forked from OSchip/llvm-project
1236 lines
45 KiB
C++
1236 lines
45 KiB
C++
//===- MachineSink.cpp - Sinking for machine instructions -----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass moves instructions into successor blocks when possible, so that
|
|
// they aren't executed on paths where their results aren't needed.
|
|
//
|
|
// This pass is not intended to be a replacement or a complete alternative
|
|
// for an LLVM-IR-level sinking pass. It is only designed to sink simple
|
|
// constructs that are not exposed before lowering and instruction selection.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/SparseBitVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
|
|
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachinePostDominators.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/BranchProbability.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <map>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "machine-sink"
|
|
|
|
static cl::opt<bool>
|
|
SplitEdges("machine-sink-split",
|
|
cl::desc("Split critical edges during machine sinking"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
static cl::opt<bool>
|
|
UseBlockFreqInfo("machine-sink-bfi",
|
|
cl::desc("Use block frequency info to find successors to sink"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
|
|
"machine-sink-split-probability-threshold",
|
|
cl::desc(
|
|
"Percentage threshold for splitting single-instruction critical edge. "
|
|
"If the branch threshold is higher than this threshold, we allow "
|
|
"speculative execution of up to 1 instruction to avoid branching to "
|
|
"splitted critical edge"),
|
|
cl::init(40), cl::Hidden);
|
|
|
|
STATISTIC(NumSunk, "Number of machine instructions sunk");
|
|
STATISTIC(NumSplit, "Number of critical edges split");
|
|
STATISTIC(NumCoalesces, "Number of copies coalesced");
|
|
STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
|
|
|
|
namespace {
|
|
|
|
class MachineSinking : public MachineFunctionPass {
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
MachineRegisterInfo *MRI; // Machine register information
|
|
MachineDominatorTree *DT; // Machine dominator tree
|
|
MachinePostDominatorTree *PDT; // Machine post dominator tree
|
|
MachineLoopInfo *LI;
|
|
const MachineBlockFrequencyInfo *MBFI;
|
|
const MachineBranchProbabilityInfo *MBPI;
|
|
AliasAnalysis *AA;
|
|
|
|
// Remember which edges have been considered for breaking.
|
|
SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
|
|
CEBCandidates;
|
|
// Remember which edges we are about to split.
|
|
// This is different from CEBCandidates since those edges
|
|
// will be split.
|
|
SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
|
|
|
|
SparseBitVector<> RegsToClearKillFlags;
|
|
|
|
using AllSuccsCache =
|
|
std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
|
|
|
|
public:
|
|
static char ID; // Pass identification
|
|
|
|
MachineSinking() : MachineFunctionPass(ID) {
|
|
initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addRequired<MachinePostDominatorTree>();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addRequired<MachineBranchProbabilityInfo>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
AU.addPreserved<MachinePostDominatorTree>();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
if (UseBlockFreqInfo)
|
|
AU.addRequired<MachineBlockFrequencyInfo>();
|
|
}
|
|
|
|
void releaseMemory() override {
|
|
CEBCandidates.clear();
|
|
}
|
|
|
|
private:
|
|
bool ProcessBlock(MachineBasicBlock &MBB);
|
|
bool isWorthBreakingCriticalEdge(MachineInstr &MI,
|
|
MachineBasicBlock *From,
|
|
MachineBasicBlock *To);
|
|
|
|
/// Postpone the splitting of the given critical
|
|
/// edge (\p From, \p To).
|
|
///
|
|
/// We do not split the edges on the fly. Indeed, this invalidates
|
|
/// the dominance information and thus triggers a lot of updates
|
|
/// of that information underneath.
|
|
/// Instead, we postpone all the splits after each iteration of
|
|
/// the main loop. That way, the information is at least valid
|
|
/// for the lifetime of an iteration.
|
|
///
|
|
/// \return True if the edge is marked as toSplit, false otherwise.
|
|
/// False can be returned if, for instance, this is not profitable.
|
|
bool PostponeSplitCriticalEdge(MachineInstr &MI,
|
|
MachineBasicBlock *From,
|
|
MachineBasicBlock *To,
|
|
bool BreakPHIEdge);
|
|
bool SinkInstruction(MachineInstr &MI, bool &SawStore,
|
|
|
|
AllSuccsCache &AllSuccessors);
|
|
bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
|
|
MachineBasicBlock *DefMBB,
|
|
bool &BreakPHIEdge, bool &LocalUse) const;
|
|
MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
|
|
bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
|
|
bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock *SuccToSinkTo,
|
|
AllSuccsCache &AllSuccessors);
|
|
|
|
bool PerformTrivialForwardCoalescing(MachineInstr &MI,
|
|
MachineBasicBlock *MBB);
|
|
|
|
SmallVector<MachineBasicBlock *, 4> &
|
|
GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
|
|
AllSuccsCache &AllSuccessors) const;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char MachineSinking::ID = 0;
|
|
|
|
char &llvm::MachineSinkingID = MachineSinking::ID;
|
|
|
|
INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
|
|
"Machine code sinking", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
|
|
"Machine code sinking", false, false)
|
|
|
|
bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) {
|
|
if (!MI.isCopy())
|
|
return false;
|
|
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
if (!Register::isVirtualRegister(SrcReg) ||
|
|
!Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
|
|
return false;
|
|
|
|
const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
|
|
const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
|
|
if (SRC != DRC)
|
|
return false;
|
|
|
|
MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
|
|
if (DefMI->isCopyLike())
|
|
return false;
|
|
LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
|
|
LLVM_DEBUG(dbgs() << "*** to: " << MI);
|
|
MRI->replaceRegWith(DstReg, SrcReg);
|
|
MI.eraseFromParent();
|
|
|
|
// Conservatively, clear any kill flags, since it's possible that they are no
|
|
// longer correct.
