forked from OSchip/llvm-project
1117 lines
34 KiB
C++
1117 lines
34 KiB
C++
//===- StructurizeCFG.cpp -------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/StructurizeCFG.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/SCCIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
|
|
#include "llvm/Analysis/RegionInfo.h"
|
|
#include "llvm/Analysis/RegionIterator.h"
|
|
#include "llvm/Analysis/RegionPass.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "structurizecfg"
|
|
|
|
// The name for newly created blocks.
|
|
const char FlowBlockName[] = "Flow";
|
|
|
|
namespace {
|
|
|
|
static cl::opt<bool> ForceSkipUniformRegions(
|
|
"structurizecfg-skip-uniform-regions",
|
|
cl::Hidden,
|
|
cl::desc("Force whether the StructurizeCFG pass skips uniform regions"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
RelaxedUniformRegions("structurizecfg-relaxed-uniform-regions", cl::Hidden,
|
|
cl::desc("Allow relaxed uniform region checks"),
|
|
cl::init(true));
|
|
|
|
// Definition of the complex types used in this pass.
|
|
|
|
using BBValuePair = std::pair<BasicBlock *, Value *>;
|
|
|
|
using RNVector = SmallVector<RegionNode *, 8>;
|
|
using BBVector = SmallVector<BasicBlock *, 8>;
|
|
using BranchVector = SmallVector<BranchInst *, 8>;
|
|
using BBValueVector = SmallVector<BBValuePair, 2>;
|
|
|
|
using BBSet = SmallPtrSet<BasicBlock *, 8>;
|
|
|
|
using PhiMap = MapVector<PHINode *, BBValueVector>;
|
|
using BB2BBVecMap = MapVector<BasicBlock *, BBVector>;
|
|
|
|
using BBPhiMap = DenseMap<BasicBlock *, PhiMap>;
|
|
using BBPredicates = DenseMap<BasicBlock *, Value *>;
|
|
using PredMap = DenseMap<BasicBlock *, BBPredicates>;
|
|
using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>;
|
|
|
|
// A traits type that is intended to be used in graph algorithms. The graph
|
|
// traits starts at an entry node, and traverses the RegionNodes that are in
|
|
// the Nodes set.
|
|
struct SubGraphTraits {
|
|
using NodeRef = std::pair<RegionNode *, SmallDenseSet<RegionNode *> *>;
|
|
using BaseSuccIterator = GraphTraits<RegionNode *>::ChildIteratorType;
|
|
|
|
// This wraps a set of Nodes into the iterator, so we know which edges to
|
|
// filter out.
|
|
class WrappedSuccIterator
|
|
: public iterator_adaptor_base<
|
|
WrappedSuccIterator, BaseSuccIterator,
|
|
typename std::iterator_traits<BaseSuccIterator>::iterator_category,
|
|
NodeRef, std::ptrdiff_t, NodeRef *, NodeRef> {
|
|
SmallDenseSet<RegionNode *> *Nodes;
|
|
|
|
public:
|
|
WrappedSuccIterator(BaseSuccIterator It, SmallDenseSet<RegionNode *> *Nodes)
|
|
: iterator_adaptor_base(It), Nodes(Nodes) {}
|
|
|
|
NodeRef operator*() const { return {*I, Nodes}; }
|
|
};
|
|
|
|
static bool filterAll(const NodeRef &N) { return true; }
|
|
static bool filterSet(const NodeRef &N) { return N.second->count(N.first); }
|
|
|
|
using ChildIteratorType =
|
|
filter_iterator<WrappedSuccIterator, bool (*)(const NodeRef &)>;
|
|
|
|
static NodeRef getEntryNode(Region *R) {
|
|
return {GraphTraits<Region *>::getEntryNode(R), nullptr};
|
|
}
|
|
|
|
static NodeRef getEntryNode(NodeRef N) { return N; }
|
|
|
|
static iterator_range<ChildIteratorType> children(const NodeRef &N) {
|
|
auto *filter = N.second ? &filterSet : &filterAll;
|
|
return make_filter_range(
|
|
make_range<WrappedSuccIterator>(
|
|
{GraphTraits<RegionNode *>::child_begin(N.first), N.second},
|
|
{GraphTraits<RegionNode *>::child_end(N.first), N.second}),
|
|
filter);
|
|
}
|
|
|
|
static ChildIteratorType child_begin(const NodeRef &N) {
|
|
return children(N).begin();
|
|
}
|
|
|
|
static ChildIteratorType child_end(const NodeRef &N) {
|
|
return children(N).end();
|
|
}
|
|
};
|
|
|
|
/// Finds the nearest common dominator of a set of BasicBlocks.
|
|
///
|
|
/// For every BB you add to the set, you can specify whether we "remember" the
|
|
/// block. When you get the common dominator, you can also ask whether it's one
|
|
/// of the blocks we remembered.
|
|
class NearestCommonDominator {
|
|
DominatorTree *DT;
|
|
BasicBlock *Result = nullptr;
|
|
bool ResultIsRemembered = false;
|
|
|
|
/// Add BB to the resulting dominator.
