llvm-project/clang/lib/Lex/LiteralSupport.cpp

1735 lines
59 KiB
C++

//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the NumericLiteralParser, CharLiteralParser, and
// StringLiteralParser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/LiteralSupport.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/LexDiagnostic.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/Token.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <string>
using namespace clang;
static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
switch (kind) {
default: llvm_unreachable("Unknown token type!");
case tok::char_constant:
case tok::string_literal:
case tok::utf8_char_constant:
case tok::utf8_string_literal:
return Target.getCharWidth();
case tok::wide_char_constant:
case tok::wide_string_literal:
return Target.getWCharWidth();
case tok::utf16_char_constant:
case tok::utf16_string_literal:
return Target.getChar16Width();
case tok::utf32_char_constant:
case tok::utf32_string_literal:
return Target.getChar32Width();
}
}
static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
FullSourceLoc TokLoc,
const char *TokBegin,
const char *TokRangeBegin,
const char *TokRangeEnd) {
SourceLocation Begin =
Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
TokLoc.getManager(), Features);
SourceLocation End =
Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
TokLoc.getManager(), Features);
return CharSourceRange::getCharRange(Begin, End);
}
/// Produce a diagnostic highlighting some portion of a literal.
///
/// Emits the diagnostic \p DiagID, highlighting the range of characters from
/// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
/// a substring of a spelling buffer for the token beginning at \p TokBegin.
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
const LangOptions &Features, FullSourceLoc TokLoc,
const char *TokBegin, const char *TokRangeBegin,
const char *TokRangeEnd, unsigned DiagID) {
SourceLocation Begin =
Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
TokLoc.getManager(), Features);
return Diags->Report(Begin, DiagID) <<
MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
}
/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
/// either a character or a string literal.
static unsigned ProcessCharEscape(const char *ThisTokBegin,
const char *&ThisTokBuf,
const char *ThisTokEnd, bool &HadError,
FullSourceLoc Loc, unsigned CharWidth,
DiagnosticsEngine *Diags,
const LangOptions &Features) {
const char *EscapeBegin = ThisTokBuf;
// Skip the '\' char.
++ThisTokBuf;
// We know that this character can't be off the end of the buffer, because
// that would have been \", which would not have been the end of string.
unsigned ResultChar = *ThisTokBuf++;
switch (ResultChar) {
// These map to themselves.
case '\\': case '\'': case '"': case '?': break;
// These have fixed mappings.
case 'a':
// TODO: K&R: the meaning of '\\a' is different in traditional C
ResultChar = 7;
break;
case 'b':
ResultChar = 8;
break;
case 'e':
if (Diags)
Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
diag::ext_nonstandard_escape) << "e";
ResultChar = 27;
break;
case 'E':
if (Diags)
Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
diag::ext_nonstandard_escape) << "E";
ResultChar = 27;
break;
case 'f':
ResultChar = 12;
break;
case 'n':
ResultChar = 10;
break;
case 'r':
ResultChar = 13;
break;
case 't':
ResultChar = 9;
break;
case 'v':
ResultChar = 11;
break;
case 'x': { // Hex escape.
ResultChar = 0;
if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
if (Diags)
Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
diag::err_hex_escape_no_digits) << "x";
HadError = true;
break;
}
// Hex escapes are a maximal series of hex digits.
bool Overflow = false;
for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
if (CharVal == -1) break;
// About to shift out a digit?
if (ResultChar & 0xF0000000)
Overflow = true;
ResultChar <<= 4;
ResultChar |= CharVal;
}
// See if any bits will be truncated when evaluated as a character.
if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
Overflow = true;
ResultChar &= ~0U >> (32-CharWidth);
}
// Check for overflow.
if (Overflow && Diags) // Too many digits to fit in
Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
diag::err_escape_too_large) << 0;
break;
}
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7': {
// Octal escapes.
--ThisTokBuf;
ResultChar = 0;
// Octal escapes are a series of octal digits with maximum length 3.
// "\0123" is a two digit sequence equal to "\012" "3".
unsigned NumDigits = 0;
do {
ResultChar <<= 3;
ResultChar |= *ThisTokBuf++ - '0';
++NumDigits;
} while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
// Check for overflow. Reject '\777', but not L'\777'.
if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
if (Diags)
Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
diag::err_escape_too_large) << 1;
ResultChar &= ~0U >> (32-CharWidth);
}
break;
}
// Otherwise, these are not valid escapes.
case '(': case '{': case '[': case '%':
// GCC accepts these as extensions. We warn about them as such though.
if (Diags)
Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
diag::ext_nonstandard_escape)
<< std::string(1, ResultChar);
break;
default:
if (!Diags)
break;
if (isPrintable(ResultChar))
Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
diag::ext_unknown_escape)
<< std::string(1, ResultChar);
else
Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
diag::ext_unknown_escape)
<< "x" + llvm::utohexstr(ResultChar);
break;
}
return ResultChar;
}
static void appendCodePoint(unsigned Codepoint,
llvm::SmallVectorImpl<char> &Str) {
char ResultBuf[4];
char *ResultPtr = ResultBuf;
bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr);
(void)Res;
assert(Res && "Unexpected conversion failure");
Str.append(ResultBuf, ResultPtr);
}
void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
if (*I != '\\') {
Buf.push_back(*I);
continue;
}
++I;
assert(*I == 'u' || *I == 'U');
unsigned NumHexDigits;
if (*I == 'u')
NumHexDigits = 4;
else
NumHexDigits = 8;
assert(I + NumHexDigits <= E);
uint32_t CodePoint = 0;
for (++I; NumHexDigits != 0; ++I, --NumHexDigits) {
unsigned Value = llvm::hexDigitValue(*I);
assert(Value != -1U);
CodePoint <<= 4;
CodePoint += Value;
}
appendCodePoint(CodePoint, Buf);
--I;
}
}
/// ProcessUCNEscape - Read the Universal Character Name, check constraints and
/// return the UTF32.
static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
const char *ThisTokEnd,
uint32_t &UcnVal, unsigned short &UcnLen,
FullSourceLoc Loc, DiagnosticsEngine *Diags,
const LangOptions &Features,
bool in_char_string_literal = false) {
const char *UcnBegin = ThisTokBuf;
// Skip the '\u' char's.