|
|
MRI->clearKillFlags(SrcReg);
|
|
|
|
++NumCoalesces;
|
|
return true;
|
|
}
|
|
|
|
/// AllUsesDominatedByBlock - Return true if all uses of the specified register
|
|
/// occur in blocks dominated by the specified block. If any use is in the
|
|
/// definition block, then return false since it is never legal to move def
|
|
/// after uses.
|
|
bool
|
|
MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock *DefMBB,
|
|
bool &BreakPHIEdge,
|
|
bool &LocalUse) const {
|
|
assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
|
|
|
|
// Ignore debug uses because debug info doesn't affect the code.
|
|
if (MRI->use_nodbg_empty(Reg))
|
|
return true;
|
|
|
|
// BreakPHIEdge is true if all the uses are in the successor MBB being sunken
|
|
// into and they are all PHI nodes. In this case, machine-sink must break
|
|
// the critical edge first. e.g.
|
|
//
|
|
// %bb.1: derived from LLVM BB %bb4.preheader
|
|
// Predecessors according to CFG: %bb.0
|
|
// ...
|
|
// %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
|
|
// ...
|
|
// JE_4 <%bb.37>, implicit %eflags
|
|
// Successors according to CFG: %bb.37 %bb.2
|
|
//
|
|
// %bb.2: derived from LLVM BB %bb.nph
|
|
// Predecessors according to CFG: %bb.0 %bb.1
|
|
// %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
|
|
BreakPHIEdge = true;
|
|
for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
|
|
MachineInstr *UseInst = MO.getParent();
|
|
unsigned OpNo = &MO - &UseInst->getOperand(0);
|
|
MachineBasicBlock *UseBlock = UseInst->getParent();
|
|
if (!(UseBlock == MBB && UseInst->isPHI() &&
|
|
UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
|
|
BreakPHIEdge = false;
|
|
break;
|
|
}
|
|
}
|
|
if (BreakPHIEdge)
|
|
return true;
|
|
|
|
for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
|
|
// Determine the block of the use.
|
|
MachineInstr *UseInst = MO.getParent();
|
|
unsigned OpNo = &MO - &UseInst->getOperand(0);
|
|
MachineBasicBlock *UseBlock = UseInst->getParent();
|
|
if (UseInst->isPHI()) {
|
|
// PHI nodes use the operand in the predecessor block, not the block with
|
|
// the PHI.
|
|
UseBlock = UseInst->getOperand(OpNo+1).getMBB();
|
|
} else if (UseBlock == DefMBB) {
|
|
LocalUse = true;
|
|
return false;
|
|
}
|
|
|
|
// Check that it dominates.
|
|
if (!DT->dominates(MBB, UseBlock))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
|
|
if (skipFunction(MF.getFunction()))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
|
|
|
|
TII = MF.getSubtarget().getInstrInfo();
|
|
TRI = MF.getSubtarget().getRegisterInfo();
|
|
MRI = &MF.getRegInfo();
|
|
DT = &getAnalysis<MachineDominatorTree>();
|
|
PDT = &getAnalysis<MachinePostDominatorTree>();
|
|
LI = &getAnalysis<MachineLoopInfo>();
|
|
MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
|
|
MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
|
|
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
|
|
bool EverMadeChange = false;
|
|
|
|
while (true) {
|
|
bool MadeChange = false;
|
|
|
|
// Process all basic blocks.
|
|
CEBCandidates.clear();
|
|
ToSplit.clear();
|
|
for (auto &MBB: MF)
|
|
MadeChange |= ProcessBlock(MBB);
|
|
|
|
// If we have anything we marked as toSplit, split it now.
|
|
for (auto &Pair : ToSplit) {
|
|
auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
|
|
if (NewSucc != nullptr) {
|
|
LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
|
|
<< printMBBReference(*Pair.first) << " -- "
|
|
<< printMBBReference(*NewSucc) << " -- "
|
|
<< printMBBReference(*Pair.second) << '\n');
|
|
MadeChange = true;
|
|
++NumSplit;
|
|
} else
|
|
LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
|
|
}
|
|
// If this iteration over the code changed anything, keep iterating.
|
|
if (!MadeChange) break;
|
|
EverMadeChange = true;
|
|
}
|
|
|
|
// Now clear any kill flags for recorded registers.
|
|
for (auto I : RegsToClearKillFlags)
|
|
MRI->clearKillFlags(I);
|
|
RegsToClearKillFlags.clear();
|
|
|
|
return EverMadeChange;
|
|
}
|
|
|
|
bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
|
|
// Can't sink anything out of a block that has less than two successors.
|
|
if (MBB.succ_size() <= 1 || MBB.empty()) return false;
|
|
|
|
// Don't bother sinking code out of unreachable blocks. In addition to being
|
|
// unprofitable, it can also lead to infinite looping, because in an
|
|
// unreachable loop there may be nowhere to stop.
|
|
if (!DT->isReachableFromEntry(&MBB)) return false;
|
|
|
|
bool MadeChange = false;
|
|
|
|
// Cache all successors, sorted by frequency info and loop depth.
|
|
AllSuccsCache AllSuccessors;
|
|
|
|
// Walk the basic block bottom-up. Remember if we saw a store.