|
|
void addBlock(BasicBlock *BB, bool Remember) {
|
|
if (!Result) {
|
|
Result = BB;
|
|
ResultIsRemembered = Remember;
|
|
return;
|
|
}
|
|
|
|
BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB);
|
|
if (NewResult != Result)
|
|
ResultIsRemembered = false;
|
|
if (NewResult == BB)
|
|
ResultIsRemembered |= Remember;
|
|
Result = NewResult;
|
|
}
|
|
|
|
public:
|
|
explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {}
|
|
|
|
void addBlock(BasicBlock *BB) {
|
|
addBlock(BB, /* Remember = */ false);
|
|
}
|
|
|
|
void addAndRememberBlock(BasicBlock *BB) {
|
|
addBlock(BB, /* Remember = */ true);
|
|
}
|
|
|
|
/// Get the nearest common dominator of all the BBs added via addBlock() and
|
|
/// addAndRememberBlock().
|
|
BasicBlock *result() { return Result; }
|
|
|
|
/// Is the BB returned by getResult() one of the blocks we added to the set
|
|
/// with addAndRememberBlock()?
|
|
bool resultIsRememberedBlock() { return ResultIsRemembered; }
|
|
};
|
|
|
|
/// Transforms the control flow graph on one single entry/exit region
|
|
/// at a time.
|
|
///
|
|
/// After the transform all "If"/"Then"/"Else" style control flow looks like
|
|
/// this:
|
|
///
|
|
/// \verbatim
|
|
/// 1
|
|
/// ||
|
|
/// | |
|
|
/// 2 |
|
|
/// | /
|
|
/// |/
|
|
/// 3
|
|
/// || Where:
|
|
/// | | 1 = "If" block, calculates the condition
|
|
/// 4 | 2 = "Then" subregion, runs if the condition is true
|
|
/// | / 3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
|
|
/// |/ 4 = "Else" optional subregion, runs if the condition is false
|
|
/// 5 5 = "End" block, also rejoins the control flow
|
|
/// \endverbatim
|
|
///
|
|
/// Control flow is expressed as a branch where the true exit goes into the
|
|
/// "Then"/"Else" region, while the false exit skips the region
|
|
/// The condition for the optional "Else" region is expressed as a PHI node.
|
|
/// The incoming values of the PHI node are true for the "If" edge and false
|
|
/// for the "Then" edge.
|
|
///
|
|
/// Additionally to that even complicated loops look like this:
|
|
///
|
|
/// \verbatim
|
|
/// 1
|
|
/// ||
|
|
/// | |
|
|
/// 2 ^ Where:
|
|
/// | / 1 = "Entry" block
|
|
/// |/ 2 = "Loop" optional subregion, with all exits at "Flow" block
|
|
/// 3 3 = "Flow" block, with back edge to entry block
|
|
/// |
|
|
/// \endverbatim
|
|
///
|
|
/// The back edge of the "Flow" block is always on the false side of the branch
|
|
/// while the true side continues the general flow. So the loop condition
|
|
/// consist of a network of PHI nodes where the true incoming values expresses
|
|
/// breaks and the false values expresses continue states.
|
|
|
|
class StructurizeCFG {
|
|
Type *Boolean;
|
|
ConstantInt *BoolTrue;
|
|
ConstantInt *BoolFalse;
|
|
UndefValue *BoolUndef;
|
|
|
|
Function *Func;
|
|
Region *ParentRegion;
|
|
|
|
LegacyDivergenceAnalysis *DA = nullptr;
|
|
DominatorTree *DT;
|
|
|
|
SmallVector<RegionNode *, 8> Order;
|
|
BBSet Visited;
|
|
|
|
SmallVector<WeakVH, 8> AffectedPhis;
|
|
BBPhiMap DeletedPhis;
|
|
BB2BBVecMap AddedPhis;
|
|
|
|
PredMap Predicates;
|
|
BranchVector Conditions;
|
|
|
|
BB2BBMap Loops;
|
|
PredMap LoopPreds;
|
|
BranchVector LoopConds;
|
|
|
|
RegionNode *PrevNode;
|
|
|
|
void orderNodes();
|
|
|
|
void analyzeLoops(RegionNode *N);
|
|
|
|
Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert);
|
|
|
|
void gatherPredicates(RegionNode *N);
|
|
|
|
void collectInfos();
|
|
|
|
void insertConditions(bool Loops);
|
|
|
|
void delPhiValues(BasicBlock *From, BasicBlock *To);
|
|
|
|
void addPhiValues(BasicBlock *From, BasicBlock *To);
|
|
|
|
void setPhiValues();
|
|
|
|
void simplifyAffectedPhis();
|
|
|
|
void killTerminator(BasicBlock *BB);
|
|
|
|
void changeExit(RegionNode *Node, BasicBlock *NewExit,
|
|
bool IncludeDominator);
|
|
|
|
BasicBlock *getNextFlow(BasicBlock *Dominator);
|
|
|
|
BasicBlock *needPrefix(bool NeedEmpty);
|
|
|
|
BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed);
|
|
|
|