ThisTokBuf += 2;
if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
if (Diags)
Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
return false;
}
UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
unsigned short UcnLenSave = UcnLen;
for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
if (CharVal == -1) break;
UcnVal <<= 4;
UcnVal |= CharVal;
}
// If we didn't consume the proper number of digits, there is a problem.
if (UcnLenSave) {
if (Diags)
Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
diag::err_ucn_escape_incomplete);
return false;
}
// Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
UcnVal > 0x10FFFF) { // maximum legal UTF32 value
if (Diags)
Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
diag::err_ucn_escape_invalid);
return false;
}
// C++11 allows UCNs that refer to control characters and basic source
// characters inside character and string literals
if (UcnVal < 0xa0 &&
(UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, `
bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
if (Diags) {
char BasicSCSChar = UcnVal;
if (UcnVal >= 0x20 && UcnVal < 0x7f)
Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
IsError ? diag::err_ucn_escape_basic_scs :
diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
<< StringRef(&BasicSCSChar, 1);
else
Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
IsError ? diag::err_ucn_control_character :
diag::warn_cxx98_compat_literal_ucn_control_character);
}
if (IsError)
return false;
}
if (!Features.CPlusPlus && !Features.C99 && Diags)
Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
diag::warn_ucn_not_valid_in_c89_literal);
return true;
}
/// MeasureUCNEscape - Determine the number of bytes within the resulting string
/// which this UCN will occupy.
static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
const char *ThisTokEnd, unsigned CharByteWidth,
const LangOptions &Features, bool &HadError) {
// UTF-32: 4 bytes per escape.
if (CharByteWidth == 4)
return 4;
uint32_t UcnVal = 0;
unsigned short UcnLen = 0;
FullSourceLoc Loc;
if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
UcnLen, Loc, nullptr, Features, true)) {
HadError = true;
return 0;
}
// UTF-16: 2 bytes for BMP, 4 bytes otherwise.
if (CharByteWidth == 2)
return UcnVal <= 0xFFFF ? 2 : 4;
// UTF-8.
if (UcnVal < 0x80)
return 1;
if (UcnVal < 0x800)
return 2;
if (UcnVal < 0x10000)
return 3;
return 4;
}
/// EncodeUCNEscape - Read the Universal Character Name, check constraints and
/// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
/// StringLiteralParser. When we decide to implement UCN's for identifiers,
/// we will likely rework our support for UCN's.
static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
const char *ThisTokEnd,
char *&ResultBuf, bool &HadError,
FullSourceLoc Loc, unsigned CharByteWidth,
DiagnosticsEngine *Diags,
const LangOptions &Features) {
typedef uint32_t UTF32;
UTF32 UcnVal = 0;
unsigned short UcnLen = 0;
if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
Loc, Diags, Features, true)) {
HadError = true;
return;
}
assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
"only character widths of 1, 2, or 4 bytes supported");
(void)UcnLen;
assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
if (CharByteWidth == 4) {
// FIXME: Make the type of the result buffer correct instead of
// using reinterpret_cast.
llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf);
*ResultPtr = UcnVal;
ResultBuf += 4;
return;
}
if (CharByteWidth == 2) {
// FIXME: Make the type of the result buffer correct instead of
// using reinterpret_cast.
llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf);
if (UcnVal <= (UTF32)0xFFFF) {
*ResultPtr = UcnVal;
ResultBuf += 2;
return;
}
// Convert to UTF16.
UcnVal -= 0x10000;
*ResultPtr = 0xD800 + (UcnVal >> 10);
*(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
ResultBuf += 4;
return;
}
assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
// Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
// The conversion below was inspired by:
// http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
// First, we determine how many bytes the result will require.
typedef uint8_t UTF8;
unsigned short bytesToWrite = 0;
if (UcnVal < (UTF32)0x80)
bytesToWrite = 1;
else if (UcnVal < (UTF32)0x800)
bytesToWrite = 2;
else if (UcnVal < (UTF32)0x10000)
bytesToWrite = 3;
else
bytesToWrite = 4;
const unsigned byteMask = 0xBF;
const unsigned byteMark = 0x80;
// Once the bits are split out into bytes of UTF8, this is a mask OR-ed
// into the first byte, depending on how many bytes follow.
static const UTF8 firstByteMark[5] = {
0x00, 0x00, 0xC0, 0xE0, 0xF0
};
// Finally, we write the bytes into ResultBuf.
ResultBuf += bytesToWrite;
switch (bytesToWrite) { // note: everything falls through.
case 4:
*--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
LLVM_FALLTHROUGH;
case 3:
*--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
LLVM_FALLTHROUGH;
case 2:
*--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
LLVM_FALLTHROUGH;
case 1:
*--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
}
// Update the buffer.
ResultBuf += bytesToWrite;
}
/// integer-constant: [C99 6.4.4.1]
/// decimal-constant integer-suffix
/// octal-constant integer-suffix
/// hexadecimal-constant integer-suffix
/// binary-literal integer-suffix [GNU, C++1y]
/// user-defined-integer-literal: [C++11 lex.ext]
/// decimal-literal ud-suffix
/// octal-literal ud-suffix
/// hexadecimal-literal ud-suffix
/// binary-literal ud-suffix [GNU, C++1y]
/// decimal-constant:
/// nonzero-digit
/// decimal-constant digit
/// octal-constant:
/// 0
/// octal-constant octal-digit
/// hexadecimal-constant:
/// hexadecimal-prefix hexadecimal-digit
/// hexadecimal-constant hexadecimal-digit
/// hexadecimal-prefix: one of
/// 0x 0X
/// binary-literal:
/// 0b binary-digit
/// 0B binary-digit
/// binary-literal binary-digit
/// integer-suffix:
/// unsigned-suffix [long-suffix]
/// unsigned-suffix [long-long-suffix]
/// long-suffix [unsigned-suffix]
/// long-long-suffix [unsigned-sufix]
/// nonzero-digit:
/// 1 2 3 4 5 6 7 8 9
/// octal-digit:
/// 0 1 2 3 4 5 6 7
/// hexadecimal-digit:
/// 0 1 2 3 4 5 6 7 8 9
/// a b c d e f
/// A B C D E F
/// binary-digit:
/// 0
/// 1
/// unsigned-suffix: one of
/// u U
/// long-suffix: one of
/// l L
/// long-long-suffix: one of
/// ll LL
///
/// floating-constant: [C99 6.4.4.2]
/// TODO: add rules...