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
--I;
|
|
bool ProcessedBegin, SawStore = false;
|
|
do {
|
|
MachineInstr &MI = *I; // The instruction to sink.
|
|
|
|
// Predecrement I (if it's not begin) so that it isn't invalidated by
|
|
// sinking.
|
|
ProcessedBegin = I == MBB.begin();
|
|
if (!ProcessedBegin)
|
|
--I;
|
|
|
|
if (MI.isDebugInstr())
|
|
continue;
|
|
|
|
bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
|
|
if (Joined) {
|
|
MadeChange = true;
|
|
continue;
|
|
}
|
|
|
|
if (SinkInstruction(MI, SawStore, AllSuccessors)) {
|
|
++NumSunk;
|
|
MadeChange = true;
|
|
}
|
|
|
|
// If we just processed the first instruction in the block, we're done.
|
|
} while (!ProcessedBegin);
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
|
|
MachineBasicBlock *From,
|
|
MachineBasicBlock *To) {
|
|
// FIXME: Need much better heuristics.
|
|
|
|
// If the pass has already considered breaking this edge (during this pass
|
|
// through the function), then let's go ahead and break it. This means
|
|
// sinking multiple "cheap" instructions into the same block.
|
|
if (!CEBCandidates.insert(std::make_pair(From, To)).second)
|
|
return true;
|
|
|
|
if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
|
|
return true;
|
|
|
|
if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
|
|
BranchProbability(SplitEdgeProbabilityThreshold, 100))
|
|
return true;
|
|
|
|
// MI is cheap, we probably don't want to break the critical edge for it.
|
|
// However, if this would allow some definitions of its source operands
|
|
// to be sunk then it's probably worth it.
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (Reg == 0)
|
|
continue;
|
|
|
|
// We don't move live definitions of physical registers,
|
|
// so sinking their uses won't enable any opportunities.
|
|
if (Register::isPhysicalRegister(Reg))
|
|
continue;
|
|
|
|
// If this instruction is the only user of a virtual register,
|
|
// check if breaking the edge will enable sinking
|
|
// both this instruction and the defining instruction.
|
|
if (MRI->hasOneNonDBGUse(Reg)) {
|
|
// If the definition resides in same MBB,
|
|
// claim it's likely we can sink these together.
|
|
// If definition resides elsewhere, we aren't
|
|
// blocking it from being sunk so don't break the edge.
|
|
MachineInstr *DefMI = MRI->getVRegDef(Reg);
|
|
if (DefMI->getParent() == MI.getParent())
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
|
|
MachineBasicBlock *FromBB,
|
|
MachineBasicBlock *ToBB,
|
|
bool BreakPHIEdge) {
|
|
if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
|
|
return false;
|
|
|
|
// Avoid breaking back edge. From == To means backedge for single BB loop.
|
|
if (!SplitEdges || FromBB == ToBB)
|
|
return false;
|
|
|
|
// Check for backedges of more "complex" loops.
|
|
if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
|
|
LI->isLoopHeader(ToBB))
|
|
return false;
|
|
|
|
// It's not always legal to break critical edges and sink the computation
|
|
// to the edge.
|
|
//
|
|
// %bb.1:
|
|
// v1024
|
|
// Beq %bb.3
|
|
// <fallthrough>
|
|
// %bb.2:
|
|
// ... no uses of v1024
|
|
// <fallthrough>
|
|
// %bb.3:
|
|
// ...
|
|
// = v1024
|
|
//
|
|
// If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
|
|
//
|
|
// %bb.1:
|
|
// ...
|
|
// Bne %bb.2
|
|
// %bb.4:
|
|
// v1024 =
|
|
// B %bb.3
|
|
// %bb.2:
|
|
// ... no uses of v1024
|
|
// <fallthrough>
|
|
// %bb.3:
|
|
// ...
|
|
// = v1024
|
|
//
|
|
// This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
|
|
// flow. We need to ensure the new basic block where the computation is
|
|
// sunk to dominates all the uses.
|
|
// It's only legal to break critical edge and sink the computation to the
|
|
// new block if all the predecessors of "To", except for "From", are
|
|
// not dominated by "From". Given SSA property, this means these
|
|
// predecessors are dominated by "To".
|
|
//
|
|
// There is no need to do this check if all the uses are PHI nodes. PHI
|
|
// sources are only defined on the specific predecessor edges.