void setPrevNode(BasicBlock *BB);
|
|
|
|
bool dominatesPredicates(BasicBlock *BB, RegionNode *Node);
|
|
|
|
bool isPredictableTrue(RegionNode *Node);
|
|
|
|
void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd);
|
|
|
|
void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd);
|
|
|
|
void createFlow();
|
|
|
|
void rebuildSSA();
|
|
|
|
public:
|
|
void init(Region *R);
|
|
bool run(Region *R, DominatorTree *DT);
|
|
bool makeUniformRegion(Region *R, LegacyDivergenceAnalysis *DA);
|
|
};
|
|
|
|
class StructurizeCFGLegacyPass : public RegionPass {
|
|
bool SkipUniformRegions;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
explicit StructurizeCFGLegacyPass(bool SkipUniformRegions_ = false)
|
|
: RegionPass(ID), SkipUniformRegions(SkipUniformRegions_) {
|
|
if (ForceSkipUniformRegions.getNumOccurrences())
|
|
SkipUniformRegions = ForceSkipUniformRegions.getValue();
|
|
initializeStructurizeCFGLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnRegion(Region *R, RGPassManager &RGM) override {
|
|
StructurizeCFG SCFG;
|
|
SCFG.init(R);
|
|
if (SkipUniformRegions) {
|
|
LegacyDivergenceAnalysis *DA = &getAnalysis<LegacyDivergenceAnalysis>();
|
|
if (SCFG.makeUniformRegion(R, DA))
|
|
return false;
|
|
}
|
|
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
return SCFG.run(R, DT);
|
|
}
|
|
|
|
StringRef getPassName() const override { return "Structurize control flow"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
if (SkipUniformRegions)
|
|
AU.addRequired<LegacyDivergenceAnalysis>();
|
|
AU.addRequiredID(LowerSwitchID);
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
RegionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char StructurizeCFGLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(StructurizeCFGLegacyPass, "structurizecfg",
|
|
"Structurize the CFG", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
|
|
INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass)
|
|
INITIALIZE_PASS_END(StructurizeCFGLegacyPass, "structurizecfg",
|
|
"Structurize the CFG", false, false)
|
|
|
|
/// Build up the general order of nodes, by performing a topological sort of the
|
|
/// parent region's nodes, while ensuring that there is no outer cycle node
|
|
/// between any two inner cycle nodes.
|
|
void StructurizeCFG::orderNodes() {
|
|
Order.resize(std::distance(GraphTraits<Region *>::nodes_begin(ParentRegion),
|
|
GraphTraits<Region *>::nodes_end(ParentRegion)));
|
|
if (Order.empty())
|
|
return;
|
|
|
|
SmallDenseSet<RegionNode *> Nodes;
|
|
auto EntryNode = SubGraphTraits::getEntryNode(ParentRegion);
|
|
|
|
// A list of range indices of SCCs in Order, to be processed.
|
|
SmallVector<std::pair<unsigned, unsigned>, 8> WorkList;
|
|
unsigned I = 0, E = Order.size();
|
|
while (true) {
|
|
// Run through all the SCCs in the subgraph starting with Entry.
|
|
for (auto SCCI =
|
|
scc_iterator<SubGraphTraits::NodeRef, SubGraphTraits>::begin(
|
|
EntryNode);
|
|
!SCCI.isAtEnd(); ++SCCI) {
|
|
auto &SCC = *SCCI;
|
|
|
|
// An SCC up to the size of 2, can be reduced to an entry (the last node),
|
|
// and a possible additional node. Therefore, it is already in order, and
|
|
// there is no need to add it to the work-list.
|
|
unsigned Size = SCC.size();
|
|
if (Size > 2)
|
|
WorkList.emplace_back(I, I + Size);
|
|
|
|
// Add the SCC nodes to the Order array.
|
|
for (auto &N : SCC) {
|
|
assert(I < E && "SCC size mismatch!");
|
|
Order[I++] = N.first;
|
|
}
|
|
}
|
|
assert(I == E && "SCC size mismatch!");
|
|
|
|
// If there are no more SCCs to order, then we are done.
|
|
if (WorkList.empty())
|
|
break;
|
|
|
|
std::tie(I, E) = WorkList.pop_back_val();
|
|
|
|
// Collect the set of nodes in the SCC's subgraph. These are only the
|
|
// possible child nodes; we do not add the entry (last node) otherwise we
|
|
// will have the same exact SCC all over again.
|
|
Nodes.clear();
|
|
Nodes.insert(Order.begin() + I, Order.begin() + E - 1);
|
|
|
|
// Update the entry node.