///
NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
SourceLocation TokLoc,
Preprocessor &PP)
: PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
// This routine assumes that the range begin/end matches the regex for integer
// and FP constants (specifically, the 'pp-number' regex), and assumes that
// the byte at "*end" is both valid and not part of the regex. Because of
// this, it doesn't have to check for 'overscan' in various places.
assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
s = DigitsBegin = ThisTokBegin;
saw_exponent = false;
saw_period = false;
saw_ud_suffix = false;
isLong = false;
isUnsigned = false;
isLongLong = false;
isHalf = false;
isFloat = false;
isImaginary = false;
isFloat16 = false;
isFloat128 = false;
MicrosoftInteger = 0;
hadError = false;
if (*s == '0') { // parse radix
ParseNumberStartingWithZero(TokLoc);
if (hadError)
return;
} else { // the first digit is non-zero
radix = 10;
s = SkipDigits(s);
if (s == ThisTokEnd) {
// Done.
} else {
ParseDecimalOrOctalCommon(TokLoc);
if (hadError)
return;
}
}
SuffixBegin = s;
checkSeparator(TokLoc, s, CSK_AfterDigits);
// Parse the suffix. At this point we can classify whether we have an FP or
// integer constant.
bool isFPConstant = isFloatingLiteral();
// Loop over all of the characters of the suffix. If we see something bad,
// we break out of the loop.
for (; s != ThisTokEnd; ++s) {
switch (*s) {
case 'h': // FP Suffix for "half".
case 'H':
// OpenCL Extension v1.2 s9.5 - h or H suffix for half type.
if (!PP.getLangOpts().Half) break;
if (!isFPConstant) break; // Error for integer constant.
if (isHalf || isFloat || isLong) break; // HH, FH, LH invalid.
isHalf = true;
continue; // Success.
case 'f': // FP Suffix for "float"
case 'F':
if (!isFPConstant) break; // Error for integer constant.
if (isHalf || isFloat || isLong || isFloat128)
break; // HF, FF, LF, QF invalid.
if (s + 2 < ThisTokEnd && s[1] == '1' && s[2] == '6') {
s += 2; // success, eat up 2 characters.
isFloat16 = true;
continue;
}
isFloat = true;
continue; // Success.
case 'q': // FP Suffix for "__float128"
case 'Q':
if (!isFPConstant) break; // Error for integer constant.
if (isHalf || isFloat || isLong || isFloat128)
break; // HQ, FQ, LQ, QQ invalid.
isFloat128 = true;
continue; // Success.
case 'u':
case 'U':
if (isFPConstant) break; // Error for floating constant.
if (isUnsigned) break; // Cannot be repeated.
isUnsigned = true;
continue; // Success.
case 'l':
case 'L':
if (isLong || isLongLong) break; // Cannot be repeated.
if (isHalf || isFloat || isFloat128) break; // LH, LF, LQ invalid.
// Check for long long. The L's need to be adjacent and the same case.
if (s[1] == s[0]) {
assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
if (isFPConstant) break; // long long invalid for floats.
isLongLong = true;
++s; // Eat both of them.
} else {
isLong = true;
}
continue; // Success.
case 'i':
case 'I':
if (PP.getLangOpts().MicrosoftExt) {
if (isLong || isLongLong || MicrosoftInteger)
break;
if (!isFPConstant) {
// Allow i8, i16, i32, and i64.
switch (s[1]) {
case '8':
s += 2; // i8 suffix
MicrosoftInteger = 8;
break;
case '1':
if (s[2] == '6') {
s += 3; // i16 suffix
MicrosoftInteger = 16;
}
break;
case '3':
if (s[2] == '2') {
s += 3; // i32 suffix
MicrosoftInteger = 32;
}
break;
case '6':
if (s[2] == '4') {
s += 3; // i64 suffix
MicrosoftInteger = 64;
}
break;
default:
break;
}
}
if (MicrosoftInteger) {
assert(s <= ThisTokEnd && "didn't maximally munch?");
break;
}
}
// fall through.
case 'j':
case 'J':
if (isImaginary) break; // Cannot be repeated.
isImaginary = true;
continue; // Success.
}
// If we reached here, there was an error or a ud-suffix.
break;
}
// "i", "if", and "il" are user-defined suffixes in C++1y.
if (s != ThisTokEnd || isImaginary) {
// FIXME: Don't bother expanding UCNs if !tok.hasUCN().
expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
if (isValidUDSuffix(PP.getLangOpts(), UDSuffixBuf)) {
if (!isImaginary) {
// Any suffix pieces we might have parsed are actually part of the
// ud-suffix.
isLong = false;
isUnsigned = false;
isLongLong = false;
isFloat = false;
isFloat16 = false;
isHalf = false;
isImaginary = false;
MicrosoftInteger = 0;
}
saw_ud_suffix = true;
return;
}
if (s != ThisTokEnd) {
// Report an error if there are any.
PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
diag::err_invalid_suffix_constant)
<< StringRef(SuffixBegin, ThisTokEnd - SuffixBegin) << isFPConstant;
hadError = true;
}
}
}
/// ParseDecimalOrOctalCommon - This method is called for decimal or octal
/// numbers. It issues an error for illegal digits, and handles floating point
/// parsing. If it detects a floating point number, the radix is set to 10.
void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){
assert((radix == 8 || radix == 10) && "Unexpected radix");
// If we have a hex digit other than 'e' (which denotes a FP exponent) then
// the code is using an incorrect base.
if (isHexDigit(*s) && *s != 'e' && *s != 'E') {
PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
diag::err_invalid_digit) << StringRef(s, 1) << (radix == 8 ? 1 : 0);
hadError = true;
return;
}
if (*s == '.') {
checkSeparator(TokLoc, s, CSK_AfterDigits);
s++;
radix = 10;
saw_period = true;
checkSeparator(TokLoc, s, CSK_BeforeDigits);
s = SkipDigits(s); // Skip suffix.
}
if (*s == 'e' || *s == 'E') { // exponent
checkSeparator(TokLoc, s, CSK_AfterDigits);
const char *Exponent = s;
s++;
radix = 10;
saw_exponent = true;
if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
const char *first_non_digit = SkipDigits(s);
if (containsDigits(s, first_non_digit)) {
checkSeparator(TokLoc, s, CSK_BeforeDigits);
s = first_non_digit;
} else {
if (!hadError) {
PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
diag::err_exponent_has_no_digits);
hadError = true;
}
return;
}
}
}
/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
/// suffixes as ud-suffixes, because the diagnostic experience is better if we
/// treat it as an invalid suffix.
bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
StringRef Suffix) {
if (!LangOpts.CPlusPlus11 || Suffix.empty())
return false;
// By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
if (Suffix[0] == '_')
return true;
// In C++11, there are no library suffixes.
if (!LangOpts.CPlusPlus14)
return false;
// In C++1y, "s", "h", "min", "ms", "us", and "ns" are used in the library.
// Per tweaked N3660, "il", "i", and "if" are also used in the library.
return llvm::StringSwitch<bool>(Suffix)
.Cases("h", "min", "s", true)
.Cases("ms", "us", "ns", true)
.Cases("il", "i", "if", true)
.Default(false);
}
void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
const char *Pos,
CheckSeparatorKind IsAfterDigits) {
if (IsAfterDigits == CSK_AfterDigits) {
if (Pos == ThisTokBegin)
return;
--Pos;
} else if (Pos == ThisTokEnd)
return;
if (isDigitSeparator(*Pos)) {
PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin),
diag::err_digit_separator_not_between_digits)
<< IsAfterDigits;
hadError = true;
}
}
/// ParseNumberStartingWithZero - This method is called when the first character
/// of the number is found to be a zero. This means it is either an octal
/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
/// a floating point number (01239.123e4). Eat the prefix, determining the
/// radix etc.
void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
assert(s[0] == '0' && "Invalid method call");
s++;
int c1 = s[0];
// Handle a hex number like 0x1234.
if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
s++;
assert(s < ThisTokEnd && "didn't maximally munch?");
radix = 16;
DigitsBegin = s;
s = SkipHexDigits(s);
bool HasSignificandDigits = containsDigits(DigitsBegin, s);
if (s == ThisTokEnd) {
// Done.
} else if (*s == '.') {
s++;
saw_period = true;
const char *floatDigitsBegin = s;
s = SkipHexDigits(s);
if (containsDigits(floatDigitsBegin, s))
HasSignificandDigits = true;
if (HasSignificandDigits)
checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits);
}
if (!HasSignificandDigits) {
PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
diag::err_hex_constant_requires)
<< PP.getLangOpts().CPlusPlus << 1;
hadError = true;
return;
}
// A binary exponent can appear with or with a '.'. If dotted, the
// binary exponent is required.
if (*s == 'p' || *s == 'P') {
checkSeparator(TokLoc, s, CSK_AfterDigits);
const char *Exponent = s;
s++;
saw_exponent = true;
if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
const char *first_non_digit = SkipDigits(s);
if (!containsDigits(s, first_non_digit)) {
if (!hadError) {
PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
diag::err_exponent_has_no_digits);
hadError = true;
}
return;
}
checkSeparator(TokLoc, s, CSK_BeforeDigits);
s = first_non_digit;
if (!PP.getLangOpts().HexFloats)
PP.Diag(TokLoc, PP.getLangOpts().CPlusPlus
? diag::ext_hex_literal_invalid
: diag::ext_hex_constant_invalid);
else if (PP.getLangOpts().CPlusPlus17)
PP.Diag(TokLoc, diag::warn_cxx17_hex_literal);
} else if (saw_period) {
PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
diag::err_hex_constant_requires)
<< PP.getLangOpts().CPlusPlus << 0;
hadError = true;
}
return;
}
// Handle simple binary numbers 0b01010
if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
// 0b101010 is a C++1y / GCC extension.
PP.Diag(TokLoc,
PP.getLangOpts().CPlusPlus14
? diag::warn_cxx11_compat_binary_literal
: PP.getLangOpts().CPlusPlus
? diag::ext_binary_literal_cxx14
: diag::ext_binary_literal);
++s;
assert(s < ThisTokEnd && "didn't maximally munch?");
radix = 2;
DigitsBegin = s;
s = SkipBinaryDigits(s);
if (s == ThisTokEnd) {
// Done.
} else if (isHexDigit(*s)) {
PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
diag::err_invalid_digit) << StringRef(s, 1) << 2;
hadError = true;
}
// Other suffixes will be diagnosed by the caller.
return;
}
// For now, the radix is set to 8. If we discover that we have a
// floating point constant, the radix will change to 10. Octal floating
// point constants are not permitted (only decimal and hexadecimal).
radix = 8;
DigitsBegin = s;
s = SkipOctalDigits(s);
if (s == ThisTokEnd)
return; // Done, simple octal number like 01234
// If we have some other non-octal digit that *is* a decimal digit, see if
// this is part of a floating point number like 094.123 or 09e1.