|
|
if (!BreakPHIEdge) {
|
|
for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
|
|
E = ToBB->pred_end(); PI != E; ++PI) {
|
|
if (*PI == FromBB)
|
|
continue;
|
|
if (!DT->dominates(ToBB, *PI))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
ToSplit.insert(std::make_pair(FromBB, ToBB));
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
|
|
bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock *SuccToSinkTo,
|
|
AllSuccsCache &AllSuccessors) {
|
|
assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
|
|
|
|
if (MBB == SuccToSinkTo)
|
|
return false;
|
|
|
|
// It is profitable if SuccToSinkTo does not post dominate current block.
|
|
if (!PDT->dominates(SuccToSinkTo, MBB))
|
|
return true;
|
|
|
|
// It is profitable to sink an instruction from a deeper loop to a shallower
|
|
// loop, even if the latter post-dominates the former (PR21115).
|
|
if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
|
|
return true;
|
|
|
|
// Check if only use in post dominated block is PHI instruction.
|
|
bool NonPHIUse = false;
|
|
for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
|
|
MachineBasicBlock *UseBlock = UseInst.getParent();
|
|
if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
|
|
NonPHIUse = true;
|
|
}
|
|
if (!NonPHIUse)
|
|
return true;
|
|
|
|
// If SuccToSinkTo post dominates then also it may be profitable if MI
|
|
// can further profitably sinked into another block in next round.
|
|
bool BreakPHIEdge = false;
|
|
// FIXME - If finding successor is compile time expensive then cache results.
|
|
if (MachineBasicBlock *MBB2 =
|
|
FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
|
|
return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
|
|
|
|
// If SuccToSinkTo is final destination and it is a post dominator of current
|
|
// block then it is not profitable to sink MI into SuccToSinkTo block.
|
|
return false;
|
|
}
|
|
|
|
/// Get the sorted sequence of successors for this MachineBasicBlock, possibly
|
|
/// computing it if it was not already cached.
|
|
SmallVector<MachineBasicBlock *, 4> &
|
|
MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
|
|
AllSuccsCache &AllSuccessors) const {
|
|
// Do we have the sorted successors in cache ?
|
|
auto Succs = AllSuccessors.find(MBB);
|
|
if (Succs != AllSuccessors.end())
|
|
return Succs->second;
|
|
|
|
SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
|
|
MBB->succ_end());
|
|
|
|
// Handle cases where sinking can happen but where the sink point isn't a
|
|
// successor. For example:
|
|
//
|
|
// x = computation
|
|
// if () {} else {}
|
|
// use x
|
|
//
|
|
const std::vector<MachineDomTreeNode *> &Children =
|
|
DT->getNode(MBB)->getChildren();
|
|
for (const auto &DTChild : Children)
|
|
// DomTree children of MBB that have MBB as immediate dominator are added.
|
|
if (DTChild->getIDom()->getBlock() == MI.getParent() &&
|
|
// Skip MBBs already added to the AllSuccs vector above.
|
|
!MBB->isSuccessor(DTChild->getBlock()))
|
|
AllSuccs.push_back(DTChild->getBlock());
|
|
|
|
// Sort Successors according to their loop depth or block frequency info.
|
|
llvm::stable_sort(
|
|
AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
|
|
uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
|
|
uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
|
|
bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
|
|
return HasBlockFreq ? LHSFreq < RHSFreq
|
|
: LI->getLoopDepth(L) < LI->getLoopDepth(R);
|
|
});
|
|
|
|
auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
|
|
|
|
return it.first->second;
|
|
}
|
|
|
|
/// FindSuccToSinkTo - Find a successor to sink this instruction to.
|
|
MachineBasicBlock *
|
|
MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
|
|
bool &BreakPHIEdge,
|
|
AllSuccsCache &AllSuccessors) {
|
|
assert (MBB && "Invalid MachineBasicBlock!");
|
|
|
|
// Loop over all the operands of the specified instruction. If there is
|
|
// anything we can't handle, bail out.
|
|
|
|
// SuccToSinkTo - This is the successor to sink this instruction to, once we
|
|
// decide.
|
|
MachineBasicBlock *SuccToSinkTo = nullptr;
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg()) continue; // Ignore non-register operands.
|
|
|
|
Register Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
|
|
if (Register::isPhysicalRegister(Reg)) {
|
|
if (MO.isUse()) {
|
|
// If the physreg has no defs anywhere, it's just an ambient register
|
|
// and we can freely move its uses. Alternatively, if it's allocatable,
|
|
// it could get allocated to something with a def during allocation.
|
|
if (!MRI->isConstantPhysReg(Reg))
|
|
return nullptr;
|
|
} else if (!MO.isDead()) {
|
|
// A def that isn't dead. We can't move it.