|
|
EntryNode.first = Order[E - 1];
|
|
EntryNode.second = &Nodes;
|
|
}
|
|
}
|
|
|
|
/// Determine the end of the loops
|
|
void StructurizeCFG::analyzeLoops(RegionNode *N) {
|
|
if (N->isSubRegion()) {
|
|
// Test for exit as back edge
|
|
BasicBlock *Exit = N->getNodeAs<Region>()->getExit();
|
|
if (Visited.count(Exit))
|
|
Loops[Exit] = N->getEntry();
|
|
|
|
} else {
|
|
// Test for successors as back edge
|
|
BasicBlock *BB = N->getNodeAs<BasicBlock>();
|
|
BranchInst *Term = cast<BranchInst>(BB->getTerminator());
|
|
|
|
for (BasicBlock *Succ : Term->successors())
|
|
if (Visited.count(Succ))
|
|
Loops[Succ] = BB;
|
|
}
|
|
}
|
|
|
|
/// Build the condition for one edge
|
|
Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx,
|
|
bool Invert) {
|
|
Value *Cond = Invert ? BoolFalse : BoolTrue;
|
|
if (Term->isConditional()) {
|
|
Cond = Term->getCondition();
|
|
|
|
if (Idx != (unsigned)Invert)
|
|
Cond = invertCondition(Cond);
|
|
}
|
|
return Cond;
|
|
}
|
|
|
|
/// Analyze the predecessors of each block and build up predicates
|
|
void StructurizeCFG::gatherPredicates(RegionNode *N) {
|
|
RegionInfo *RI = ParentRegion->getRegionInfo();
|
|
BasicBlock *BB = N->getEntry();
|
|
BBPredicates &Pred = Predicates[BB];
|
|
BBPredicates &LPred = LoopPreds[BB];
|
|
|
|
for (BasicBlock *P : predecessors(BB)) {
|
|
// Ignore it if it's a branch from outside into our region entry
|
|
if (!ParentRegion->contains(P))
|
|
continue;
|
|
|
|
Region *R = RI->getRegionFor(P);
|
|
if (R == ParentRegion) {
|
|
// It's a top level block in our region
|
|
BranchInst *Term = cast<BranchInst>(P->getTerminator());
|
|
for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
|
|
BasicBlock *Succ = Term->getSuccessor(i);
|
|
if (Succ != BB)
|
|
continue;
|
|
|
|
if (Visited.count(P)) {
|
|
// Normal forward edge
|
|
if (Term->isConditional()) {
|
|
// Try to treat it like an ELSE block
|
|
BasicBlock *Other = Term->getSuccessor(!i);
|
|
if (Visited.count(Other) && !Loops.count(Other) &&
|
|
!Pred.count(Other) && !Pred.count(P)) {
|
|
|
|
Pred[Other] = BoolFalse;
|
|
Pred[P] = BoolTrue;
|
|
continue;
|
|
}
|
|
}
|
|
Pred[P] = buildCondition(Term, i, false);
|
|
} else {
|
|
// Back edge
|
|
LPred[P] = buildCondition(Term, i, true);
|
|
}
|
|
}
|
|
} else {
|
|
// It's an exit from a sub region
|
|
while (R->getParent() != ParentRegion)
|
|
R = R->getParent();
|
|
|
|
// Edge from inside a subregion to its entry, ignore it
|
|
if (*R == *N)
|
|
continue;
|
|
|
|
BasicBlock *Entry = R->getEntry();
|
|
if (Visited.count(Entry))
|
|
Pred[Entry] = BoolTrue;
|
|
else
|
|
LPred[Entry] = BoolFalse;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Collect various loop and predicate infos
|
|
void StructurizeCFG::collectInfos() {
|
|
// Reset predicate
|
|
Predicates.clear();
|
|
|
|
// and loop infos
|
|
Loops.clear();
|
|
LoopPreds.clear();
|
|
|
|
// Reset the visited nodes
|
|
Visited.clear();
|
|
|
|
for (RegionNode *RN : reverse(Order)) {
|
|
LLVM_DEBUG(dbgs() << "Visiting: "
|
|
<< (RN->isSubRegion() ? "SubRegion with entry: " : "")
|
|
<< RN->getEntry()->getName() << "\n");
|
|
|
|
// Analyze all the conditions leading to a node
|
|
gatherPredicates(RN);
|
|
|
|
// Remember that we've seen this node
|
|
Visited.insert(RN->getEntry());
|
|
|
|
// Find the last back edges
|
|
analyzeLoops(RN);
|
|
}
|
|
}
|
|
|
|
/// Insert the missing branch conditions
|
|
void StructurizeCFG::insertConditions(bool Loops) {
|
|
BranchVector &Conds = Loops ? LoopConds : Conditions;
|
|
Value *Default = Loops ? BoolTrue : BoolFalse;
|
|
SSAUpdater PhiInserter;
|
|
|
|
for (BranchInst *Term : Conds) {
|
|
assert(Term->isConditional());
|
|
|
|
BasicBlock *Parent = Term->getParent();
|
|
BasicBlock *SuccTrue = Term->getSuccessor(0);
|
|
BasicBlock *SuccFalse = Term->getSuccessor(1);
|
|
|
|
PhiInserter.Initialize(Boolean, "");
|
|
PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default);
|
|
PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default);
|
|
|
|
BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue];