if (isDigit(*s)) {
const char *EndDecimal = SkipDigits(s);
if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
s = EndDecimal;
radix = 10;
}
}
ParseDecimalOrOctalCommon(TokLoc);
}
static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
switch (Radix) {
case 2:
return NumDigits <= 64;
case 8:
return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
case 10:
return NumDigits <= 19; // floor(log10(2^64))
case 16:
return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
default:
llvm_unreachable("impossible Radix");
}
}
/// GetIntegerValue - Convert this numeric literal value to an APInt that
/// matches Val's input width. If there is an overflow, set Val to the low bits
/// of the result and return true. Otherwise, return false.
bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
// Fast path: Compute a conservative bound on the maximum number of
// bits per digit in this radix. If we can't possibly overflow a
// uint64 based on that bound then do the simple conversion to
// integer. This avoids the expensive overflow checking below, and
// handles the common cases that matter (small decimal integers and
// hex/octal values which don't overflow).
const unsigned NumDigits = SuffixBegin - DigitsBegin;
if (alwaysFitsInto64Bits(radix, NumDigits)) {
uint64_t N = 0;
for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
if (!isDigitSeparator(*Ptr))
N = N * radix + llvm::hexDigitValue(*Ptr);
// This will truncate the value to Val's input width. Simply check
// for overflow by comparing.
Val = N;
return Val.getZExtValue() != N;
}
Val = 0;
const char *Ptr = DigitsBegin;
llvm::APInt RadixVal(Val.getBitWidth(), radix);
llvm::APInt CharVal(Val.getBitWidth(), 0);
llvm::APInt OldVal = Val;
bool OverflowOccurred = false;
while (Ptr < SuffixBegin) {
if (isDigitSeparator(*Ptr)) {
++Ptr;
continue;
}
unsigned C = llvm::hexDigitValue(*Ptr++);
// If this letter is out of bound for this radix, reject it.
assert(C < radix && "NumericLiteralParser ctor should have rejected this");
CharVal = C;
// Add the digit to the value in the appropriate radix. If adding in digits
// made the value smaller, then this overflowed.
OldVal = Val;
// Multiply by radix, did overflow occur on the multiply?
Val *= RadixVal;
OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
// Add value, did overflow occur on the value?
// (a + b) ult b <=> overflow
Val += CharVal;
OverflowOccurred |= Val.ult(CharVal);
}
return OverflowOccurred;
}
llvm::APFloat::opStatus
NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
using llvm::APFloat;
unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
llvm::SmallString<16> Buffer;
StringRef Str(ThisTokBegin, n);
if (Str.find('\'') != StringRef::npos) {
Buffer.reserve(n);
std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
&isDigitSeparator);
Str = Buffer;
}
return Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
}
/// \verbatim
/// user-defined-character-literal: [C++11 lex.ext]
/// character-literal ud-suffix
/// ud-suffix:
/// identifier
/// character-literal: [C++11 lex.ccon]
/// ' c-char-sequence '
/// u' c-char-sequence '
/// U' c-char-sequence '
/// L' c-char-sequence '
/// u8' c-char-sequence ' [C++1z lex.ccon]
/// c-char-sequence:
/// c-char
/// c-char-sequence c-char
/// c-char:
/// any member of the source character set except the single-quote ',
/// backslash \, or new-line character
/// escape-sequence
/// universal-character-name
/// escape-sequence:
/// simple-escape-sequence
/// octal-escape-sequence
/// hexadecimal-escape-sequence
/// simple-escape-sequence:
/// one of \' \" \? \\ \a \b \f \n \r \t \v
/// octal-escape-sequence:
/// \ octal-digit
/// \ octal-digit octal-digit
/// \ octal-digit octal-digit octal-digit
/// hexadecimal-escape-sequence:
/// \x hexadecimal-digit
/// hexadecimal-escape-sequence hexadecimal-digit
/// universal-character-name: [C++11 lex.charset]
/// \u hex-quad
/// \U hex-quad hex-quad
/// hex-quad:
/// hex-digit hex-digit hex-digit hex-digit
/// \endverbatim
///
CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
SourceLocation Loc, Preprocessor &PP,
tok::TokenKind kind) {
// At this point we know that the character matches the regex "(L|u|U)?'.*'".
HadError = false;
Kind = kind;
const char *TokBegin = begin;
// Skip over wide character determinant.
if (Kind != tok::char_constant)
++begin;
if (Kind == tok::utf8_char_constant)
++begin;
// Skip over the entry quote.
assert(begin[0] == '\'' && "Invalid token lexed");
++begin;
// Remove an optional ud-suffix.
if (end[-1] != '\'') {
const char *UDSuffixEnd = end;
do {
--end;
} while (end[-1] != '\'');
// FIXME: Don't bother with this if !tok.hasUCN().
expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
UDSuffixOffset = end - TokBegin;
}
// Trim the ending quote.
assert(end != begin && "Invalid token lexed");
--end;
// FIXME: The "Value" is an uint64_t so we can handle char literals of
// up to 64-bits.
// FIXME: This extensively assumes that 'char' is 8-bits.
assert(PP.getTargetInfo().getCharWidth() == 8 &&
"Assumes char is 8 bits");
assert(PP.getTargetInfo().getIntWidth() <= 64 &&
(PP.getTargetInfo().getIntWidth() & 7) == 0 &&
"Assumes sizeof(int) on target is <= 64 and a multiple of char");
assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
"Assumes sizeof(wchar) on target is <= 64");
SmallVector<uint32_t, 4> codepoint_buffer;
codepoint_buffer.resize(end - begin);
uint32_t *buffer_begin = &codepoint_buffer.front();
uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
// Unicode escapes representing characters that cannot be correctly
// represented in a single code unit are disallowed in character literals
// by this implementation.
uint32_t largest_character_for_kind;
if (tok::wide_char_constant == Kind) {
largest_character_for_kind =
0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
} else if (tok::utf8_char_constant == Kind) {
largest_character_for_kind = 0x7F;
} else if (tok::utf16_char_constant == Kind) {
largest_character_for_kind = 0xFFFF;
} else if (tok::utf32_char_constant == Kind) {
largest_character_for_kind = 0x10FFFF;
} else {
largest_character_for_kind = 0x7Fu;
}
while (begin != end) {
// Is this a span of non-escape characters?