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
// Virtual register uses are always safe to sink.
|
|
if (MO.isUse()) continue;
|
|
|
|
// If it's not safe to move defs of the register class, then abort.
|
|
if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
|
|
return nullptr;
|
|
|
|
// Virtual register defs can only be sunk if all their uses are in blocks
|
|
// dominated by one of the successors.
|
|
if (SuccToSinkTo) {
|
|
// If a previous operand picked a block to sink to, then this operand
|
|
// must be sinkable to the same block.
|
|
bool LocalUse = false;
|
|
if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
|
|
BreakPHIEdge, LocalUse))
|
|
return nullptr;
|
|
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we should look at all the successors and decide which one
|
|
// we should sink to. If we have reliable block frequency information
|
|
// (frequency != 0) available, give successors with smaller frequencies
|
|
// higher priority, otherwise prioritize smaller loop depths.
|
|
for (MachineBasicBlock *SuccBlock :
|
|
GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
|
|
bool LocalUse = false;
|
|
if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
|
|
BreakPHIEdge, LocalUse)) {
|
|
SuccToSinkTo = SuccBlock;
|
|
break;
|
|
}
|
|
if (LocalUse)
|
|
// Def is used locally, it's never safe to move this def.
|
|
return nullptr;
|
|
}
|
|
|
|
// If we couldn't find a block to sink to, ignore this instruction.
|
|
if (!SuccToSinkTo)
|
|
return nullptr;
|
|
if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// It is not possible to sink an instruction into its own block. This can
|
|
// happen with loops.
|
|
if (MBB == SuccToSinkTo)
|
|
return nullptr;
|
|
|
|
// It's not safe to sink instructions to EH landing pad. Control flow into
|
|
// landing pad is implicitly defined.
|
|
if (SuccToSinkTo && SuccToSinkTo->isEHPad())
|
|
return nullptr;
|
|
|
|
return SuccToSinkTo;
|
|
}
|
|
|
|
/// Return true if MI is likely to be usable as a memory operation by the
|
|
/// implicit null check optimization.
|
|
///
|
|
/// This is a "best effort" heuristic, and should not be relied upon for
|
|
/// correctness. This returning true does not guarantee that the implicit null
|
|
/// check optimization is legal over MI, and this returning false does not
|
|
/// guarantee MI cannot possibly be used to do a null check.
|
|
static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI) {
|
|
using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
|
|
|
|
auto *MBB = MI.getParent();
|
|
if (MBB->pred_size() != 1)
|
|
return false;
|
|
|
|
auto *PredMBB = *MBB->pred_begin();
|
|
auto *PredBB = PredMBB->getBasicBlock();
|
|
|
|
// Frontends that don't use implicit null checks have no reason to emit
|
|
// branches with make.implicit metadata, and this function should always
|
|
// return false for them.
|
|
if (!PredBB ||
|
|
!PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
|
|
return false;
|
|
|
|
const MachineOperand *BaseOp;
|
|
int64_t Offset;
|
|
if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
|
|
return false;
|
|
|
|
if (!BaseOp->isReg())
|
|
return false;
|
|
|
|
if (!(MI.mayLoad() && !MI.isPredicable()))
|
|
return false;
|
|
|
|
MachineBranchPredicate MBP;
|
|
if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
|
|
return false;
|
|
|
|
return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
|
|
(MBP.Predicate == MachineBranchPredicate::PRED_NE ||
|
|
MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
|
|
MBP.LHS.getReg() == BaseOp->getReg();
|
|
}
|
|
|
|
/// Sink an instruction and its associated debug instructions. If the debug
|
|
/// instructions to be sunk are already known, they can be provided in DbgVals.
|
|
static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
|
|
MachineBasicBlock::iterator InsertPos,
|
|
SmallVectorImpl<MachineInstr *> *DbgVals = nullptr) {
|
|
// If debug values are provided use those, otherwise call collectDebugValues.
|
|
SmallVector<MachineInstr *, 2> DbgValuesToSink;
|
|
if (DbgVals)
|
|
DbgValuesToSink.insert(DbgValuesToSink.begin(),
|
|
DbgVals->begin(), DbgVals->end());
|
|
else
|
|
MI.collectDebugValues(DbgValuesToSink);
|
|
|
|
// If we cannot find a location to use (merge with), then we erase the debug
|
|
// location to prevent debug-info driven tools from potentially reporting
|
|
// wrong location information.
|
|
if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
|
|
MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
|
|
InsertPos->getDebugLoc()));
|
|
else
|
|
MI.setDebugLoc(DebugLoc());
|
|
|
|
// Move the instruction.
|
|
MachineBasicBlock *ParentBlock = MI.getParent();
|
|
SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
|
|
++MachineBasicBlock::iterator(MI));
|
|
|
|
// Move previously adjacent debug value instructions to the insert position.
|
|
for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
|
|
DBE = DbgValuesToSink.end();
|
|
DBI != DBE; ++DBI) {
|
|
MachineInstr *DbgMI = *DBI;
|
|
SuccToSinkTo.splice(InsertPos, ParentBlock, DbgMI,
|
|
++MachineBasicBlock::iterator(DbgMI));
|
|
}
|
|
}
|
|
|
|
/// SinkInstruction - Determine whether it is safe to sink the specified machine
|
|
/// instruction out of its current block into a successor.
|
|
bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
|
|
AllSuccsCache &AllSuccessors) {
|
|
// Don't sink instructions that the target prefers not to sink.
|
|
if (!TII->shouldSink(MI))
|
|
return false;
|
|
|
|
// Check if it's safe to move the instruction.
|
|
if (!MI.isSafeToMove(AA, SawStore))
|
|
return false;
|
|
|
|
// Convergent operations may not be made control-dependent on additional
|
|
// values.
