forked from OSchip/llvm-project
461 lines
17 KiB
C++
461 lines
17 KiB
C++
//===-- ShadowStackGCLowering.cpp - Custom lowering for shadow-stack gc ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the custom lowering code required by the shadow-stack GC
|
|
// strategy.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/CodeGen/GCStrategy.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "shadowstackgclowering"
|
|
|
|
namespace {
|
|
|
|
class ShadowStackGCLowering : public FunctionPass {
|
|
/// RootChain - This is the global linked-list that contains the chain of GC
|
|
/// roots.
|
|
GlobalVariable *Head;
|
|
|
|
/// StackEntryTy - Abstract type of a link in the shadow stack.
|
|
///
|
|
StructType *StackEntryTy;
|
|
StructType *FrameMapTy;
|
|
|
|
/// Roots - GC roots in the current function. Each is a pair of the
|
|
/// intrinsic call and its corresponding alloca.
|
|
std::vector<std::pair<CallInst *, AllocaInst *>> Roots;
|
|
|
|
public:
|
|
static char ID;
|
|
ShadowStackGCLowering();
|
|
|
|
bool doInitialization(Module &M) override;
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
private:
|
|
bool IsNullValue(Value *V);
|
|
Constant *GetFrameMap(Function &F);
|
|
Type *GetConcreteStackEntryType(Function &F);
|
|
void CollectRoots(Function &F);
|
|
static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
|
|
Type *Ty, Value *BasePtr, int Idx1,
|
|
const char *Name);
|
|
static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
|
|
Type *Ty, Value *BasePtr, int Idx1, int Idx2,
|
|
const char *Name);
|
|
};
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(ShadowStackGCLowering, "shadow-stack-gc-lowering",
|
|
"Shadow Stack GC Lowering", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(GCModuleInfo)
|
|
INITIALIZE_PASS_END(ShadowStackGCLowering, "shadow-stack-gc-lowering",
|
|
"Shadow Stack GC Lowering", false, false)
|
|
|
|
FunctionPass *llvm::createShadowStackGCLoweringPass() { return new ShadowStackGCLowering(); }
|
|
|
|
char ShadowStackGCLowering::ID = 0;
|
|
|
|
ShadowStackGCLowering::ShadowStackGCLowering()
|
|
: FunctionPass(ID), Head(nullptr), StackEntryTy(nullptr),
|
|
FrameMapTy(nullptr) {
|
|
initializeShadowStackGCLoweringPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
namespace {
|
|
/// EscapeEnumerator - This is a little algorithm to find all escape points
|
|
/// from a function so that "finally"-style code can be inserted. In addition
|
|
/// to finding the existing return and unwind instructions, it also (if
|
|
/// necessary) transforms any call instructions into invokes and sends them to
|
|
/// a landing pad.
|
|
///
|
|
/// It's wrapped up in a state machine using the same transform C# uses for
|
|
/// 'yield return' enumerators, This transform allows it to be non-allocating.
|
|
class EscapeEnumerator {
|
|
Function &F;
|
|
const char *CleanupBBName;
|
|
|
|
// State.
|
|
int State;
|
|
Function::iterator StateBB, StateE;
|
|
IRBuilder<> Builder;
|
|
|
|
public:
|
|
EscapeEnumerator(Function &F, const char *N = "cleanup")
|
|
: F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {}
|
|
|
|
IRBuilder<> *Next() {
|
|
switch (State) {
|
|
default:
|
|
return nullptr;
|
|
|
|
case 0:
|
|
StateBB = F.begin();
|
|
StateE = F.end();
|
|
State = 1;
|
|
|
|
case 1:
|
|
// Find all 'return', 'resume', and 'unwind' instructions.
|
|
while (StateBB != StateE) {
|
|
BasicBlock *CurBB = StateBB++;
|
|
|
|
// Branches and invokes do not escape, only unwind, resume, and return
|
|
// do.
|
|
TerminatorInst *TI = CurBB->getTerminator();
|
|
if (!isa<ReturnInst>(TI) && !isa<ResumeInst>(TI))
|
|
continue;
|
|
|
|
Builder.SetInsertPoint(TI->getParent(), TI);
|
|
return &Builder;
|
|
}
|
|
|
|
State = 2;
|
|
|
|
// Find all 'call' instructions.
|
|
SmallVector<Instruction *, 16> Calls;
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
for (BasicBlock::iterator II = BB->begin(), EE = BB->end(); II != EE;
|
|
++II)
|
|
if (CallInst *CI = dyn_cast<CallInst>(II))
|
|
if (!CI->getCalledFunction() ||
|
|
!CI->getCalledFunction()->getIntrinsicID())
|
|
Calls.push_back(CI);
|
|
|
|
if (Calls.empty())
|
|
return nullptr;
|
|
|
|
// Create a cleanup block.