|
|
|
|
NearestCommonDominator Dominator(DT);
|
|
Dominator.addBlock(Parent);
|
|
|
|
Value *ParentValue = nullptr;
|
|
for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) {
|
|
BasicBlock *BB = BBAndPred.first;
|
|
Value *Pred = BBAndPred.second;
|
|
|
|
if (BB == Parent) {
|
|
ParentValue = Pred;
|
|
break;
|
|
}
|
|
PhiInserter.AddAvailableValue(BB, Pred);
|
|
Dominator.addAndRememberBlock(BB);
|
|
}
|
|
|
|
if (ParentValue) {
|
|
Term->setCondition(ParentValue);
|
|
} else {
|
|
if (!Dominator.resultIsRememberedBlock())
|
|
PhiInserter.AddAvailableValue(Dominator.result(), Default);
|
|
|
|
Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Remove all PHI values coming from "From" into "To" and remember
|
|
/// them in DeletedPhis
|
|
void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
|
|
PhiMap &Map = DeletedPhis[To];
|
|
for (PHINode &Phi : To->phis()) {
|
|
bool Recorded = false;
|
|
while (Phi.getBasicBlockIndex(From) != -1) {
|
|
Value *Deleted = Phi.removeIncomingValue(From, false);
|
|
Map[&Phi].push_back(std::make_pair(From, Deleted));
|
|
if (!Recorded) {
|
|
AffectedPhis.push_back(&Phi);
|
|
Recorded = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Add a dummy PHI value as soon as we knew the new predecessor
|
|
void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
|
|
for (PHINode &Phi : To->phis()) {
|
|
Value *Undef = UndefValue::get(Phi.getType());
|
|
Phi.addIncoming(Undef, From);
|
|
}
|
|
AddedPhis[To].push_back(From);
|
|
}
|
|
|
|
/// Add the real PHI value as soon as everything is set up
|
|
void StructurizeCFG::setPhiValues() {
|
|
SmallVector<PHINode *, 8> InsertedPhis;
|
|
SSAUpdater Updater(&InsertedPhis);
|
|
for (const auto &AddedPhi : AddedPhis) {
|
|
BasicBlock *To = AddedPhi.first;
|
|
const BBVector &From = AddedPhi.second;
|
|
|
|
if (!DeletedPhis.count(To))
|
|
continue;
|
|
|
|
PhiMap &Map = DeletedPhis[To];
|
|
for (const auto &PI : Map) {
|
|
PHINode *Phi = PI.first;
|
|
Value *Undef = UndefValue::get(Phi->getType());
|
|
Updater.Initialize(Phi->getType(), "");
|
|
Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
|
|
Updater.AddAvailableValue(To, Undef);
|
|
|
|
NearestCommonDominator Dominator(DT);
|
|
Dominator.addBlock(To);
|
|
for (const auto &VI : PI.second) {
|
|
Updater.AddAvailableValue(VI.first, VI.second);
|
|
Dominator.addAndRememberBlock(VI.first);
|
|
}
|
|
|
|
if (!Dominator.resultIsRememberedBlock())
|
|
Updater.AddAvailableValue(Dominator.result(), Undef);
|
|
|
|
for (BasicBlock *FI : From)
|
|
Phi->setIncomingValueForBlock(FI, Updater.GetValueAtEndOfBlock(FI));
|
|
AffectedPhis.push_back(Phi);
|
|
}
|
|
|
|
DeletedPhis.erase(To);
|
|
}
|
|
assert(DeletedPhis.empty());
|
|
|
|
AffectedPhis.append(InsertedPhis.begin(), InsertedPhis.end());
|
|
}
|
|
|
|
void StructurizeCFG::simplifyAffectedPhis() {
|
|
bool Changed;
|
|
do {
|
|
Changed = false;
|
|
SimplifyQuery Q(Func->getParent()->getDataLayout());
|
|
Q.DT = DT;
|
|
for (WeakVH VH : AffectedPhis) {
|
|
if (auto Phi = dyn_cast_or_null<PHINode>(VH)) {
|
|
if (auto NewValue = SimplifyInstruction(Phi, Q)) {
|
|
Phi->replaceAllUsesWith(NewValue);
|
|
Phi->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
} while (Changed);
|
|
}
|
|
|
|
/// Remove phi values from all successors and then remove the terminator.
|
|
void StructurizeCFG::killTerminator(BasicBlock *BB) {
|
|
Instruction *Term = BB->getTerminator();
|
|
if (!Term)
|
|
return;
|
|
|
|
for (BasicBlock *Succ : successors(BB))
|
|
delPhiValues(BB, Succ);
|
|
|
|
if (DA)
|
|
DA->removeValue(Term);
|
|
Term->eraseFromParent();
|
|
}
|
|
|
|
/// Let node exit(s) point to NewExit
|
|
void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit,
|
|
bool IncludeDominator) {
|
|
if (Node->isSubRegion()) {
|
|
Region *SubRegion = Node->getNodeAs<Region>();
|
|
BasicBlock *OldExit = SubRegion->getExit();
|
|
BasicBlock *Dominator = nullptr;
|
|
|
|
// Find all the edges from the sub region to the exit.
|
|
// We use make_early_inc_range here because we modify BB's terminator.