|
|
if (MI.isConvergent())
|
|
return false;
|
|
|
|
// Don't break implicit null checks. This is a performance heuristic, and not
|
|
// required for correctness.
|
|
if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
|
|
return false;
|
|
|
|
// FIXME: This should include support for sinking instructions within the
|
|
// block they are currently in to shorten the live ranges. We often get
|
|
// instructions sunk into the top of a large block, but it would be better to
|
|
// also sink them down before their first use in the block. This xform has to
|
|
// be careful not to *increase* register pressure though, e.g. sinking
|
|
// "x = y + z" down if it kills y and z would increase the live ranges of y
|
|
// and z and only shrink the live range of x.
|
|
|
|
bool BreakPHIEdge = false;
|
|
MachineBasicBlock *ParentBlock = MI.getParent();
|
|
MachineBasicBlock *SuccToSinkTo =
|
|
FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
|
|
|
|
// If there are no outputs, it must have side-effects.
|
|
if (!SuccToSinkTo)
|
|
return false;
|
|
|
|
// If the instruction to move defines a dead physical register which is live
|
|
// when leaving the basic block, don't move it because it could turn into a
|
|
// "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
|
|
for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
|
|
const MachineOperand &MO = MI.getOperand(I);
|
|
if (!MO.isReg()) continue;
|
|
Register Reg = MO.getReg();
|
|
if (Reg == 0 || !Register::isPhysicalRegister(Reg))
|
|
continue;
|
|
if (SuccToSinkTo->isLiveIn(Reg))
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
|
|
|
|
// If the block has multiple predecessors, this is a critical edge.
|
|
// Decide if we can sink along it or need to break the edge.
|
|
if (SuccToSinkTo->pred_size() > 1) {
|
|
// We cannot sink a load across a critical edge - there may be stores in
|
|
// other code paths.
|
|
bool TryBreak = false;
|
|
bool store = true;
|
|
if (!MI.isSafeToMove(AA, store)) {
|
|
LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
|
|
TryBreak = true;
|
|
}
|
|
|
|
// We don't want to sink across a critical edge if we don't dominate the
|
|
// successor. We could be introducing calculations to new code paths.
|
|
if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
|
|
LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
|
|
TryBreak = true;
|
|
}
|
|
|
|
// Don't sink instructions into a loop.
|
|
if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
|
|
LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
|
|
TryBreak = true;
|
|
}
|
|
|
|
// Otherwise we are OK with sinking along a critical edge.
|
|
if (!TryBreak)
|
|
LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
|
|
else {
|
|
// Mark this edge as to be split.
|
|
// If the edge can actually be split, the next iteration of the main loop
|
|
// will sink MI in the newly created block.
|
|
bool Status =
|
|
PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
|
|
if (!Status)
|
|
LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
|
|
"break critical edge\n");
|
|
// The instruction will not be sunk this time.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (BreakPHIEdge) {
|
|
// BreakPHIEdge is true if all the uses are in the successor MBB being
|
|
// sunken into and they are all PHI nodes. In this case, machine-sink must
|
|
// break the critical edge first.
|
|
bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
|
|
SuccToSinkTo, BreakPHIEdge);
|
|
if (!Status)
|
|
LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
|
|
"break critical edge\n");
|
|
// The instruction will not be sunk this time.
|
|
return false;
|
|
}
|
|
|
|
// Determine where to insert into. Skip phi nodes.
|
|
MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
|
|
while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
|
|
++InsertPos;
|
|
|
|
performSink(MI, *SuccToSinkTo, InsertPos);
|
|
|
|
// Conservatively, clear any kill flags, since it's possible that they are no
|
|
// longer correct.
|
|
// Note that we have to clear the kill flags for any register this instruction
|
|
// uses as we may sink over another instruction which currently kills the
|
|
// used registers.
|
|
for (MachineOperand &MO : MI.operands()) {
|
|
if (MO.isReg() && MO.isUse())
|
|
RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// This pass is not intended to be a replacement or a complete alternative
|
|
// for the pre-ra machine sink pass. It is only designed to sink COPY
|
|
// instructions which should be handled after RA.
|
|
//
|
|
// This pass sinks COPY instructions into a successor block, if the COPY is not
|
|
// used in the current block and the COPY is live-in to a single successor
|
|
// (i.e., doesn't require the COPY to be duplicated). This avoids executing the
|
|
// copy on paths where their results aren't needed. This also exposes
|
|
// additional opportunites for dead copy elimination and shrink wrapping.
|
|
//
|
|
// These copies were either not handled by or are inserted after the MachineSink
|
|
// pass. As an example of the former case, the MachineSink pass cannot sink
|
|
// COPY instructions with allocatable source registers; for AArch64 these type
|
|
// of copy instructions are frequently used to move function parameters (PhyReg)
|
|
// into virtual registers in the entry block.
|
|
//
|
|
// For the machine IR below, this pass will sink %w19 in the entry into its
|
|
// successor (%bb.1) because %w19 is only live-in in %bb.1.
|
|
// %bb.0:
|
|
// %wzr = SUBSWri %w1, 1
|
|
// %w19 = COPY %w0
|
|
// Bcc 11, %bb.2
|
|
// %bb.1:
|
|
// Live Ins: %w19
|
|
// BL @fun
|
|
// %w0 = ADDWrr %w0, %w19
|
|
// RET %w0
|
|
// %bb.2:
|
|
// %w0 = COPY %wzr
|
|
// RET %w0
|
|
// As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
|
|
// able to see %bb.0 as a candidate.