|
|
LLVMContext &C = F.getContext();
|
|
BasicBlock *CleanupBB = BasicBlock::Create(C, CleanupBBName, &F);
|
|
Type *ExnTy =
|
|
StructType::get(Type::getInt8PtrTy(C), Type::getInt32Ty(C), nullptr);
|
|
Constant *PersFn = F.getParent()->getOrInsertFunction(
|
|
"__gcc_personality_v0", FunctionType::get(Type::getInt32Ty(C), true));
|
|
LandingPadInst *LPad =
|
|
LandingPadInst::Create(ExnTy, PersFn, 1, "cleanup.lpad", CleanupBB);
|
|
LPad->setCleanup(true);
|
|
ResumeInst *RI = ResumeInst::Create(LPad, CleanupBB);
|
|
|
|
// Transform the 'call' instructions into 'invoke's branching to the
|
|
// cleanup block. Go in reverse order to make prettier BB names.
|
|
SmallVector<Value *, 16> Args;
|
|
for (unsigned I = Calls.size(); I != 0;) {
|
|
CallInst *CI = cast<CallInst>(Calls[--I]);
|
|
|
|
// Split the basic block containing the function call.
|
|
BasicBlock *CallBB = CI->getParent();
|
|
BasicBlock *NewBB =
|
|
CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont");
|
|
|
|
// Remove the unconditional branch inserted at the end of CallBB.
|
|
CallBB->getInstList().pop_back();
|
|
NewBB->getInstList().remove(CI);
|
|
|
|
// Create a new invoke instruction.
|
|
Args.clear();
|
|
CallSite CS(CI);
|
|
Args.append(CS.arg_begin(), CS.arg_end());
|
|
|
|
InvokeInst *II =
|
|
InvokeInst::Create(CI->getCalledValue(), NewBB, CleanupBB, Args,
|
|
CI->getName(), CallBB);
|
|
II->setCallingConv(CI->getCallingConv());
|
|
II->setAttributes(CI->getAttributes());
|
|
CI->replaceAllUsesWith(II);
|
|
delete CI;
|
|
}
|
|
|
|
Builder.SetInsertPoint(RI->getParent(), RI);
|
|
return &Builder;
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
Constant *ShadowStackGCLowering::GetFrameMap(Function &F) {
|
|
// doInitialization creates the abstract type of this value.
|
|
Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
|
|
|
|
// Truncate the ShadowStackDescriptor if some metadata is null.
|
|
unsigned NumMeta = 0;
|
|
SmallVector<Constant *, 16> Metadata;
|
|
for (unsigned I = 0; I != Roots.size(); ++I) {
|
|
Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1));
|
|
if (!C->isNullValue())
|
|
NumMeta = I + 1;
|
|
Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
|
|
}
|
|
Metadata.resize(NumMeta);
|
|
|
|
Type *Int32Ty = Type::getInt32Ty(F.getContext());
|
|
|
|
Constant *BaseElts[] = {
|
|
ConstantInt::get(Int32Ty, Roots.size(), false),
|
|
ConstantInt::get(Int32Ty, NumMeta, false),
|
|
};
|
|
|
|
Constant *DescriptorElts[] = {
|
|
ConstantStruct::get(FrameMapTy, BaseElts),
|
|
ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata)};
|
|
|
|
Type *EltTys[] = {DescriptorElts[0]->getType(), DescriptorElts[1]->getType()};
|
|
StructType *STy = StructType::create(EltTys, "gc_map." + utostr(NumMeta));
|
|
|
|
Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts);
|
|
|
|
// FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
|
|
// that, short of multithreaded LLVM, it should be safe; all that is
|
|
// necessary is that a simple Module::iterator loop not be invalidated.
|
|
// Appending to the GlobalVariable list is safe in that sense.
|
|
//
|
|
// All of the output passes emit globals last. The ExecutionEngine
|
|
// explicitly supports adding globals to the module after
|
|
// initialization.
|
|
//
|
|
// Still, if it isn't deemed acceptable, then this transformation needs
|
|
// to be a ModulePass (which means it cannot be in the 'llc' pipeline
|
|
// (which uses a FunctionPassManager (which segfaults (not asserts) if
|
|
// provided a ModulePass))).
