llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyFixFunctionBitca...

238 lines
8.1 KiB
C++

//===-- WebAssemblyFixFunctionBitcasts.cpp - Fix function bitcasts --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Fix bitcasted functions.
///
/// WebAssembly requires caller and callee signatures to match, however in LLVM,
/// some amount of slop is vaguely permitted. Detect mismatch by looking for
/// bitcasts of functions and rewrite them to use wrapper functions instead.
///
/// This doesn't catch all cases, such as when a function's address is taken in
/// one place and casted in another, but it works for many common cases.
///
/// Note that LLVM already optimizes away function bitcasts in common cases by
/// dropping arguments as needed, so this pass only ends up getting used in less
/// common cases.
///
//===----------------------------------------------------------------------===//
#include "WebAssembly.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "wasm-fix-function-bitcasts"
static cl::opt<bool> TemporaryWorkarounds(
"wasm-temporary-workarounds",
cl::desc("Apply certain temporary workarounds"),
cl::init(true), cl::Hidden);
namespace {
class FixFunctionBitcasts final : public ModulePass {
StringRef getPassName() const override {
return "WebAssembly Fix Function Bitcasts";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
ModulePass::getAnalysisUsage(AU);
}
bool runOnModule(Module &M) override;
public:
static char ID;
FixFunctionBitcasts() : ModulePass(ID) {}
};
} // End anonymous namespace
char FixFunctionBitcasts::ID = 0;
INITIALIZE_PASS(FixFunctionBitcasts, DEBUG_TYPE,
"Fix mismatching bitcasts for WebAssembly", false, false)
ModulePass *llvm::createWebAssemblyFixFunctionBitcasts() {
return new FixFunctionBitcasts();
}
// Recursively descend the def-use lists from V to find non-bitcast users of
// bitcasts of V.
static void FindUses(Value *V, Function &F,
SmallVectorImpl<std::pair<Use *, Function *>> &Uses,
SmallPtrSetImpl<Constant *> &ConstantBCs) {
for (Use &U : V->uses()) {
if (BitCastOperator *BC = dyn_cast<BitCastOperator>(U.getUser()))
FindUses(BC, F, Uses, ConstantBCs);
else if (U.get()->getType() != F.getType()) {
CallSite CS(U.getUser());
if (!CS)
// Skip uses that aren't immediately called
continue;
Value *Callee = CS.getCalledValue();
if (Callee != V)
// Skip calls where the function isn't the callee
continue;
if (isa<Constant>(U.get())) {
// Only add constant bitcasts to the list once; they get RAUW'd
auto c = ConstantBCs.insert(cast<Constant>(U.get()));
if (!c.second)
continue;
}
Uses.push_back(std::make_pair(&U, &F));
}
}
}
// Create a wrapper function with type Ty that calls F (which may have a
// different type). Attempt to support common bitcasted function idioms:
// - Call with more arguments than needed: arguments are dropped
// - Call with fewer arguments than needed: arguments are filled in with undef
// - Return value is not needed: drop it
// - Return value needed but not present: supply an undef
//
// For now, return nullptr without creating a wrapper if the wrapper cannot
// be generated due to incompatible types.
static Function *CreateWrapper(Function *F, FunctionType *Ty) {
Module *M = F->getParent();
Function *Wrapper =
Function::Create(Ty, Function::PrivateLinkage, "bitcast", M);
BasicBlock *BB = BasicBlock::Create(M->getContext(), "body", Wrapper);
// Determine what arguments to pass.