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
|
|
class PostRAMachineSinking : public MachineFunctionPass {
|
|
public:
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
static char ID;
|
|
PostRAMachineSinking() : MachineFunctionPass(ID) {}
|
|
StringRef getPassName() const override { return "PostRA Machine Sink"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
|
|
private:
|
|
/// Track which register units have been modified and used.
|
|
LiveRegUnits ModifiedRegUnits, UsedRegUnits;
|
|
|
|
/// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
|
|
/// entry in this map for each unit it touches.
|
|
DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs;
|
|
|
|
/// Sink Copy instructions unused in the same block close to their uses in
|
|
/// successors.
|
|
bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
|
|
const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
|
|
};
|
|
} // namespace
|
|
|
|
char PostRAMachineSinking::ID = 0;
|
|
char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
|
|
|
|
INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
|
|
"PostRA Machine Sink", false, false)
|
|
|
|
static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
|
|
const TargetRegisterInfo *TRI) {
|
|
LiveRegUnits LiveInRegUnits(*TRI);
|
|
LiveInRegUnits.addLiveIns(MBB);
|
|
return !LiveInRegUnits.available(Reg);
|
|
}
|
|
|
|
static MachineBasicBlock *
|
|
getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
|
|
const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
|
|
unsigned Reg, const TargetRegisterInfo *TRI) {
|
|
// Try to find a single sinkable successor in which Reg is live-in.
|
|
MachineBasicBlock *BB = nullptr;
|
|
for (auto *SI : SinkableBBs) {
|
|
if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
|
|
// If BB is set here, Reg is live-in to at least two sinkable successors,
|
|
// so quit.
|
|
if (BB)
|
|
return nullptr;
|
|
BB = SI;
|
|
}
|
|
}
|
|
// Reg is not live-in to any sinkable successors.
|
|
if (!BB)
|
|
return nullptr;
|
|
|
|
// Check if any register aliased with Reg is live-in in other successors.
|
|
for (auto *SI : CurBB.successors()) {
|
|
if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
|
|
return nullptr;
|
|
}
|
|
return BB;
|
|
}
|
|
|
|
static MachineBasicBlock *
|
|
getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
|
|
const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
|
|
ArrayRef<unsigned> DefedRegsInCopy,
|
|
const TargetRegisterInfo *TRI) {
|
|
MachineBasicBlock *SingleBB = nullptr;
|
|
for (auto DefReg : DefedRegsInCopy) {
|
|
MachineBasicBlock *BB =
|
|
getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
|
|
if (!BB || (SingleBB && SingleBB != BB))
|
|
return nullptr;
|
|
SingleBB = BB;
|
|
}
|
|
return SingleBB;
|
|
}
|
|
|
|
static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
|
|
SmallVectorImpl<unsigned> &UsedOpsInCopy,
|
|
LiveRegUnits &UsedRegUnits,
|
|
const TargetRegisterInfo *TRI) {
|
|
for (auto U : UsedOpsInCopy) {
|
|
MachineOperand &MO = MI->getOperand(U);
|
|
Register SrcReg = MO.getReg();
|
|
if (!UsedRegUnits.available(SrcReg)) {
|
|
MachineBasicBlock::iterator NI = std::next(MI->getIterator());
|
|
for (MachineInstr &UI : make_range(NI, CurBB.end())) {
|
|
if (UI.killsRegister(SrcReg, TRI)) {
|
|
UI.clearRegisterKills(SrcReg, TRI);
|
|
MO.setIsKill(true);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
|
|
SmallVectorImpl<unsigned> &UsedOpsInCopy,
|
|
SmallVectorImpl<unsigned> &DefedRegsInCopy) {
|
|
MachineFunction &MF = *SuccBB->getParent();
|
|
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
|
|
for (unsigned DefReg : DefedRegsInCopy)
|
|
for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
|
|
SuccBB->removeLiveIn(*S);
|
|
for (auto U : UsedOpsInCopy) {
|
|
Register Reg = MI->getOperand(U).getReg();
|
|
if (!SuccBB->isLiveIn(Reg))
|
|
SuccBB->addLiveIn(Reg);
|
|
}
|
|
}
|
|
|
|
static bool hasRegisterDependency(MachineInstr *MI,
|
|
SmallVectorImpl<unsigned> &UsedOpsInCopy,
|
|
SmallVectorImpl<unsigned> &DefedRegsInCopy,
|
|
LiveRegUnits &ModifiedRegUnits,
|
|
LiveRegUnits &UsedRegUnits) {
|
|
bool HasRegDependency = false;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (MO.isDef()) {
|
|
if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
|
|
HasRegDependency = true;
|
|
break;
|
|
}
|
|
DefedRegsInCopy.push_back(Reg);
|
|
|
|
// FIXME: instead of isUse(), readsReg() would be a better fix here,
|
|
// For example, we can ignore modifications in reg with undef. However,
|
|
// it's not perfectly clear if skipping the internal read is safe in all
|
|
// other targets.