if (begin[0] != '\\') {
char const *start = begin;
do {
++begin;
} while (begin != end && *begin != '\\');
char const *tmp_in_start = start;
uint32_t *tmp_out_start = buffer_begin;
llvm::ConversionResult res =
llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start),
reinterpret_cast<llvm::UTF8 const *>(begin),
&buffer_begin, buffer_end, llvm::strictConversion);
if (res != llvm::conversionOK) {
// If we see bad encoding for unprefixed character literals, warn and
// simply copy the byte values, for compatibility with gcc and
// older versions of clang.
bool NoErrorOnBadEncoding = isAscii();
unsigned Msg = diag::err_bad_character_encoding;
if (NoErrorOnBadEncoding)
Msg = diag::warn_bad_character_encoding;
PP.Diag(Loc, Msg);
if (NoErrorOnBadEncoding) {
start = tmp_in_start;
buffer_begin = tmp_out_start;
for (; start != begin; ++start, ++buffer_begin)
*buffer_begin = static_cast<uint8_t>(*start);
} else {
HadError = true;
}
} else {
for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
if (*tmp_out_start > largest_character_for_kind) {
HadError = true;
PP.Diag(Loc, diag::err_character_too_large);
}
}
}
continue;
}
// Is this a Universal Character Name escape?
if (begin[1] == 'u' || begin[1] == 'U') {
unsigned short UcnLen = 0;
if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
FullSourceLoc(Loc, PP.getSourceManager()),
&PP.getDiagnostics(), PP.getLangOpts(), true)) {
HadError = true;
} else if (*buffer_begin > largest_character_for_kind) {
HadError = true;
PP.Diag(Loc, diag::err_character_too_large);
}
++buffer_begin;
continue;
}
unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
uint64_t result =
ProcessCharEscape(TokBegin, begin, end, HadError,
FullSourceLoc(Loc,PP.getSourceManager()),
CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
*buffer_begin++ = result;
}
unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
if (NumCharsSoFar > 1) {
if (isWide())
PP.Diag(Loc, diag::warn_extraneous_char_constant);
else if (isAscii() && NumCharsSoFar == 4)
PP.Diag(Loc, diag::ext_four_char_character_literal);
else if (isAscii())
PP.Diag(Loc, diag::ext_multichar_character_literal);
else
PP.Diag(Loc, diag::err_multichar_utf_character_literal);
IsMultiChar = true;
} else {
IsMultiChar = false;
}
llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
// Narrow character literals act as though their value is concatenated
// in this implementation, but warn on overflow.
bool multi_char_too_long = false;
if (isAscii() && isMultiChar()) {
LitVal = 0;
for (size_t i = 0; i < NumCharsSoFar; ++i) {
// check for enough leading zeros to shift into
multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
LitVal <<= 8;
LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
}
} else if (NumCharsSoFar > 0) {
// otherwise just take the last character
LitVal = buffer_begin[-1];
}
if (!HadError && multi_char_too_long) {
PP.Diag(Loc, diag::warn_char_constant_too_large);
}
// Transfer the value from APInt to uint64_t
Value = LitVal.getZExtValue();
// If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
// if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
// character constants are not sign extended in the this implementation:
// '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
PP.getLangOpts().CharIsSigned)
Value = (signed char)Value;
}
/// \verbatim
/// string-literal: [C++0x lex.string]
/// encoding-prefix " [s-char-sequence] "
/// encoding-prefix R raw-string
/// encoding-prefix:
/// u8
/// u
/// U
/// L
/// s-char-sequence:
/// s-char
/// s-char-sequence s-char
/// s-char:
/// any member of the source character set except the double-quote ",
/// backslash \, or new-line character
/// escape-sequence
/// universal-character-name
/// raw-string:
/// " d-char-sequence ( r-char-sequence ) d-char-sequence "
/// r-char-sequence:
/// r-char
/// r-char-sequence r-char
/// r-char:
/// any member of the source character set, except a right parenthesis )
/// followed by the initial d-char-sequence (which may be empty)
/// followed by a double quote ".
/// d-char-sequence:
/// d-char
/// d-char-sequence d-char
/// d-char:
/// any member of the basic source character set except:
/// space, the left parenthesis (, the right parenthesis ),
/// the backslash \, and the control characters representing horizontal
/// tab, vertical tab, form feed, and newline.
/// escape-sequence: [C++0x lex.ccon]
/// simple-escape-sequence
/// octal-escape-sequence
/// hexadecimal-escape-sequence
/// simple-escape-sequence:
/// one of \' \" \? \\ \a \b \f \n \r \t \v
/// octal-escape-sequence:
/// \ octal-digit
/// \ octal-digit octal-digit
/// \ octal-digit octal-digit octal-digit
/// hexadecimal-escape-sequence:
/// \x hexadecimal-digit
/// hexadecimal-escape-sequence hexadecimal-digit
/// universal-character-name:
/// \u hex-quad
/// \U hex-quad hex-quad
/// hex-quad:
/// hex-digit hex-digit hex-digit hex-digit
/// \endverbatim
///
StringLiteralParser::
StringLiteralParser(ArrayRef<Token> StringToks,
Preprocessor &PP, bool Complain)
: SM(PP.getSourceManager()), Features(PP.getLangOpts()),
Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() :nullptr),
MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
init(StringToks);
}
void StringLiteralParser::init(ArrayRef<Token> StringToks){
// The literal token may have come from an invalid source location (e.g. due
// to a PCH error), in which case the token length will be 0.
if (StringToks.empty() || StringToks[0].getLength() < 2)
return DiagnoseLexingError(SourceLocation());
// Scan all of the string portions, remember the max individual token length,
// computing a bound on the concatenated string length, and see whether any
// piece is a wide-string. If any of the string portions is a wide-string
// literal, the result is a wide-string literal [C99 6.4.5p4].
assert(!StringToks.empty() && "expected at least one token");
MaxTokenLength = StringToks[0].getLength();
assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
SizeBound = StringToks[0].getLength()-2; // -2 for "".