|
|
for (BasicBlock *BB : llvm::make_early_inc_range(predecessors(OldExit))) {
|
|
if (!SubRegion->contains(BB))
|
|
continue;
|
|
|
|
// Modify the edges to point to the new exit
|
|
delPhiValues(BB, OldExit);
|
|
BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit);
|
|
addPhiValues(BB, NewExit);
|
|
|
|
// Find the new dominator (if requested)
|
|
if (IncludeDominator) {
|
|
if (!Dominator)
|
|
Dominator = BB;
|
|
else
|
|
Dominator = DT->findNearestCommonDominator(Dominator, BB);
|
|
}
|
|
}
|
|
|
|
// Change the dominator (if requested)
|
|
if (Dominator)
|
|
DT->changeImmediateDominator(NewExit, Dominator);
|
|
|
|
// Update the region info
|
|
SubRegion->replaceExit(NewExit);
|
|
} else {
|
|
BasicBlock *BB = Node->getNodeAs<BasicBlock>();
|
|
killTerminator(BB);
|
|
BranchInst::Create(NewExit, BB);
|
|
addPhiValues(BB, NewExit);
|
|
if (IncludeDominator)
|
|
DT->changeImmediateDominator(NewExit, BB);
|
|
}
|
|
}
|
|
|
|
/// Create a new flow node and update dominator tree and region info
|
|
BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) {
|
|
LLVMContext &Context = Func->getContext();
|
|
BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
|
|
Order.back()->getEntry();
|
|
BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
|
|
Func, Insert);
|
|
DT->addNewBlock(Flow, Dominator);
|
|
ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
|
|
return Flow;
|
|
}
|
|
|
|
/// Create a new or reuse the previous node as flow node
|
|
BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) {
|
|
BasicBlock *Entry = PrevNode->getEntry();
|
|
|
|
if (!PrevNode->isSubRegion()) {
|
|
killTerminator(Entry);
|
|
if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end())
|
|
return Entry;
|
|
}
|
|
|
|
// create a new flow node
|
|
BasicBlock *Flow = getNextFlow(Entry);
|
|
|
|
// and wire it up
|
|
changeExit(PrevNode, Flow, true);
|
|
PrevNode = ParentRegion->getBBNode(Flow);
|
|
return Flow;
|
|
}
|
|
|
|
/// Returns the region exit if possible, otherwise just a new flow node
|
|
BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow,
|
|
bool ExitUseAllowed) {
|
|
if (!Order.empty() || !ExitUseAllowed)
|
|
return getNextFlow(Flow);
|
|
|
|
BasicBlock *Exit = ParentRegion->getExit();
|
|
DT->changeImmediateDominator(Exit, Flow);
|
|
addPhiValues(Flow, Exit);
|
|
return Exit;
|
|
}
|
|
|
|
/// Set the previous node
|
|
void StructurizeCFG::setPrevNode(BasicBlock *BB) {
|
|
PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB)
|
|
: nullptr;
|
|
}
|
|
|
|
/// Does BB dominate all the predicates of Node?
|
|
bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) {
|
|
BBPredicates &Preds = Predicates[Node->getEntry()];
|
|
return llvm::all_of(Preds, [&](std::pair<BasicBlock *, Value *> Pred) {
|
|
return DT->dominates(BB, Pred.first);
|
|
});
|
|
}
|
|
|
|
/// Can we predict that this node will always be called?
|
|
bool StructurizeCFG::isPredictableTrue(RegionNode *Node) {
|
|
BBPredicates &Preds = Predicates[Node->getEntry()];
|
|
bool Dominated = false;
|
|
|
|
// Regionentry is always true
|
|
if (!PrevNode)
|
|
return true;
|
|
|
|
for (std::pair<BasicBlock*, Value*> Pred : Preds) {
|
|
BasicBlock *BB = Pred.first;
|
|
Value *V = Pred.second;
|
|
|
|
if (V != BoolTrue)
|
|
return false;
|
|
|
|
if (!Dominated && DT->dominates(BB, PrevNode->getEntry()))
|
|
Dominated = true;
|
|
}
|
|
|
|
// TODO: The dominator check is too strict
|
|
return Dominated;
|
|
}
|
|
|
|
/// Take one node from the order vector and wire it up
|
|
void StructurizeCFG::wireFlow(bool ExitUseAllowed,
|
|
BasicBlock *LoopEnd) {
|
|
RegionNode *Node = Order.pop_back_val();
|
|
Visited.insert(Node->getEntry());
|
|
|
|
if (isPredictableTrue(Node)) {
|
|
// Just a linear flow
|
|
if (PrevNode) {
|
|
changeExit(PrevNode, Node->getEntry(), true);
|
|
}
|
|
PrevNode = Node;
|
|
} else {
|
|
// Insert extra prefix node (or reuse last one)
|
|
BasicBlock *Flow = needPrefix(false);
|
|
|
|
// Insert extra postfix node (or use exit instead)
|
|
BasicBlock *Entry = Node->getEntry();
|
|
BasicBlock *Next = needPostfix(Flow, ExitUseAllowed);
|
|
|
|
// let it point to entry and next block
|
|
Conditions.push_back(BranchInst::Create(Entry, Next, BoolUndef, Flow));
|
|
addPhiValues(Flow, Entry);
|
|
DT->changeImmediateDominator(Entry, Flow);
|
|
|
|
PrevNode = Node;
|
|
while (!Order.empty() && !Visited.count(LoopEnd) &&
|
|
dominatesPredicates(Entry, Order.back())) {
|
|
handleLoops(false, LoopEnd);
|
|
}
|
|
|
|
changeExit(PrevNode, Next, false);
|
|
setPrevNode(Next);
|
|
}
|
|
}
|
|
|
|
void StructurizeCFG::handleLoops(bool ExitUseAllowed,
|
|
BasicBlock *LoopEnd) {
|
|
RegionNode *Node = Order.back();
|
|
BasicBlock *LoopStart = Node->getEntry();
|
|
|
|
if (!Loops.count(LoopStart)) {
|
|
wireFlow(ExitUseAllowed, LoopEnd);
|
|
return;
|
|
}
|
|
|
|
if (!isPredictableTrue(Node))
|
|
LoopStart = needPrefix(true);
|
|
|
|
LoopEnd = Loops[Node->getEntry()];
|
|
wireFlow(false, LoopEnd);
|
|
while (!Visited.count(LoopEnd)) {
|
|
handleLoops(false, LoopEnd);
|
|
}
|
|
|
|
// If the start of the loop is the entry block, we can't branch to it so
|
|
// insert a new dummy entry block.
