llvm-project/llvm/unittests/Analysis/LoopInfoTest.cpp

214 lines
7.6 KiB
C++

//===- LoopInfoTest.cpp - LoopInfo unit tests -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
using namespace llvm;
/// Build the loop info for the function and run the Test.
static void
runWithLoopInfo(Module &M, StringRef FuncName,
function_ref<void(Function &F, LoopInfo &LI)> Test) {
auto *F = M.getFunction(FuncName);
ASSERT_NE(F, nullptr) << "Could not find " << FuncName;
// Compute the dominator tree and the loop info for the function.
DominatorTree DT(*F);
LoopInfo LI(DT);
Test(*F, LI);
}
static std::unique_ptr<Module> makeLLVMModule(LLVMContext &Context,
const char *ModuleStr) {
SMDiagnostic Err;
return parseAssemblyString(ModuleStr, Err, Context);
}
// This tests that for a loop with a single latch, we get the loop id from
// its only latch, even in case the loop may not be in a simplified form.
TEST(LoopInfoTest, LoopWithSingleLatch) {
const char *ModuleStr =
"target datalayout = \"e-m:o-i64:64-f80:128-n8:16:32:64-S128\"\n"
"define void @foo(i32 %n) {\n"
"entry:\n"
" br i1 undef, label %for.cond, label %for.end\n"
"for.cond:\n"
" %i.0 = phi i32 [ 0, %entry ], [ %inc, %for.inc ]\n"
" %cmp = icmp slt i32 %i.0, %n\n"
" br i1 %cmp, label %for.inc, label %for.end\n"
"for.inc:\n"
" %inc = add nsw i32 %i.0, 1\n"
" br label %for.cond, !llvm.loop !0\n"
"for.end:\n"
" ret void\n"
"}\n"
"!0 = distinct !{!0, !1}\n"
"!1 = !{!\"llvm.loop.distribute.enable\", i1 true}\n";
// Parse the module.
LLVMContext Context;
std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleStr);
runWithLoopInfo(*M, "foo", [&](Function &F, LoopInfo &LI) {
Function::iterator FI = F.begin();
// First basic block is entry - skip it.
BasicBlock *Header = &*(++FI);
assert(Header->getName() == "for.cond");
Loop *L = LI.getLoopFor(Header);
// This loop is not in simplified form.
EXPECT_FALSE(L->isLoopSimplifyForm());
// Analyze the loop metadata id.
bool loopIDFoundAndSet = false;
// Try to get and set the metadata id for the loop.
if (MDNode *D = L->getLoopID()) {
L->setLoopID(D);
loopIDFoundAndSet = true;
}
// We must have successfully found and set the loop id in the
// only latch the loop has.
EXPECT_TRUE(loopIDFoundAndSet);
});
}
// Test loop id handling for a loop with multiple latches.
TEST(LoopInfoTest, LoopWithMultipleLatches) {
const char *ModuleStr =
"target datalayout = \"e-m:o-i64:64-f80:128-n8:16:32:64-S128\"\n"
"define void @foo(i32 %n) {\n"
"entry:\n"
" br i1 undef, label %for.cond, label %for.end\n"
"for.cond:\n"
" %i.0 = phi i32 [ 0, %entry ], [ %inc, %latch.1 ], [ %inc, %latch.2 ]\n"
" %inc = add nsw i32 %i.0, 1\n"
" %cmp = icmp slt i32 %i.0, %n\n"
" br i1 %cmp, label %latch.1, label %for.end\n"
"latch.1:\n"
" br i1 undef, label %for.cond, label %latch.2, !llvm.loop !0\n"
"latch.2:\n"
" br label %for.cond, !llvm.loop !0\n"
"for.end:\n"
" ret void\n"
"}\n"
"!0 = distinct !{!0, !1}\n"
"!1 = !{!\"llvm.loop.distribute.enable\", i1 true}\n";
// Parse the module.
LLVMContext Context;
std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleStr);
runWithLoopInfo(*M, "foo", [&](Function &F, LoopInfo &LI) {
Function::iterator FI = F.begin();
// First basic block is entry - skip it.
BasicBlock *Header = &*(++FI);
assert(Header->getName() == "for.cond");
Loop *L = LI.getLoopFor(Header);
EXPECT_NE(L, nullptr);
// This loop is not in simplified form.
EXPECT_FALSE(L->isLoopSimplifyForm());
// Try to get and set the metadata id for the loop.