Kind = StringToks[0].getKind();
hadError = false;
// Implement Translation Phase #6: concatenation of string literals
/// (C99 5.1.1.2p1). The common case is only one string fragment.
for (unsigned i = 1; i != StringToks.size(); ++i) {
if (StringToks[i].getLength() < 2)
return DiagnoseLexingError(StringToks[i].getLocation());
// The string could be shorter than this if it needs cleaning, but this is a
// reasonable bound, which is all we need.
assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
SizeBound += StringToks[i].getLength()-2; // -2 for "".
// Remember maximum string piece length.
if (StringToks[i].getLength() > MaxTokenLength)
MaxTokenLength = StringToks[i].getLength();
// Remember if we see any wide or utf-8/16/32 strings.
// Also check for illegal concatenations.
if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
if (isAscii()) {
Kind = StringToks[i].getKind();
} else {
if (Diags)
Diags->Report(StringToks[i].getLocation(),
diag::err_unsupported_string_concat);
hadError = true;
}
}
}
// Include space for the null terminator.
++SizeBound;
// TODO: K&R warning: "traditional C rejects string constant concatenation"
// Get the width in bytes of char/wchar_t/char16_t/char32_t
CharByteWidth = getCharWidth(Kind, Target);
assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
CharByteWidth /= 8;
// The output buffer size needs to be large enough to hold wide characters.
// This is a worst-case assumption which basically corresponds to L"" "long".
SizeBound *= CharByteWidth;
// Size the temporary buffer to hold the result string data.
ResultBuf.resize(SizeBound);
// Likewise, but for each string piece.
SmallString<512> TokenBuf;
TokenBuf.resize(MaxTokenLength);
// Loop over all the strings, getting their spelling, and expanding them to
// wide strings as appropriate.
ResultPtr = &ResultBuf[0]; // Next byte to fill in.
Pascal = false;
SourceLocation UDSuffixTokLoc;
for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
const char *ThisTokBuf = &TokenBuf[0];
// Get the spelling of the token, which eliminates trigraphs, etc. We know
// that ThisTokBuf points to a buffer that is big enough for the whole token
// and 'spelled' tokens can only shrink.
bool StringInvalid = false;
unsigned ThisTokLen =
Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
&StringInvalid);
if (StringInvalid)
return DiagnoseLexingError(StringToks[i].getLocation());
const char *ThisTokBegin = ThisTokBuf;
const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
// Remove an optional ud-suffix.
if (ThisTokEnd[-1] != '"') {
const char *UDSuffixEnd = ThisTokEnd;
do {
--ThisTokEnd;
} while (ThisTokEnd[-1] != '"');
StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
if (UDSuffixBuf.empty()) {
if (StringToks[i].hasUCN())
expandUCNs(UDSuffixBuf, UDSuffix);
else
UDSuffixBuf.assign(UDSuffix);
UDSuffixToken = i;
UDSuffixOffset = ThisTokEnd - ThisTokBuf;
UDSuffixTokLoc = StringToks[i].getLocation();
} else {
SmallString<32> ExpandedUDSuffix;
if (StringToks[i].hasUCN()) {
expandUCNs(ExpandedUDSuffix, UDSuffix);
UDSuffix = ExpandedUDSuffix;
}
// C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
// result of a concatenation involving at least one user-defined-string-
// literal, all the participating user-defined-string-literals shall
// have the same ud-suffix.
if (UDSuffixBuf != UDSuffix) {
if (Diags) {
SourceLocation TokLoc = StringToks[i].getLocation();
Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
<< UDSuffixBuf << UDSuffix
<< SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
<< SourceRange(TokLoc, TokLoc);
}
hadError = true;
}
}
}
// Strip the end quote.
--ThisTokEnd;
// TODO: Input character set mapping support.
// Skip marker for wide or unicode strings.
if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
++ThisTokBuf;
// Skip 8 of u8 marker for utf8 strings.
if (ThisTokBuf[0] == '8')
++ThisTokBuf;
}
// Check for raw string
if (ThisTokBuf[0] == 'R') {
ThisTokBuf += 2; // skip R"
const char *Prefix = ThisTokBuf;
while (ThisTokBuf[0] != '(')
++ThisTokBuf;
++ThisTokBuf; // skip '('
// Remove same number of characters from the end
ThisTokEnd -= ThisTokBuf - Prefix;
assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
// C++14 [lex.string]p4: A source-file new-line in a raw string literal
// results in a new-line in the resulting execution string-literal.
StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
while (!RemainingTokenSpan.empty()) {
// Split the string literal on \r\n boundaries.
size_t CRLFPos = RemainingTokenSpan.find("\r\n");
StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos);
StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos);
// Copy everything before the \r\n sequence into the string literal.
if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF))
hadError = true;
// Point into the \n inside the \r\n sequence and operate on the
// remaining portion of the literal.
RemainingTokenSpan = AfterCRLF.substr(1);
}
} else {
if (ThisTokBuf[0] != '"') {
// The file may have come from PCH and then changed after loading the
// PCH; Fail gracefully.
return DiagnoseLexingError(StringToks[i].getLocation());
}
++ThisTokBuf; // skip "
// Check if this is a pascal string
if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
// If the \p sequence is found in the first token, we have a pascal string
// Otherwise, if we already have a pascal string, ignore the first \p
if (i == 0) {
++ThisTokBuf;
Pascal = true;
} else if (Pascal)
ThisTokBuf += 2;
}
while (ThisTokBuf != ThisTokEnd) {
// Is this a span of non-escape characters?
if (ThisTokBuf[0] != '\\') {
const char *InStart = ThisTokBuf;
do {
++ThisTokBuf;
} while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
// Copy the character span over.
if (CopyStringFragment(StringToks[i], ThisTokBegin,
StringRef(InStart, ThisTokBuf - InStart)))
hadError = true;
continue;
}
// Is this a Universal Character Name escape?