SmallVector<Value *, 4> Args;
Function::arg_iterator AI = Wrapper->arg_begin();
Function::arg_iterator AE = Wrapper->arg_end();
FunctionType::param_iterator PI = F->getFunctionType()->param_begin();
FunctionType::param_iterator PE = F->getFunctionType()->param_end();
for (; AI != AE && PI != PE; ++AI, ++PI) {
if (AI->getType() != *PI) {
Wrapper->eraseFromParent();
return nullptr;
}
Args.push_back(&*AI);
}
for (; PI != PE; ++PI)
Args.push_back(UndefValue::get(*PI));
if (F->isVarArg())
for (; AI != AE; ++AI)
Args.push_back(&*AI);
CallInst *Call = CallInst::Create(F, Args, "", BB);
// Determine what value to return.
if (Ty->getReturnType()->isVoidTy())
ReturnInst::Create(M->getContext(), BB);
else if (F->getFunctionType()->getReturnType()->isVoidTy())
ReturnInst::Create(M->getContext(), UndefValue::get(Ty->getReturnType()),
BB);
else if (F->getFunctionType()->getReturnType() == Ty->getReturnType())
ReturnInst::Create(M->getContext(), Call, BB);
else {
Wrapper->eraseFromParent();
return nullptr;
}
return Wrapper;
}
bool FixFunctionBitcasts::runOnModule(Module &M) {
Function *Main = nullptr;
CallInst *CallMain = nullptr;
SmallVector<std::pair<Use *, Function *>, 0> Uses;
SmallPtrSet<Constant *, 2> ConstantBCs;
// Collect all the places that need wrappers.
for (Function &F : M) {
FindUses(&F, F, Uses, ConstantBCs);
// If we have a "main" function, and its type isn't
// "int main(int argc, char *argv[])", create an artificial call with it
// bitcasted to that type so that we generate a wrapper for it, so that
// the C runtime can call it.
if (!TemporaryWorkarounds && !F.isDeclaration() && F.getName() == "main") {
Main = &F;
LLVMContext &C = M.getContext();
Type *MainArgTys[] = {
PointerType::get(Type::getInt8PtrTy(C), 0),
Type::getInt32Ty(C)
};
FunctionType *MainTy = FunctionType::get(Type::getInt32Ty(C), MainArgTys,
/*isVarArg=*/false);
if (F.getFunctionType() != MainTy) {
Value *Args[] = {
UndefValue::get(MainArgTys[0]),
UndefValue::get(MainArgTys[1])
};
Value *Casted = ConstantExpr::getBitCast(Main,
PointerType::get(MainTy, 0));
CallMain = CallInst::Create(Casted, Args, "call_main");
Use *UseMain = &CallMain->getOperandUse(2);
Uses.push_back(std::make_pair(UseMain, &F));
}
}
}
DenseMap<std::pair<Function *, FunctionType *>, Function *> Wrappers;
for (auto &UseFunc : Uses) {
Use *U = UseFunc.first;
Function *F = UseFunc.second;
PointerType *PTy = cast<PointerType>(U->get()->getType());
FunctionType *Ty = dyn_cast<FunctionType>(PTy->getElementType());
// If the function is casted to something like i8* as a "generic pointer"
// to be later casted to something else, we can't generate a wrapper for it.
// Just ignore such casts for now.
if (!Ty)
continue;
// Bitcasted vararg functions occur in Emscripten's implementation of
// EM_ASM, so suppress wrappers for them for now.
if (TemporaryWorkarounds && (Ty->isVarArg() || F->isVarArg()))
continue;
auto Pair = Wrappers.insert(std::make_pair(std::make_pair(F, Ty), nullptr));
if (Pair.second)
Pair.first->second = CreateWrapper(F, Ty);
Function *Wrapper = Pair.first->second;
if (!Wrapper)
continue;
if (isa<Constant>(U->get()))
U->get()->replaceAllUsesWith(Wrapper);
else
U->set(Wrapper);
}
// If we created a wrapper for main, rename the wrapper so that it's the
// one that gets called from startup.
if (CallMain) {
Main->setName("__original_main");
Function *MainWrapper =
cast<Function>(CallMain->getCalledValue()->stripPointerCasts());
MainWrapper->setName("main");
MainWrapper->setLinkage(Main->getLinkage());
MainWrapper->setVisibility(Main->getVisibility());
Main->setLinkage(Function::PrivateLinkage);
Main->setVisibility(Function::DefaultVisibility);
delete CallMain;
}
return true;
}