|
|
Function *LoopFunc = LoopStart->getParent();
|
|
if (LoopStart == &LoopFunc->getEntryBlock()) {
|
|
LoopStart->setName("entry.orig");
|
|
|
|
BasicBlock *NewEntry =
|
|
BasicBlock::Create(LoopStart->getContext(),
|
|
"entry",
|
|
LoopFunc,
|
|
LoopStart);
|
|
BranchInst::Create(LoopStart, NewEntry);
|
|
DT->setNewRoot(NewEntry);
|
|
}
|
|
|
|
// Create an extra loop end node
|
|
LoopEnd = needPrefix(false);
|
|
BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed);
|
|
LoopConds.push_back(BranchInst::Create(Next, LoopStart,
|
|
BoolUndef, LoopEnd));
|
|
addPhiValues(LoopEnd, LoopStart);
|
|
setPrevNode(Next);
|
|
}
|
|
|
|
/// After this function control flow looks like it should be, but
|
|
/// branches and PHI nodes only have undefined conditions.
|
|
void StructurizeCFG::createFlow() {
|
|
BasicBlock *Exit = ParentRegion->getExit();
|
|
bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit);
|
|
|
|
AffectedPhis.clear();
|
|
DeletedPhis.clear();
|
|
AddedPhis.clear();
|
|
Conditions.clear();
|
|
LoopConds.clear();
|
|
|
|
PrevNode = nullptr;
|
|
Visited.clear();
|
|
|
|
while (!Order.empty()) {
|
|
handleLoops(EntryDominatesExit, nullptr);
|
|
}
|
|
|
|
if (PrevNode)
|
|
changeExit(PrevNode, Exit, EntryDominatesExit);
|
|
else
|
|
assert(EntryDominatesExit);
|
|
}
|
|
|
|
/// Handle a rare case where the disintegrated nodes instructions
|
|
/// no longer dominate all their uses. Not sure if this is really necessary
|
|
void StructurizeCFG::rebuildSSA() {
|
|
SSAUpdater Updater;
|
|
for (BasicBlock *BB : ParentRegion->blocks())
|
|
for (Instruction &I : *BB) {
|
|
bool Initialized = false;
|
|
// We may modify the use list as we iterate over it, so we use
|
|
// make_early_inc_range.
|
|
for (Use &U : llvm::make_early_inc_range(I.uses())) {
|
|
Instruction *User = cast<Instruction>(U.getUser());
|
|
if (User->getParent() == BB) {
|
|
continue;
|
|
} else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
|
|
if (UserPN->getIncomingBlock(U) == BB)
|
|
continue;
|
|
}
|
|
|
|
if (DT->dominates(&I, User))
|
|
continue;
|
|
|
|
if (!Initialized) {
|
|
Value *Undef = UndefValue::get(I.getType());
|
|
Updater.Initialize(I.getType(), "");
|
|
Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
|
|
Updater.AddAvailableValue(BB, &I);
|
|
Initialized = true;
|
|
}
|
|
Updater.RewriteUseAfterInsertions(U);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID,
|
|
const LegacyDivergenceAnalysis &DA) {
|
|
// Bool for if all sub-regions are uniform.
|
|
bool SubRegionsAreUniform = true;
|
|
// Count of how many direct children are conditional.
|
|
unsigned ConditionalDirectChildren = 0;
|
|
|
|
for (auto E : R->elements()) {
|
|
if (!E->isSubRegion()) {
|
|
auto Br = dyn_cast<BranchInst>(E->getEntry()->getTerminator());
|
|
if (!Br || !Br->isConditional())
|
|
continue;
|
|
|
|
if (!DA.isUniform(Br))
|
|
return false;
|
|
|
|
// One of our direct children is conditional.