if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
ResultPtr, hadError,
FullSourceLoc(StringToks[i].getLocation(), SM),
CharByteWidth, Diags, Features);
continue;
}
// Otherwise, this is a non-UCN escape character. Process it.
unsigned ResultChar =
ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
FullSourceLoc(StringToks[i].getLocation(), SM),
CharByteWidth*8, Diags, Features);
if (CharByteWidth == 4) {
// FIXME: Make the type of the result buffer correct instead of
// using reinterpret_cast.
llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr);
*ResultWidePtr = ResultChar;
ResultPtr += 4;
} else if (CharByteWidth == 2) {
// FIXME: Make the type of the result buffer correct instead of
// using reinterpret_cast.
llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr);
*ResultWidePtr = ResultChar & 0xFFFF;
ResultPtr += 2;
} else {
assert(CharByteWidth == 1 && "Unexpected char width");
*ResultPtr++ = ResultChar & 0xFF;
}
}
}
}
if (Pascal) {
if (CharByteWidth == 4) {
// FIXME: Make the type of the result buffer correct instead of
// using reinterpret_cast.
llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data());
ResultWidePtr[0] = GetNumStringChars() - 1;
} else if (CharByteWidth == 2) {
// FIXME: Make the type of the result buffer correct instead of
// using reinterpret_cast.
llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data());
ResultWidePtr[0] = GetNumStringChars() - 1;
} else {
assert(CharByteWidth == 1 && "Unexpected char width");
ResultBuf[0] = GetNumStringChars() - 1;
}
// Verify that pascal strings aren't too large.
if (GetStringLength() > 256) {
if (Diags)
Diags->Report(StringToks.front().getLocation(),
diag::err_pascal_string_too_long)
<< SourceRange(StringToks.front().getLocation(),
StringToks.back().getLocation());
hadError = true;
return;
}
} else if (Diags) {
// Complain if this string literal has too many characters.
unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
if (GetNumStringChars() > MaxChars)
Diags->Report(StringToks.front().getLocation(),
diag::ext_string_too_long)
<< GetNumStringChars() << MaxChars
<< (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
<< SourceRange(StringToks.front().getLocation(),
StringToks.back().getLocation());
}
}
static const char *resyncUTF8(const char *Err, const char *End) {
if (Err == End)
return End;
End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err);
while (++Err != End && (*Err & 0xC0) == 0x80)
;
return Err;
}
/// This function copies from Fragment, which is a sequence of bytes
/// within Tok's contents (which begin at TokBegin) into ResultPtr.
/// Performs widening for multi-byte characters.
bool StringLiteralParser::CopyStringFragment(const Token &Tok,
const char *TokBegin,
StringRef Fragment) {
const llvm::UTF8 *ErrorPtrTmp;
if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
return false;
// If we see bad encoding for unprefixed string literals, warn and
// simply copy the byte values, for compatibility with gcc and older
// versions of clang.
bool NoErrorOnBadEncoding = isAscii();
if (NoErrorOnBadEncoding) {
memcpy(ResultPtr, Fragment.data(), Fragment.size());
ResultPtr += Fragment.size();
}
if (Diags) {
const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
FullSourceLoc SourceLoc(Tok.getLocation(), SM);
const DiagnosticBuilder &Builder =
Diag(Diags, Features, SourceLoc, TokBegin,
ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
: diag::err_bad_string_encoding);
const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
StringRef NextFragment(NextStart, Fragment.end()-NextStart);
// Decode into a dummy buffer.
SmallString<512> Dummy;
Dummy.reserve(Fragment.size() * CharByteWidth);
char *Ptr = Dummy.data();
while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
NextStart = resyncUTF8(ErrorPtr, Fragment.end());
Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
ErrorPtr, NextStart);
NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
}
}
return !NoErrorOnBadEncoding;
}
void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
hadError = true;
if (Diags)
Diags->Report(Loc, diag::err_lexing_string);
}
/// getOffsetOfStringByte - This function returns the offset of the
/// specified byte of the string data represented by Token. This handles
/// advancing over escape sequences in the string.
unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
unsigned ByteNo) const {
// Get the spelling of the token.
SmallString<32> SpellingBuffer;
SpellingBuffer.resize(Tok.getLength());
bool StringInvalid = false;
const char *SpellingPtr = &SpellingBuffer[0];
unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
&StringInvalid);
if (StringInvalid)
return 0;
const char *SpellingStart = SpellingPtr;
const char *SpellingEnd = SpellingPtr+TokLen;
// Handle UTF-8 strings just like narrow strings.
if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
SpellingPtr += 2;
assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
// For raw string literals, this is easy.
if (SpellingPtr[0] == 'R') {
assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
// Skip 'R"'.
SpellingPtr += 2;
while (*SpellingPtr != '(') {
++SpellingPtr;
assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
}
// Skip '('.
++SpellingPtr;
return SpellingPtr - SpellingStart + ByteNo;
}
// Skip over the leading quote
assert(SpellingPtr[0] == '"' && "Should be a string literal!");
++SpellingPtr;
// Skip over bytes until we find the offset we're looking for.
while (ByteNo) {
assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
// Step over non-escapes simply.
if (*SpellingPtr != '\\') {
++SpellingPtr;
--ByteNo;
continue;
}
// Otherwise, this is an escape character. Advance over it.
bool HadError = false;
if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
const char *EscapePtr = SpellingPtr;
unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
1, Features, HadError);
if (Len > ByteNo) {
// ByteNo is somewhere within the escape sequence.
SpellingPtr = EscapePtr;
break;
}
ByteNo -= Len;
} else {
ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
FullSourceLoc(Tok.getLocation(), SM),
CharByteWidth*8, Diags, Features);
--ByteNo;
}
assert(!HadError && "This method isn't valid on erroneous strings");
}
return SpellingPtr-SpellingStart;
}
/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
/// suffixes as ud-suffixes, because the diagnostic experience is better if we
/// treat it as an invalid suffix.
bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
StringRef Suffix) {
return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) ||
Suffix == "sv";
}