|
|
Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
|
|
GlobalVariable::InternalLinkage, FrameMap,
|
|
"__gc_" + F.getName());
|
|
|
|
Constant *GEPIndices[2] = {
|
|
ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
|
|
ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)};
|
|
return ConstantExpr::getGetElementPtr(GV, GEPIndices);
|
|
}
|
|
|
|
Type *ShadowStackGCLowering::GetConcreteStackEntryType(Function &F) {
|
|
// doInitialization creates the generic version of this type.
|
|
std::vector<Type *> EltTys;
|
|
EltTys.push_back(StackEntryTy);
|
|
for (size_t I = 0; I != Roots.size(); I++)
|
|
EltTys.push_back(Roots[I].second->getAllocatedType());
|
|
|
|
return StructType::create(EltTys, "gc_stackentry." + F.getName().str());
|
|
}
|
|
|
|
/// doInitialization - If this module uses the GC intrinsics, find them now. If
|
|
/// not, exit fast.
|
|
bool ShadowStackGCLowering::doInitialization(Module &M) {
|
|
bool Active = false;
|
|
for (Function &F : M) {
|
|
if (F.hasGC() && F.getGC() == std::string("shadow-stack")) {
|
|
Active = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!Active)
|
|
return false;
|
|
|
|
// struct FrameMap {
|
|
// int32_t NumRoots; // Number of roots in stack frame.
|
|
// int32_t NumMeta; // Number of metadata descriptors. May be < NumRoots.
|
|
// void *Meta[]; // May be absent for roots without metadata.
|
|
// };
|
|
std::vector<Type *> EltTys;
|
|
// 32 bits is ok up to a 32GB stack frame. :)
|
|
EltTys.push_back(Type::getInt32Ty(M.getContext()));
|
|
// Specifies length of variable length array.
|
|
EltTys.push_back(Type::getInt32Ty(M.getContext()));
|
|
FrameMapTy = StructType::create(EltTys, "gc_map");
|
|
PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
|
|
|
|
// struct StackEntry {
|
|
// ShadowStackEntry *Next; // Caller's stack entry.
|
|
// FrameMap *Map; // Pointer to constant FrameMap.
|
|
// void *Roots[]; // Stack roots (in-place array, so we pretend).
|
|
// };
|
|
|
|
StackEntryTy = StructType::create(M.getContext(), "gc_stackentry");
|
|
|
|
EltTys.clear();
|
|
EltTys.push_back(PointerType::getUnqual(StackEntryTy));
|
|
EltTys.push_back(FrameMapPtrTy);
|
|
StackEntryTy->setBody(EltTys);
|
|
PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
|
|
|
|
// Get the root chain if it already exists.
|
|
Head = M.getGlobalVariable("llvm_gc_root_chain");
|
|
if (!Head) {
|
|
// If the root chain does not exist, insert a new one with linkonce
|
|
// linkage!
|
|
Head = new GlobalVariable(
|
|
M, StackEntryPtrTy, false, GlobalValue::LinkOnceAnyLinkage,
|
|
Constant::getNullValue(StackEntryPtrTy), "llvm_gc_root_chain");
|
|
} else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
|
|
Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
|
|
Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ShadowStackGCLowering::IsNullValue(Value *V) {
|
|
if (Constant *C = dyn_cast<Constant>(V))
|
|
return C->isNullValue();
|
|
return false;
|
|
}
|
|
|
|
void ShadowStackGCLowering::CollectRoots(Function &F) {
|
|
// FIXME: Account for original alignment. Could fragment the root array.
|
|
// Approach 1: Null initialize empty slots at runtime. Yuck.
|
|
// Approach 2: Emit a map of the array instead of just a count.
|
|
|
|
assert(Roots.empty() && "Not cleaned up?");
|
|
|
|
SmallVector<std::pair<CallInst *, AllocaInst *>, 16> MetaRoots;
|
|
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
|
|
if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
|
|
if (Function *F = CI->getCalledFunction())
|
|
if (F->getIntrinsicID() == Intrinsic::gcroot) {
|
|
std::pair<CallInst *, AllocaInst *> Pair = std::make_pair(
|
|
CI,
|
|
cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts()));
|
|
if (IsNullValue(CI->getArgOperand(1)))
|
|
Roots.push_back(Pair);
|
|
else
|
|
MetaRoots.push_back(Pair);
|
|
}
|
|
|
|
// Number roots with metadata (usually empty) at the beginning, so that the
|
|
// FrameMap::Meta array can be elided.