MDNode *OldLoopID = L->getLoopID();
EXPECT_NE(OldLoopID, nullptr);
MDNode *NewLoopID = MDNode::get(Context, {nullptr});
// Set operand 0 to refer to the loop id itself.
NewLoopID->replaceOperandWith(0, NewLoopID);
L->setLoopID(NewLoopID);
EXPECT_EQ(L->getLoopID(), NewLoopID);
EXPECT_NE(L->getLoopID(), OldLoopID);
L->setLoopID(OldLoopID);
EXPECT_EQ(L->getLoopID(), OldLoopID);
EXPECT_NE(L->getLoopID(), NewLoopID);
});
}
TEST(LoopInfoTest, PreorderTraversals) {
const char *ModuleStr = "define void @f() {\n"
"entry:\n"
" br label %loop.0\n"
"loop.0:\n"
" br i1 undef, label %loop.0.0, label %loop.1\n"
"loop.0.0:\n"
" br i1 undef, label %loop.0.0, label %loop.0.1\n"
"loop.0.1:\n"
" br i1 undef, label %loop.0.1, label %loop.0.2\n"
"loop.0.2:\n"
" br i1 undef, label %loop.0.2, label %loop.0\n"
"loop.1:\n"
" br i1 undef, label %loop.1.0, label %end\n"
"loop.1.0:\n"
" br i1 undef, label %loop.1.0, label %loop.1.1\n"
"loop.1.1:\n"
" br i1 undef, label %loop.1.1, label %loop.1.2\n"
"loop.1.2:\n"
" br i1 undef, label %loop.1.2, label %loop.1\n"
"end:\n"
" ret void\n"
"}\n";
// Parse the module.
LLVMContext Context;
std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleStr);
Function &F = *M->begin();
DominatorTree DT(F);
LoopInfo LI;
LI.analyze(DT);
Function::iterator I = F.begin();
ASSERT_EQ("entry", I->getName());
++I;
Loop &L_0 = *LI.getLoopFor(&*I++);
ASSERT_EQ("loop.0", L_0.getHeader()->getName());
Loop &L_0_0 = *LI.getLoopFor(&*I++);
ASSERT_EQ("loop.0.0", L_0_0.getHeader()->getName());
Loop &L_0_1 = *LI.getLoopFor(&*I++);
ASSERT_EQ("loop.0.1", L_0_1.getHeader()->getName());
Loop &L_0_2 = *LI.getLoopFor(&*I++);
ASSERT_EQ("loop.0.2", L_0_2.getHeader()->getName());
Loop &L_1 = *LI.getLoopFor(&*I++);
ASSERT_EQ("loop.1", L_1.getHeader()->getName());
Loop &L_1_0 = *LI.getLoopFor(&*I++);
ASSERT_EQ("loop.1.0", L_1_0.getHeader()->getName());
Loop &L_1_1 = *LI.getLoopFor(&*I++);
ASSERT_EQ("loop.1.1", L_1_1.getHeader()->getName());
Loop &L_1_2 = *LI.getLoopFor(&*I++);
ASSERT_EQ("loop.1.2", L_1_2.getHeader()->getName());
auto Preorder = LI.getLoopsInPreorder();
ASSERT_EQ(8u, Preorder.size());
EXPECT_EQ(&L_0, Preorder[0]);
EXPECT_EQ(&L_0_0, Preorder[1]);
EXPECT_EQ(&L_0_1, Preorder[2]);
EXPECT_EQ(&L_0_2, Preorder[3]);
EXPECT_EQ(&L_1, Preorder[4]);
EXPECT_EQ(&L_1_0, Preorder[5]);
EXPECT_EQ(&L_1_1, Preorder[6]);
EXPECT_EQ(&L_1_2, Preorder[7]);
auto ReverseSiblingPreorder = LI.getLoopsInReverseSiblingPreorder();
ASSERT_EQ(8u, ReverseSiblingPreorder.size());
EXPECT_EQ(&L_1, ReverseSiblingPreorder[0]);
EXPECT_EQ(&L_1_2, ReverseSiblingPreorder[1]);
EXPECT_EQ(&L_1_1, ReverseSiblingPreorder[2]);
EXPECT_EQ(&L_1_0, ReverseSiblingPreorder[3]);
EXPECT_EQ(&L_0, ReverseSiblingPreorder[4]);
EXPECT_EQ(&L_0_2, ReverseSiblingPreorder[5]);
EXPECT_EQ(&L_0_1, ReverseSiblingPreorder[6]);
EXPECT_EQ(&L_0_0, ReverseSiblingPreorder[7]);
}