|
|
ConditionalDirectChildren++;
|
|
|
|
LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName()
|
|
<< " has uniform terminator\n");
|
|
} else {
|
|
// Explicitly refuse to treat regions as uniform if they have non-uniform
|
|
// subregions. We cannot rely on DivergenceAnalysis for branches in
|
|
// subregions because those branches may have been removed and re-created,
|
|
// so we look for our metadata instead.
|
|
//
|
|
// Warning: It would be nice to treat regions as uniform based only on
|
|
// their direct child basic blocks' terminators, regardless of whether
|
|
// subregions are uniform or not. However, this requires a very careful
|
|
// look at SIAnnotateControlFlow to make sure nothing breaks there.
|
|
for (auto BB : E->getNodeAs<Region>()->blocks()) {
|
|
auto Br = dyn_cast<BranchInst>(BB->getTerminator());
|
|
if (!Br || !Br->isConditional())
|
|
continue;
|
|
|
|
if (!Br->getMetadata(UniformMDKindID)) {
|
|
// Early exit if we cannot have relaxed uniform regions.
|
|
if (!RelaxedUniformRegions)
|
|
return false;
|
|
|
|
SubRegionsAreUniform = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Our region is uniform if:
|
|
// 1. All conditional branches that are direct children are uniform (checked
|
|
// above).
|
|
// 2. And either:
|
|
// a. All sub-regions are uniform.
|
|
// b. There is one or less conditional branches among the direct children.
|
|
return SubRegionsAreUniform || (ConditionalDirectChildren <= 1);
|
|
}
|
|
|
|
void StructurizeCFG::init(Region *R) {
|
|
LLVMContext &Context = R->getEntry()->getContext();
|
|
|
|
Boolean = Type::getInt1Ty(Context);
|
|
BoolTrue = ConstantInt::getTrue(Context);
|
|
BoolFalse = ConstantInt::getFalse(Context);
|
|
BoolUndef = UndefValue::get(Boolean);
|
|
|
|
this->DA = nullptr;
|
|
}
|
|
|
|
bool StructurizeCFG::makeUniformRegion(Region *R,
|
|
LegacyDivergenceAnalysis *DA) {
|
|
if (R->isTopLevelRegion())
|
|
return false;
|
|
|
|
this->DA = DA;
|
|
// TODO: We could probably be smarter here with how we handle sub-regions.
|
|
// We currently rely on the fact that metadata is set by earlier invocations
|
|
// of the pass on sub-regions, and that this metadata doesn't get lost --
|
|
// but we shouldn't rely on metadata for correctness!
|
|
unsigned UniformMDKindID =
|
|
R->getEntry()->getContext().getMDKindID("structurizecfg.uniform");
|
|
|
|
if (hasOnlyUniformBranches(R, UniformMDKindID, *DA)) {
|
|
LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R
|
|
<< '\n');
|
|
|
|
// Mark all direct child block terminators as having been treated as
|
|
// uniform. To account for a possible future in which non-uniform
|
|
// sub-regions are treated more cleverly, indirect children are not
|
|
// marked as uniform.
|
|
MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {});
|
|
for (RegionNode *E : R->elements()) {
|
|
if (E->isSubRegion())
|
|
continue;
|
|
|
|
if (Instruction *Term = E->getEntry()->getTerminator())
|
|
Term->setMetadata(UniformMDKindID, MD);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Run the transformation for each region found
|
|
bool StructurizeCFG::run(Region *R, DominatorTree *DT) {
|
|
if (R->isTopLevelRegion())
|
|
return false;
|
|
|
|
this->DT = DT;
|
|
|
|
Func = R->getEntry()->getParent();
|
|
ParentRegion = R;
|
|
|
|
orderNodes();
|
|
collectInfos();
|
|
createFlow();
|
|
insertConditions(false);
|
|
insertConditions(true);
|
|
setPhiValues();
|
|
simplifyAffectedPhis();
|
|
rebuildSSA();
|
|
|
|
// Cleanup
|
|
Order.clear();
|
|
Visited.clear();
|
|
DeletedPhis.clear();
|
|
AddedPhis.clear();
|
|
Predicates.clear();
|
|
Conditions.clear();
|
|
Loops.clear();
|
|
LoopPreds.clear();
|
|
LoopConds.clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) {
|
|
return new StructurizeCFGLegacyPass(SkipUniformRegions);
|
|
}
|
|
|
|
static void addRegionIntoQueue(Region &R, std::vector<Region *> &Regions) {
|
|
Regions.push_back(&R);
|
|
for (const auto &E : R)
|
|
addRegionIntoQueue(*E, Regions);
|
|
}
|
|
|
|
PreservedAnalyses StructurizeCFGPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
|
|
bool Changed = false;
|
|
DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &RI = AM.getResult<RegionInfoAnalysis>(F);
|
|
std::vector<Region *> Regions;
|
|
addRegionIntoQueue(*RI.getTopLevelRegion(), Regions);
|
|
while (!Regions.empty()) {
|
|
Region *R = Regions.back();
|
|
StructurizeCFG SCFG;
|
|
SCFG.init(R);
|
|
Changed |= SCFG.run(R, DT);
|
|
Regions.pop_back();
|
|
}
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
return PA;
|
|
}
|