remove implicit ilist iterator conversion, NFC 2015-10-20 01:12:46 +00:00
SystemZISelLowering.cpp NFC: make AtomicOrdering an enum class 2016-04-06 21:19:33 +00:00
SystemZISelLowering.h [SystemZ] Support ATOMIC_FENCE 2016-04-04 12:45:44 +00:00
SystemZInstrBuilder.h PseudoSourceValue: Replace global manager with a manager in a machine function. 2015-08-11 23:09:45 +00:00
SystemZInstrFP.td [SystemZ] Avoid LER on z13 due to partial register dependencies 2016-03-14 13:50:03 +00:00
SystemZInstrFormats.td [SystemZ] Add SVC instruction 2016-04-11 14:35:39 +00:00
SystemZInstrInfo.cpp [SystemZ] Support conditional indirect sibling calls via BCR 2016-04-11 12:12:32 +00:00
SystemZInstrInfo.h [SystemZ] Support conditional indirect sibling calls via BCR 2016-04-11 12:12:32 +00:00
SystemZInstrInfo.td [SystemZ] Add SVC instruction 2016-04-11 14:35:39 +00:00
SystemZInstrVector.td
SystemZLDCleanup.cpp
SystemZLongBranch.cpp [NFC] Header cleanup 2016-04-18 09:17:29 +00:00
SystemZMCInstLower.cpp MC: Clean up MCExpr naming. NFC. 2015-05-30 01:25:56 +00:00
SystemZMCInstLower.h
SystemZMachineFunctionInfo.cpp Fix typo "fuction" noticed in comments in AssumptionCache.h, and also all the other files that have the same typo. All comments, no functionality change! (Merely a "fuctionality" change.) 2015-07-29 22:32:47 +00:00
SystemZMachineFunctionInfo.h [SystemZ] Support llvm.frameaddress/llvm.returnaddress intrinsics 2016-04-04 12:44:55 +00:00
SystemZOperands.td [SystemZ] Call tryAddingSymbolicOperand in the disassembler 2016-04-15 19:55:58 +00:00
SystemZOperators.td [SystemZ] Support ATOMIC_FENCE 2016-04-04 12:45:44 +00:00
SystemZPatterns.td
SystemZProcessors.td
SystemZRegisterInfo.cpp [SystemZ] Use LDE32 instead of LE, when Offset is small. 2016-04-12 12:07:23 +00:00
SystemZRegisterInfo.h
SystemZRegisterInfo.td [SystemZ] Make the CCRegs regclass non-allocatable. 2015-10-29 16:13:55 +00:00
SystemZSelectionDAGInfo.cpp Remove getDataLayout() from TargetSelectionDAGInfo (had no users) 2015-07-09 02:10:08 +00:00
SystemZSelectionDAGInfo.h Rename TargetSelectionDAGInfo into SelectionDAGTargetInfo and move it to CodeGen/ 2016-01-27 16:32:26 +00:00
SystemZShortenInst.cpp Add MachineFunctionProperty checks for AllVRegsAllocated for target passes 2016-04-04 17:09:25 +00:00
SystemZSubtarget.cpp Revert r247692: Replace Triple with a new TargetTuple in MCTargetDesc/* and related. NFC. 2015-09-15 16:17:27 +00:00
SystemZSubtarget.h Rename TargetSelectionDAGInfo into SelectionDAGTargetInfo and move it to CodeGen/ 2016-01-27 16:32:26 +00:00
SystemZTargetMachine.cpp [SystemZ] Implement conditional returns 2016-04-07 16:11:44 +00:00
SystemZTargetMachine.h [PostRA scheduling] Allow a target to do scheduling when it wants post RA. 2015-12-10 09:10:07 +00:00
SystemZTargetTransformInfo.cpp [TTI] Make the cost APIs in TargetTransformInfo consistently use 'int' 2015-08-05 18:08:10 +00:00
SystemZTargetTransformInfo.h constify the Function parameter to the TTI creation callback and 2015-09-16 23:38:13 +00:00

README.txt

//===---------------------------------------------------------------------===//
// Random notes about and ideas for the SystemZ backend.
//===---------------------------------------------------------------------===//

The initial backend is deliberately restricted to z10.  We should add support
for later architectures at some point.