|
|
} else if (MO.isUse()) {
|
|
if (!ModifiedRegUnits.available(Reg)) {
|
|
HasRegDependency = true;
|
|
break;
|
|
}
|
|
UsedOpsInCopy.push_back(i);
|
|
}
|
|
}
|
|
return HasRegDependency;
|
|
}
|
|
|
|
static SmallSet<unsigned, 4> getRegUnits(unsigned Reg,
|
|
const TargetRegisterInfo *TRI) {
|
|
SmallSet<unsigned, 4> RegUnits;
|
|
for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
|
|
RegUnits.insert(*RI);
|
|
return RegUnits;
|
|
}
|
|
|
|
bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
|
|
MachineFunction &MF,
|
|
const TargetRegisterInfo *TRI,
|
|
const TargetInstrInfo *TII) {
|
|
SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
|
|
// FIXME: For now, we sink only to a successor which has a single predecessor
|
|
// so that we can directly sink COPY instructions to the successor without
|
|
// adding any new block or branch instruction.
|
|
for (MachineBasicBlock *SI : CurBB.successors())
|
|
if (!SI->livein_empty() && SI->pred_size() == 1)
|
|
SinkableBBs.insert(SI);
|
|
|
|
if (SinkableBBs.empty())
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
|
|
// Track which registers have been modified and used between the end of the
|
|
// block and the current instruction.
|
|
ModifiedRegUnits.clear();
|
|
UsedRegUnits.clear();
|
|
SeenDbgInstrs.clear();
|
|
|
|
for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
|
|
MachineInstr *MI = &*I;
|
|
++I;
|
|
|
|
// Track the operand index for use in Copy.
|
|
SmallVector<unsigned, 2> UsedOpsInCopy;
|
|
// Track the register number defed in Copy.
|
|
SmallVector<unsigned, 2> DefedRegsInCopy;
|
|
|
|
// We must sink this DBG_VALUE if its operand is sunk. To avoid searching
|
|
// for DBG_VALUEs later, record them when they're encountered.
|
|
if (MI->isDebugValue()) {
|
|
auto &MO = MI->getOperand(0);
|
|
if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
|
|
// Bail if we can already tell the sink would be rejected, rather
|
|
// than needlessly accumulating lots of DBG_VALUEs.
|
|
if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
|
|
ModifiedRegUnits, UsedRegUnits))
|
|
continue;
|
|
|
|
// Record debug use of each reg unit.
|
|
SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
|
|
for (unsigned Reg : Units)
|
|
SeenDbgInstrs[Reg].push_back(MI);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (MI->isDebugInstr())
|
|
continue;
|
|
|
|
// Do not move any instruction across function call.
|
|
if (MI->isCall())
|
|
return false;
|
|
|
|
if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
|
|
LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
|
|
TRI);
|
|
continue;
|
|
}
|
|
|
|
// Don't sink the COPY if it would violate a register dependency.
|
|
if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
|
|
ModifiedRegUnits, UsedRegUnits)) {
|
|
LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
|
|
TRI);
|
|
continue;
|
|
}
|
|
assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
|
|
"Unexpect SrcReg or DefReg");
|
|
MachineBasicBlock *SuccBB =
|
|
getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
|
|
// Don't sink if we cannot find a single sinkable successor in which Reg
|
|
// is live-in.
|
|
if (!SuccBB) {
|
|
LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
|
|
TRI);
|
|
continue;
|
|
}
|
|
assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
|
|
"Unexpected predecessor");
|
|
|
|
// Collect DBG_VALUEs that must sink with this copy. We've previously
|
|
// recorded which reg units that DBG_VALUEs read, if this instruction
|
|
// writes any of those units then the corresponding DBG_VALUEs must sink.
|
|
SetVector<MachineInstr *> DbgValsToSinkSet;
|
|
SmallVector<MachineInstr *, 4> DbgValsToSink;
|
|
for (auto &MO : MI->operands()) {
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
|
|
SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
|
|
for (unsigned Reg : Units)
|
|
for (auto *MI : SeenDbgInstrs.lookup(Reg))
|
|
DbgValsToSinkSet.insert(MI);
|
|
}
|
|
DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(),
|
|
DbgValsToSinkSet.end());
|
|
|
|
// Clear the kill flag if SrcReg is killed between MI and the end of the
|
|
// block.
|
|
clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
|
|
MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
|
|
performSink(*MI, *SuccBB, InsertPos, &DbgValsToSink);
|
|
updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
|
|
|
|
Changed = true;
|
|
++NumPostRACopySink;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
|
|
if (skipFunction(MF.getFunction()))
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
|
|
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
|
|
|
|
ModifiedRegUnits.init(*TRI);
|
|
UsedRegUnits.init(*TRI);
|
|
for (auto &BB : MF)
|
|
Changed |= tryToSinkCopy(BB, MF, TRI, TII);
|
|
|
|
return Changed;
|
|
}
|