|
|
Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
|
|
}
|
|
|
|
GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
|
|
IRBuilder<> &B, Type *Ty,
|
|
Value *BasePtr, int Idx,
|
|
int Idx2,
|
|
const char *Name) {
|
|
Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
|
|
ConstantInt::get(Type::getInt32Ty(Context), Idx),
|
|
ConstantInt::get(Type::getInt32Ty(Context), Idx2)};
|
|
Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name);
|
|
|
|
assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
|
|
|
|
return dyn_cast<GetElementPtrInst>(Val);
|
|
}
|
|
|
|
GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
|
|
IRBuilder<> &B, Type *Ty, Value *BasePtr,
|
|
int Idx, const char *Name) {
|
|
Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
|
|
ConstantInt::get(Type::getInt32Ty(Context), Idx)};
|
|
Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name);
|
|
|
|
assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
|
|
|
|
return dyn_cast<GetElementPtrInst>(Val);
|
|
}
|
|
|
|
/// runOnFunction - Insert code to maintain the shadow stack.
|
|
bool ShadowStackGCLowering::runOnFunction(Function &F) {
|
|
// Quick exit for functions that do not use the shadow stack GC.
|
|
if (!F.hasGC() ||
|
|
F.getGC() != std::string("shadow-stack"))
|
|
return false;
|
|
|
|
LLVMContext &Context = F.getContext();
|
|
|
|
// Find calls to llvm.gcroot.
|
|
CollectRoots(F);
|
|
|
|
// If there are no roots in this function, then there is no need to add a
|
|
// stack map entry for it.
|
|
if (Roots.empty())
|
|
return false;
|
|
|
|
// Build the constant map and figure the type of the shadow stack entry.
|
|
Value *FrameMap = GetFrameMap(F);
|
|
Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
|
|
|
|
// Build the shadow stack entry at the very start of the function.
|
|
BasicBlock::iterator IP = F.getEntryBlock().begin();
|
|
IRBuilder<> AtEntry(IP->getParent(), IP);
|
|
|
|
Instruction *StackEntry =
|
|
AtEntry.CreateAlloca(ConcreteStackEntryTy, nullptr, "gc_frame");
|
|
|
|
while (isa<AllocaInst>(IP))
|
|
++IP;
|
|
AtEntry.SetInsertPoint(IP->getParent(), IP);
|
|
|
|
// Initialize the map pointer and load the current head of the shadow stack.
|
|
Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead");
|
|
Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
|
|
StackEntry, 0, 1, "gc_frame.map");
|
|
AtEntry.CreateStore(FrameMap, EntryMapPtr);
|
|
|
|
// After all the allocas...
|
|
for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
|
|
// For each root, find the corresponding slot in the aggregate...
|
|
Value *SlotPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
|
|
StackEntry, 1 + I, "gc_root");
|
|
|
|
// And use it in lieu of the alloca.
|
|
AllocaInst *OriginalAlloca = Roots[I].second;
|
|
SlotPtr->takeName(OriginalAlloca);
|
|
OriginalAlloca->replaceAllUsesWith(SlotPtr);
|
|
}
|
|
|
|
// Move past the original stores inserted by GCStrategy::InitRoots. This isn't
|
|
// really necessary (the collector would never see the intermediate state at
|
|
// runtime), but it's nicer not to push the half-initialized entry onto the
|
|
// shadow stack.
|
|
while (isa<StoreInst>(IP))
|
|
++IP;
|
|
AtEntry.SetInsertPoint(IP->getParent(), IP);
|
|
|
|
// Push the entry onto the shadow stack.
|
|
Instruction *EntryNextPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
|
|
StackEntry, 0, 0, "gc_frame.next");
|
|
Instruction *NewHeadVal = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
|
|
StackEntry, 0, "gc_newhead");
|
|
AtEntry.CreateStore(CurrentHead, EntryNextPtr);
|
|
AtEntry.CreateStore(NewHeadVal, Head);
|
|
|
|
// For each instruction that escapes...
|
|
EscapeEnumerator EE(F, "gc_cleanup");
|
|
while (IRBuilder<> *AtExit = EE.Next()) {
|
|
// Pop the entry from the shadow stack. Don't reuse CurrentHead from
|
|
// AtEntry, since that would make the value live for the entire function.
|
|
Instruction *EntryNextPtr2 =
|
|
CreateGEP(Context, *AtExit, ConcreteStackEntryTy, StackEntry, 0, 0,
|
|
"gc_frame.next");
|
|
Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead");
|
|
AtExit->CreateStore(SavedHead, Head);
|
|
}
|
|
|
|
// Delete the original allocas (which are no longer used) and the intrinsic
|
|
// calls (which are no longer valid). Doing this last avoids invalidating
|
|
// iterators.
|
|
for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
|
|
Roots[I].first->eraseFromParent();
|
|
Roots[I].second->eraseFromParent();
|
|
}
|
|
|
|
Roots.clear();
|
|
return true;
|
|
}
|