--

SystemZDAGToDAGISel::SelectInlineAsmMemoryOperand() is passed "m" for all
inline asm memory constraints; it doesn't get to see the original constraint.
This means that it must conservatively treat all inline asm constraints
as the most restricted type, "R".

--

If an inline asm ties an i32 "r" result to an i64 input, the input
will be treated as an i32, leaving the upper bits uninitialised.
For example:

define void @f4(i32 *%dst) {
  %val = call i32 asm "blah $0", "=r,0" (i64 103)
  store i32 %val, i32 *%dst
  ret void
}

from CodeGen/SystemZ/asm-09.ll will use LHI rather than LGHI.
to load 103.  This seems to be a general target-independent problem.

--

The tuning of the choice between LOAD ADDRESS (LA) and addition in
SystemZISelDAGToDAG.cpp is suspect.  It should be tweaked based on
performance measurements.

--

There is no scheduling support.

--

We don't use the BRANCH ON INDEX instructions.

--

We don't use the TEST DATA CLASS instructions.

--

We only use MVC, XC and CLC for constant-length block operations.
We could extend them to variable-length operations too,
using EXECUTE RELATIVE LONG.

MVCIN, MVCLE and CLCLE may be worthwhile too.

--

We don't use CUSE or the TRANSLATE family of instructions for string
operations.  The TRANSLATE ones are probably more difficult to exploit.

--

We don't take full advantage of builtins like fabsl because the calling
conventions require f128s to be returned by invisible reference.

--

ADD LOGICAL WITH SIGNED IMMEDIATE could be useful when we need to
produce a carry.  SUBTRACT LOGICAL IMMEDIATE could be useful when we
need to produce a borrow.  (Note that there are no memory forms of
ADD LOGICAL WITH CARRY and SUBTRACT LOGICAL WITH BORROW, so the high
part of 128-bit memory operations would probably need to be done
via a register.)

--

We don't use the halfword forms of LOAD REVERSED and STORE REVERSED
(LRVH and STRVH).

--

We don't use ICM or STCM.

--

DAGCombiner doesn't yet fold truncations of extended loads.  Functions like:

    unsigned long f (unsigned long x, unsigned short *y)
    {
      return (x << 32) | *y;
    }

therefore end up as:

        sllg    %r2, %r2, 32
        llgh    %r0, 0(%r3)
        lr      %r2, %r0
        br      %r14

but truncating the load would give:

        sllg    %r2, %r2, 32
        lh      %r2, 0(%r3)
        br      %r14

--

Functions like:

define i64 @f1(i64 %a) {
  %and = and i64 %a, 1
  ret i64 %and
}

ought to be implemented as:

        lhi     %r0, 1
        ngr     %r2, %r0
        br      %r14

but two-address optimisations reverse the order of the AND and force:

        lhi     %r0, 1
        ngr     %r0, %r2
        lgr     %r2, %r0
        br      %r14

CodeGen/SystemZ/and-04.ll has several examples of this.

--

Out-of-range displacements are usually handled by loading the full
address into a register.  In many cases it would be better to create
an anchor point instead.  E.g. for:

define void @f4a(i128 *%aptr, i64 %base) {
  %addr = add i64 %base, 524288
  %bptr = inttoptr i64 %addr to i128 *
  %a = load volatile i128 *%aptr
  %b = load i128 *%bptr
  %add = add i128 %a, %b
  store i128 %add, i128 *%aptr
  ret void
}

(from CodeGen/SystemZ/int-add-08.ll) we load %base+524288 and %base+524296
into separate registers, rather than using %base+524288 as a base for both.

--

Dynamic stack allocations round the size to 8 bytes and then allocate
that rounded amount.  It would be simpler to subtract the unrounded
size from the copy of the stack pointer and then align the result.
See CodeGen/SystemZ/alloca-01.ll for an example.

--

If needed, we can support 16-byte atomics using LPQ, STPQ and CSDG.

--

We might want to model all access registers and use them to spill
32-bit values.

--

We might want to use 'j .+2' as a trap instruction, like gcc does.  It can
also be made conditional like the return instruction, allowing us to utilize
compare-and-trap and load-and-trap instructions.

--

We might want to use the 'overflow' condition of eg. AR to support
llvm.sadd.with.overflow.i32 and related instructions - the generated code
for signed overflow check is currently quite bad.  This would improve
the results of using -ftrapv.